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In generalization ofearlier developments [13,16] the formation of clusters in open systems
which exchange work and/or molecules with the surroundings is investigated.

It is shown that in the case of cluster formation under isobaric-isenthalpic conditions
the function (S—pV/T) is the relevant thermodynamic potential of this process. Further
are considered conditions of continuous supply of monomers and removal of large
clusters. The master equation of cluster formation under these conditions is established,
and the thermodynamic and molecular processes going on are qualitatively discussed.

In Verallgemeinerung vorangegangener Arbeiten [13, 16] wird die Bildung von Clustern
in offenen Systemen untersucht, die mit der Umgebung Arbeit und/oder Moleküle austau-
schen.

Für den Fall der Clusterbildung unter isobar-isenthalpischen Bedingungen wird ge-
zeigt, daß (S—pV/T^däi relevante thermodynamische Potential dieses Prozesses darstellt.

Ferner werden Bedingungen betrachtet, bei denen ständig Monomere zugeführt und
große Cluster abgeführt werden. Die Mastergleichung der Clusterbildung unter diesen
Bedingungen wird formuliert und eine qualitative Diskussion der ablaufenden thermody-
namischen und molekularen Prozesse gegeben.

1. Introduction
Going back to the twenties of our century, the "Zeitschrift für physikalische
Chemie" was one of the main scientific journals for nucleation phenomena :
In 1926 Volmer and Weber [1] gave a first quantitative description of the
nucleation rate, which was followed by Farkas [2] in 1927, who improved
the kinetic description. In 1934 important papers of Volmer and Flood [3]
and of Kaishev and Stranski [4] were published in Z. phys. Chemie, and in
1940 Neumann and Döring [5] published about nucleation in binary vapors.
This enumeration is rather incomplete and shall mark only some steps in
the development of nucleation theory, which are close connected with this
journal.



2 W. Ebeling, L. Schimansky-Geier and F. Schweitzer

But despite an intensive research over a period of about sixty years a

number of problems of the whole process of nucleation, growth, Ostwald
ripening and coagulation of clusters remain not finally solved yet.

For instance, the cluster formation in open systems is of considerable
interest for many applications especially to modern surface technology [6].
This has attracted many experimentators and theoretical workers to this
field [7-12].

In a foregoing paper [13] we have developed a relatively simple model
for the thermodynamic and molecular processes in conically expanding
nozzle beams entering into a vacuum. Here we consider two other con-

ditions of openess.
First we investigate molecular systems under isobaric-isothermal and

isobaric-isenthalpic conditions. We will show that the main features of the
theory developed in our earlier works [11—13] remain valid if the entropy
Sis replaced by the thermodynamic potential S—pV/T. The new procedure
takes into account the work which the gas has to carry out against the
external pressure.

At second we consider a pumped open system with an influx of mono-

mers and an outflux of very big clusters. Such a situation may be realized
in a rough model of rain. We will show how the classical theory of Becker
and Döring [14] can be derived from the modern stochastic theory.

2. Thermodynamics and equilibrium probability distribution
In the following we consider a closed system in the gaseous state, consisting
of a condensable vapor. The total number of particles is denoted by Ntot.

Due to interactions between the particles a number of particles of the
vapor is bound in clusters, resulting in a discrete distribution of clusters
and free particles. This distribution is described by the vector N:

 = {   2 ... N„ ... NN} (2.1)
TV, is the number of free particles of the condensable vapour (monomers),
7V~2 the number of bound states of two particles (dimers) and so on.

If the total number of particles in the system is kept constant it holds:

Mot =  nN„ = const. (2.2)
 = 1

where  is the number of condensable particles bound in the cluster, the
number of clusters consisting of  particles is denoted by N„.

From a statistic point of view every possible distribution  is found
with a certain probability for a given time, defined by

P(N,t) = P(NlN2...N„...NN,t). (2.3)
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In a stochastic theory the formation and growth of clusters can be described
by the change of P(N, t) in time. Let us study first the equilibrium probabili-
ty distribution P°(N).

In thermodynamic equilibrium the probability P°(N) to find a certain
distribution of clusters in the bath of the free particles is defined by the
following relation:

P°(N) = ic(N) Q°(qi ...pN)dq,...dpN. (2.4)
Here  °(^ 

...

pN) means the equilibrium probability distribution for the  
particles in the spatial and momentum coordinates of all particles. The
integration is carried out for the subspace C(N) of the assumed particle
configuration N. Q°(qY ... pN) depends on the thermodynamic boundary
conditions of the system. Let us summarize the following cases :

(a) Isochoric conditions

This situation has been discussed in our previous papers with respect to the
isothermal case ( , V, Ntot = const.) [11, 15] and to the isoenergetic case

(U, V, 7Vtol = const.) [12, 13, 16]. As the results we have found:

(i) P°(N) = exp{[F(T, V, Niol)
-

F(T, V,NlN2... NN)]/kBT} (2.5)
for  , V, Ntot = const.

where Fis the free energy of the system.
(Ü) p>(N) = exp{[S(L7,  ,   2... NN)

-

S(U, V, Nlot)]/kB} (2.6)
for U, V, Ntoi = const,

where 5 is the entropy of the system.

(b) Isobaric conditions

This case seems to be of more relevance for experimental conditions. In
comparison to the discussion above we must consider the exchange of work
with the surroundings, and therefore for Q°{qx ... pN) yields:

(iii) Q°{qx ...pN)= Cexpf-M?! ...pN) + pV]/kBT}
for T,p, Ntot = const. (2.7)

(iv) ^..·/*)= { C0°nSt- ^ -  <^...  )< +  (28)
for H, p, Nt0t = const.

x(qi ...pN) is the Hamiltonian of the  particles system,  is the enthalpy
and   the thickness of the enthalpy shell. The constant is connected to
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the volume of the microshell  * which is related to the entropy S* of the
 particles system considered as a function of  and p. From

S*(H,p,  0 = kB In f   *,   * =dq1... dqNdpx ...dpN (2.9)
follows

const. = 1/ * = exp{-S*(H,p,N)/kB}. (2.10)
In relations given above,  is the external pressure and F the volume of the
system. Of course, the actual value of F depends on the cluster distribution
N, but not on the space and momentum coordinates. For an integration
over the subspace CYN)

—

that means a definite cluster distribution
—S*(H,p, N),p and F(N) are constants and contribute only to the prefactor

of the integrals.
In order to get the equilibrium probability distribution [Eq. (2.4)] we

integrate over all particle configurations compatible with the existence of
the cluster distribution N. In this way we get with Eq. (2.7)

(ni) P°(N) = expi^^0( kBT
ic(N) exp{

-

[xfa, ...p„) +  V\/kBT} dQ* (2.11)
which gives

 °(  , N2...NN) = exp{[G(/>, T, Ntot)
-

G(p,  , /V, N2 ... NN)]/kBT]
for T,p, Ntot = const. (2.12)

with the thermodynamic potential
G(T,p,N) = -kBTln{exp(-pVlkBT)Scwexp[-x((li ...p„)kBT\dQ}
=  F(N) + F(T, F,N) (2.13)

where G is the free enthalpy of the system.
Starting from Eq. (2.8), we get in agreement with [16]
(iv) P°(NiN2...NN) = (llQ*)im)dQ* (2.14)

which results in

 °(  ,  2... NN) = ^{[ ^ , , , N2...NN)- S*(H,p, Níoí)]/kB}
(2.15)

where

 *( , ,  N2...NN) = (1/ *) 0( ) / * (2.16)
is the entropy of the cluster distribution for the given thermodynamic
constraints. For systems with a linear dependence S = S(U) it holds

S*(H,p,N) = S*{H(U, V),p(U, F),N} = S(U, F, N)
—

pV(N)/T. (2.17)
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This relation is true especially for ideal systems.
As to be seen in Eqs. (2.5), (2.6), (2.12), (2.15) under thermodynamic

conditions the equilibrium probability distribution is determined by ther-
modynamic potentials, which depend on the constraints. Thus we may
write generally:
  , N2...NN)~ exp[ - ( 1 2... NN)/kB] (2.18)

where 0(N) has to be specified in dependence on the thermodynamic con-
straints.

3. Master equation and detailed balance

Let us formulate now the master equation for the relaxation into the
equilibrium state.

The kinetics of nucleation is assumed as an Markovian discrete process.
The dynamics of the probability P(N, t) to find a certain cluster distribution
 at time t obeys a master equation:

dP(™'t}
=  {h<N|N')P(N',0-tv(N'|N)P(N,;)}. (3.1)Ö t ( ')

The quantities vv(N'|N) are the transition probabilities per unit time for
the transition from  to  '. N' specifies those distributions which are
attainable from the assumed distribution N.

The stationary solution of the master equation requires that dP(N, t)j
dt = 0. From this condition we find 27N · 7(N|N') = 0 with /( | ')

-

w(N|N')
P(N', i)

-

h>(N'|N) P(N,  being the probability flux between the states N'
and N.

Since the system is not pumped, the system is of potential type and the
equilibrium condition is given by the more restricted condition of detailed
balance. It means 7(N|N') = 0 resulting in:

  ( | ') P°(N') = w(N'|N) P°(N). (3.2)
Inserting Eq. (2.14), Eq. (3.2) results in:

w(N|N') = h>(N'|N)exp{[cMN')
-

ri)(N)]//cB}. (3.3)

Due to the strong relation between the transition probabilities w(N|N') and
w(N'|N) via the thermodynamic potential only a kinetic assumption for one
of the transition probabilities is necessary.

We assume that the growth and shrinkage of a cluster is due only to an
attachment or evaporation of monomers of the condensable vapor.

In order to determine the transition probability for the attachment of
a monomer to a cluster of size n, we assume in agreement with previous
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papers [11
—

13,15
—

17] that the probability increases with the surface area
of the cluster, with the number of clusters of size  and with the density of
the free particles of the vapour. In this way we get for the special process
of attachment

w(N'\N) = w(N1 -Ì...Nn-ÌNn+1 + ì ...N„\Nl...NnN„+l...NN)
= w:(NlNn) = a(Dn1i3NnNl/V. (3.4)

The parameter  determines the time scale of the stochastic processes. One
has to consider further the specific properties of the surface, like surface
tension  , composition of the surface and the sticking coefficient.

We note, that the transition probabilities for the growth of clusters of
different sizes are correlated, since the total number of particles in the
system is kept constant [11, 12].

This means consequently for the master equation (3.1 ) that the probabil-
ity P(N, t) does not factorize.

The transition probability for the opposite process, the evaporation
of a monomer from the cluster surface, can be determined by means of
Eq. (3.3).

4. Cluster formation in systems pumped with monomers

In pumped systems which have no thermodynamic potential, the condition
of detailed balance (3.3) which connects the forward with the backward
transition rates, does not hold further. Therefore, in general the theory of
nucleation developed above will break down.

However, under special conditions at least some parts of the detailed
balance condition still holds. That is the case, which we mentioned in the
introduction as the rain model. It makes the same assumptions as in the
derivation of the classical nucleation theory [18]:

(i) The systems is pumped by an influx of monomers.

(ii) Clusters, which are bigger than a certain size «*, are removed from
the system

—

that means an outflux of bound particles.
(iii) If certain relations between influx and outflux hold (e.g. equal mass

flows and balance between entropy production and export) the system may
reach a stationary non-equilibrium state. In this state all numbers ofclusters
and free particles are kept constant.

For physical reasons we may exclude any changes in the transition
probabilities of cluster growth and shrinkage except those, which are con-
nected with the influx of monomers and the outflux of the biggest clusters.
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Let us now discuss the consequences for the kinetic description by
means of the master equation.

It has been pointed out [15] that the kinetic Eq. (3.1) for P(Nt N2
... NN, t) can be reduced to a kinetic equation for the stochastic evolution
of a single cluster. Therefore, we introduce the probability P(n\Ni + n, t)
to find a cluster of size  in the bath of   monomers at time t.

If we restrict ourselves to the evolution of a single cluster, while fix the
distribution of the other clusters, the value +  is a constant for the
growth and skrinkage of the single cluster:

Ni. +  = (Ni
-

1) + ( + 1) = (  , + 1) + ( 
-

1). (4.1)
For a reduction of the master Eq. (3.1) we now propose the following
ansatz:

8™ *  ·*·'>. -già-  vw,+», or- (4.2)
 

—

 

with
 

Ni = Ntot
—

 nN„ (4.3)
 = 2

in the case of a closed system with a constant total particle number. It yields
now:

9f(^+"'° ^ W>
- -

11(* + 1) + in
-

1),/]
+ w'(n + l)P[n + 11 (Nt

-

1) + (n + 1), t]
-[w+(n) + w-(n)] f(« \Ni + n, /)} (4.4)

and

-rN(t)[W + (\)P(\\Ni + \,t)-w-{2)P{2\Nl+2,t)]. (4.5)
The transition probabilities are defined as follows:

w+(\) = wt (Ni)
w+(n) = wn+(Ni N„)/Nn (4.6)
w-(n) = w-(Nn)/Nn.

Eq. (4.4) is the master equation for the evolution of a single cluster; whereas
Eq. (4.5) is the balance equation for the probability of the free monomers.
It realizes the different boundary conditions.
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In the case of an open stationary system with permanent influx of
monomers we have

0 =

-

jyr) K(l) P(l|/Y, -1,0- w~(2)  (2\  -2,t) + ß] (4.7)
ß means the probability flux which results from the influx of monomers
and ensure the constant number of free particles. The r.h.s. of Eq. (4.7) just
vanishes, therefore we have 9  / / = 0, that means   is a constant. Then
Eq. (4.2) for P(Ni N2 ... N„,  factorizes and the evolution of the cluster
distribution can be completely described by the stochastic evolution of
single clusters. That means only for the special condition of a constant
influx of monomers we are able to reduce the complicated master Eq. (3.1)
to a Beker-Döring like equation of independently growing clusters.

Eq. (4.4) can be now discussed in the same way as proposed by Becker
and Döring in 1935 [14]. The stationary solution of Eq. (4.4) is given by
dP(n, 0/9/ = 0. [In the following we denote P(«|-/V, + n, t) = P(n,  ], re-

sulting in:

J(n + \\n) = w
+ {ri)P(n,t)

-

w~{n + 1)P(n + 1,0 = ß = const. (4.8)
J is the probability flux between the states n and (n + 1); in the stationary
case it is a constant.

Eq. (4.8) means a recursive system of equations in order to determine
the stationary probability Ps(n) [17]:

 n
-

1

P\n) = Ps(a)  
-

J*  Q(k) (4.9)

with

b(j) = w+(j-\)lw-(j) (4.10)
 

Q(k)
w + (k)

.

 b(i). (4.11)
¡

-

= k + 1

With respect to the conditions (i), (ii) of this chapter we assume

(1) = const. ;Ps(n*) = 0 (4.12)
that means n* is an absorber state. The stationary flux is then given by the
expression:
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Fig. 1. Stationary probability distribution p\ri) = .F(m)/.F(1) versus cluster size n.
n* = 250.

which can be reduced by means of the assumptions of the classical
nucleation theory to a formula like the classical nucleation rate.

Introduction the normalized probabilities ps(n) = Ps(n)/Ps(\), we arrive
finally at the stationary probability in the form:

  *  
—

l  *
-

I

p\ri)=p\a)  ¿O)-   0( )/ Q(K) (4.14)
j = a+ 1 j= 2 k = a k = 1

which is completely determined by the transition rates of the single cluster.

5. Discussion
In this work we have shown how the stochastic theory of cluster kinetics
in open systems may be based on Gibbs equilibrium distributions.

At first we have derived that under isobaric-isothermal conditions and
under isobaric-isenthalpic conditions the role of the energy U is taken over

by the enthalpy H = U + pV and that the role of the entropy is taken over

by the thermodynamic potenital S*(H,  , N) = S(U, V, N)
-

PV/T.
At second we investigated the stationary state in a system which is

pumped by an influx of monomers, and where on the other side big clusters
are removed from the system. Such a situation is typical e.g. for rain
phenomena.

In this case the stationary probability distribution of clusters (Fig. 1) is
monotonously decreasing with the cluster size and ends at the maximum
size n*.
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As also shown in Fig. 1 the distribution shows a long tail with a scaling
like

lnPs(«) ~ C, -C2  (1+ ),  >0.

For large n* this behaviour reminds of the properties observed in the
phenomena of self-organized criticality [19] which are characterized by
structures on all scales. Whether such a relation between S.O.C, and the
cluster kinetics in "rain systems" exists, needs further investigations.
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