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Abstract

Complex Systems usually consist of a large number of interacting components; therefore

multi-agent models can play a valuable role in exploring and simulating their dynamic behavior.

In the first part of this paper we address some conceptual issues associated with designing

agent-based models for complex systems. In the second part we investigate the dynamics of a

“minimalistic” multi-agent system, where spatially distributed agents communicate via a spatio-

temporal multicomponent “communication field”. For the example of a binary choice problem we

find the emergence of a majority/minority relation among the agents. Moreover, the minority and

the majority concentrate in particular spatial domains; thus we observe a spatial coordination

of decisions as the result of a self-organization process based on the exchange of information.

We also show by means of computer simulations that the subpopulation with the more efficient

communication will have a better chance to become the majority in the system.

1 Introduction

The emergence of complex behavior in a system consisting of interacting elements is among the most

fascinating phenomena of our world. Examples can be found in almost every field of today’s scientific

interest, ranging from coherent pattern formation in physical and chemical systems (Feistel and

Ebeling, 1989; Cladis and Palffy-Muhoray, 1995), to the motion of swarms of animals in biology

(DeAngelis and Gross, 1992) and the behavior of social groups (Weidlich, 1991; Vallacher and

Nowak, 1994).

In the life and social sciences, one is usually convinced that the evolution of social systems is

determined by numerous factors, such as cultural, sociological, economic, political, ecological etc.
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However, in recent years, the development of the interdisciplinary field “science of complexity”

has lead to the insight, that complex dynamic processes may also result from simple interactions.

Moreover, at a certain level of abstraction, one can also find many common features between

complex structures in very different fields (Schweitzer, 1997a).

The recent progress in the understanding of non-equilibrium phenomena in complex systems has

initiated a lot of activities in analyzing, modelling and simulating “living” systems by means of

methods from statistical physics. This does not hold only for biological systems (Parisi et al., 1998),

but also for social and economic systems (Dendrinos and Sonis, 1990; Weidlich, 1991; Levenstein et

al., 1992, Helbing, 1995; Kacperski and Ho lyst, 1996; Allen, 1998). Already in the early seventies,

physicists have realized that these methods can help to understand social phenomena, such as

opinion formation, migration, and settlement formation (Weidlich, 1972, Weidlich and Haag, 1983).

Very recently, physicists have also focussed their interdisciplinary interests to particular economic

processes, such as trading, market dynamics, decision processes, economic agglomeration, or com-

pany growth (Bruckner et al., 1994; Levy et al., 1995, Galam, 1997, Schweitzer, 1998, Lee et al.,

1998).The joint efforts of many research groups spread over the world eventually lead to the es-

tablishment of econophysics – a young and fast growing field, the potential importance of which

can be hardly overestimated (Mantegna and Stanley, 2000, Schweitzer and Helbing, 2000). Even

with the analysis of financial time series as its current focus, econophysics is meant to be a more

comprehensive enterprise. Basically, it focusses on the question how and to what extent methods

from statistical physics can be used for the analysis, modeling, simulation, and optimization of

economic systems.

In order to make this enterprise a successful one, a broad and openminded dialog is needed be-

tween physics, economics and the social sciences. This dialog should help to overcome the gap

between these different disciplines (i) by providing methods from the natural sciences, which could

be adapted to solving problems in social or economic fields, and (ii) by increasing among natural

scientists the sensitivity for problems in the fields of economics and the social sciences.

This paper wants to contribute to this discussion in a twofold way: In the first part, we will address

general problems in defining and simulating complex systems which are also of relevance in an

economic context. The second part deals with a basic model to simulate communication and self-

organization in an agent system via the exchange of information. “Basic” means here that we want

to focus only on particular interactions among the agents, with no attempt to model a specific

socio-economic system most realistically.

Instead, we will concentrate on the spatial coordination of decisions among the agents dependent on

the various information received. We will consider certain important features, namely the exchange

of information with a finite velocity, the existence of a memory, or the local heterogeneity of available

information, while other features within this basic approach cannot be and will be not considered.
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2 Complex systems and self-organization

Despite many efforts, there is no commonly accepted definition of a complex system (Ebeling et al.,

1998). Heuristic approaches basically focus on the interaction between (“microscopic”) subsystems

and the emergence of new qualities at the (“macroscopic”) system level, e.g.

• “Complex systems are systems with multiple interacting components whose behavior cannot

be simply inferred from the behavior of the components.”1

• “By complex system, it is meant a system comprised of a (usually large) number of (usually

strongly) interacting entities, processes, or agents, the understanding of which requires the

development, or the use of, new scientific tools, nonlinear models, out-of equilibrium descrip-

tions and computer simulations.”2

The latter description already raises the question which kind of scientific methodologies or tools

would be sufficient to investigate complex systems. It is now commonly accepted that computer

simulations will play a major role in this enterprise, as a third methodology in addition to formal

theories and empirical studies (experiments).

Among the different simulation approaches developed within the last twenty years, the multi-agent

approach seems to be most promising and versatile. While agent models have originally been devel-

oped in the Artificial Life community (Maes, 1991; Meyer and Wilson, 1991)they recently turned

out to be a suitable tool in various scientific fields, ranging from ecology to engineering (DeAngelis

and Gross, 1992; Lam and Naroditsky, 1992), and especially in economics and the social sciences

(Andersen et al., 1988; Troitzsch et al., 1996; Hegselmann et al., 1996; Arthur et al., 1997; Silver-

berg, 1997; Schweitzer and Silverberg, 1998). However, agent-based models are not restricted to the

social and life sciences, they are also useful in natural sciences in cases where continuous approxima-

tions are less appropriate. Here, the discrete approaches to structure formation range from lattice

gas models in hydrodynamics to stochastic cellular automata and models of active walkers or active

Brownian particles (Boon, 1991; Crutchfield and Hanson, 1993; Lam, 1995; Schimansky-Geier et

al., 1995, Schweitzer, 1997d)

The advantage of an agent-based approach is given by the fact that it is applicable also in cases

where only a small number of actors (particles, agents) govern the further evolution. Here determin-

istic approaches or mean-field equations are not sufficient to describe the behavior of the complex

system. Instead, the influence of history, i.e. irreversibility, path dependence, the occurence of ran-

dom events/stochastic fluctuations play a considerable role.

In general, agents are regarded as relatively autonomous entities which may represent local pro-

cesses, individuals, species, agglomerates, chemical components, firms, etc. These entities have a

1New England Complex Systems Institute
2Journal Advances in Complex Systems
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set of different rules to interact with each other. Which of the rules applies for a specific case, may

also depend on local variables, which in turn can be influenced by the (inter)action of the agents.

In this paper, an agent is meant to be a subunit with an “intermediate” complexity. This means

on one hand that he/she is not assumed as a “physical” particle only reacting to external forces,

but on the other hand should not already have the same complex capabilities as the whole system.

Instead the agent should be characterized by some “activity”, which of course may depend on the

system the model is applied to – examples are treated in more detail in this paper.

A multi-agent system (MAS) then may consist of a large number of agents, which can be also

of different types. The complex behavior of the multi-agent system as a whole basically depends

(i) on the complexity of the agent (i.e. the range of possible actions), (ii) on the complexity of

the interaction. The latter one is considered even more important, since it has been shown e.g. in

physical systems that already from the interaction of simple entities a rich variety of structures can

emerge. The interactions between the agents may usually occur on different spatial and temporal

scales. That means, in addition to local or spatially restricted interactions which may occur only

at specific locations or if agents are in closer distance, we also have to consider global interactions,

where all agents are involved. Further, the time scale of interactions is of significant importance.

Whereas some interactions occur rather frequently, i.e. on a shorter time scale, others become

effective only over a long time. A third distinction to be mentioned is between direct and indirect

interactions. The latter one occurs e.g. if agents use a common resource that can be exhausted in

the course of time. This way, the actions of all agents are indirectly coupled via the resource and

its current availability further provides some information about the cumulative activity of others.

As the result of the different interactions, we may observe different kinds of collective dynamics and

the emergence of new system properties not readily predicted from the basic equations. This process

is often denoted as self-organization, i.e. “the process by which individual subunits achieve, through

their cooperative interactions, states characterized by new, emergent properties transcending the

properties of their constitutive parts.” (Biebricher et al., 1995)

However, whether these emergent properties occur or not depends of course not only on the prop-

erties of the agents and their interactions, but also on suitable external conditions, such as global

boundary conditions, the in/outflux of resources (matter, energy, information). A description which

tries to include these conditions is given by the following heuristic definition: “Self-organization is

defined as spontaneous formation, evolution and differentiation of complex order structures form-

ing in non-linear dynamic systems by way of feedback mechanisms involving the elements of the

systems, when these systems have passed a critical distance from the statical equilibrium as a result

of the influx of unspecific energy, matter or information.” (SFB 230, 1994)

In this sense, the self-organized structure formation can be considered as the opposite of a hierar-

chical design of structures which basically proceeds from top down to bottom: here, structures are

originated bottom up, leading to an emerging hierarchy, where the structure of the “higher” level

appears as a new quality of the system (Haken, 1978; Darley, 1994). For the prediction of these

4/26



Frank Schweitzer, Jörg Zimmermann:
Communication and Self-Organization in Complex Systems: A Basic Approach

in: Knowledge, Complexity and Innovation Systems (Eds. M. M. Fischer, J. Fröhlich)
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global qualities from local interactions fundamental limitations exist which are discussed e.g. in

chaos theory. Moreover, stochastic fluctuations also give unlikely events a certain chance to occur,

which in turn affects the real history of the system. This means, the properties of complex systems

cannot be determined by a hierarchy of conditions, the system creates its complexity in the course

of evolution with respect to its global constraints. Considering, that also the boundary conditions

may evolve and new degrees of freedom appear, co–evolutionary processes become important, and

the evolution may occur on a qualitatively new level.

3 Complex versus minimalistic agents

In order to gain insight into the interplay between microscopic interactions and macroscopic features

in complex systems, it is important to find a level of description, which on one hand considers specific

features of the system and is suitable to reflect the origination of new qualities, but on the other

hand is not flooded with microscopic details. As pointed out above, the multi-agent approach may

provide a suitable tool for describing and simulating complex systems – however, this raises the

question how to design the agent’s features appropriately. There is no general answer to this, since

the agent design strongly depends on the system under consideration. Nevertheless, some general

remarks can be applied.

Let us take the example of agent-based computational economics, which is meant to describe and

to simulate the economic interaction between “agents” which could be either individuals, or firms

(Föllmer, 1974; Holland and Miller, 1991; Lane, 1992; Arthur, 1993; Epstein and Axtell, 1996;

Kirman, 1993). One of the standard paradigms of neoclassical economic theory, the rational agent

model is based on the assumption of the agent’s complete knowledge of all possible actions and

their outcomes or a known probability distribution over outcomes, and the common knowledge

assumption, i.e. that the agent knows that all other agents know exactly what he/she knows and

are equally rational (Silverberg and Verspagen, 1994). In this particular form, the rational agent is

just one example of a complex agent with either knowledge based or behavior based rules (Maes,

1991), performing complex actions, such as rational choices or BDI (belief-desire-intention) (Müller

et al., 1997). Moreover, in many cases the complex agent is capable of specialization, learning,

genetic evolution, etc.

Different problems are involved in such a complex agent design; two of them shall be shortly

mentioned here. A problem blinded out quite often is concerned with the information flow in

the system. The common knowledge assumption implecitely demands an infinitely fast, loss-free

and error-free distribution of information in the whole system, but does not give a hint how this

shall be realized. A more realistic assumption would be based on the heterogeneous, time-delayed,

incomplete and noise-affected information distribution, but in consequence, this would demand to

model the information flow between the agents explicitely.
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A second problem is concerned with the combinatoric explosion of the state space. Commonly, the

freedom to define rules and interactions for the agents, is much appreciated. However, each of these

additional rules blows up the state space of possible solutions for the agent system. Already for

1000 agents with 10 rules, the state space contains about 1013 possibilities. Hence almost every

desirable result could be produced from such a simulation model and the freedom could very soon

turn out to be a pitfall.

In fact, due to their rather complex simulation facilities many of the currently available multi-

agent tools, for example SWARM, lack the possibility to investigate systematically and in depth

the influence of specific interactions and parameters. Instead of incorporating only as much detail

as is necessary to produce a certain emergent behavior, they put in as much detail as possible, and

thus reduce the chance to understand how emergent behavior occurs and what it depends on.

A quite different approach is given by the minimalistic agent design, which is used in this paper. A

minimalistic agent acts on the possible simplest set of rules, without deliberative actions. Instead

of specialization, the minimalistic agent model is based on a large number of “identical” agents,

and the focus is mainly on cooperative interaction instead of autonomous action. Of course, also

this approach is based on a certain trade-off: some features which might be considered important

for a specific system, are dropped here, in order to investigate a particular kind of interaction

more carefully. Instead of describing a whole system most realistically, the minimalistic approach

only focuses on particular dynamic effects within the system dynamics - but, as an advantage, also

provides numerous quantitative methods to investigate the influence e.g. of certain parameters or

quantities. For example, bifurcations of the dynamics, the structure of attractors, conditions for

stable non-equilibrium states, etc. can be investigated by means of advanced methods borrowed

from statistical physics, this way providing a clear-cut idea about the role of particular interaction

features.

Like any other agent-based approach, also minimalistic agent models are based on a specific kind

of reductionism which should be addressed from a philosophy of science view. Compared to the

reductionistic approaches especially in natural sciences, self-organization theory is often interpreted

as a holistic approach which conquers the classical reductionism. However, self-organization itself

is a phenomenon which is only realized from a certain perspective, i.e. it’s observation depends

on the specific level of description, or on the focus of the “observer”, respectively (Niedersen and

Schweitzer, 1993). In this particular sense, self-organization theory is an aithetical theory (cf. the

Greek meaning of “aisthetos”, perceptable) (Schweitzer, 1994). The particular level of perception

for self-organization has been denoted as mesoscopy (Schweitzer, 1997b). It is different from the

microscopic perception level which focuses primarily on the smallest entities or elements, as well

as from the macroscopic perception level, which rather focuses on the system as a whole. Instead,

mesoscopy focuses on elements complex enough to allow an interaction which eventually results

into emergent properties or complexity on the macroscopic scale. These elements are the “agents”

in the sense denoted above: they provide an “intermediate complexity” and are capable of a certain
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level of activity, i.e. they do not just passively respond to external forces, but are actively involved

e.g. in nonlinear feedback processes.

Thus, for the further discussion we have to bear in mind to what degree agent-based models are

based on certain reductions regarding the system elements and their interactions. On the way

toward a generalized self-organization theory, we have to understand carefully the nature of these

reductions, especially when turning to the social and life sciences (Hegselmann et al., 1996). Self-

organization in social systems is confronted with the mental reflexions and purposeful actions of

their elements, creating their own reality. While we are on one hand convinced that the basic

dynamics of self-organization originates analogies between structure formation processes in very

different fields regardless of the elements involved, we should on the other hand not forget about

the differences between these elements, especially between humans and physical particles. Thus,

a deeper understanding of self-organization, complex dynamics and emergence in socio-economic

systems has to include also a better insight into these reductions.

4 An information-theoretic approach

In the following, we want to characterize the minimalistic agent approach in terms of an information-

theoretic description. This shall allow us to describe the interaction of agents as a generalized

form of “communication”, based on the exchange of information. To this end, we need to distin-

guish between three different kinds of information: functional, structural and pragmatic information

(Ebeling et al., 1998; Schweitzer, 1997c).

Functional information denotes the capability of the agent to process external information (data)

received. It can be regarded as an algorithm specific to the agent. This algorithm is applied to “data”

in a very general sense, which can be also denoted as structural information because it is closely

related to the (physical) structure of the system. The DNA is an example for structural information

in a biological context. As a complex structure, it contains a mass of (structural) information in a

coded form, which can be selectively activated in dependence on different circumstances. Another

example for structural information would be a book or a user manual, written in letters of a

particular alphabet.

Structural information is meaningless, it does not contain semantic aspects but only syntactic

aspects - hence, the content of structural information can be analyzed for instance by means of

different physical measures (e.g. conditional or dynamic entropies, transinformation etc.) (Ebel-

ing et al., 1998). Functional information on the other hand is related to the semantic aspects of

information; it reflects the contextual relations of the agent. It is the purpose of functional infor-

mation to activate and to interpret the existing structural information with respect to the agent,

this way creating a new form of information denoted as pragmatic information. This means a type

of operation relevant information which allows the agent to act. In the examples above, cells are
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able by means of specific “functional” equipment to extract different (pragmatic) information from

the genetic code, which then allows to evolve differently e.g. in morphogenesis. In the example of

the user manual, the reader (agent) is able by means of a specific functional information, i.e. an

algorithm to process the letters, to extract useful, “pragmatic” information from the text, which

only allows him/her to act accordingly. If the functional information (algorithm) does not match

the structural information (data), i.e. if the manual is written in Chinese and the reader can only

process latin letters, then pragmatic information will not emerge from this process – even though

the structural and the functional information is still there. With respect to the term of pragmatic

information, we can express this relation as follows: It is the purpose of functional information to

transfer structural into pragmatic information.

In order to characterize the minimalistic agent model in terms of a generalized communication

approach based on the exchange of information, we have to identify the kind of functional and

structural information used in the system, and then have to investigate which kind of pragmatic

information may emerge from this. As denoted above, the functional information shall be a (simple)

algorithm which can be steadily repeated by each agent. For example, we may assume that during

every time step the agent is able (i) to read data, (ii) to write data, and (iii) to process the data

currently read (e.g. to compare their value). The data read and written are structural information

which is stored on a blackboard external to the agent. Like a usual blackboard, it plays the role of

a communication medium (Veit and Richter, 2000). Because of this, the communication among the

agents may be regarded as indirect communication; however, the involvement of a medium seems

to be always the case, even in “direct” oral communication.

The emergence of pragmatic information for a specific agent will of course depend (i) on the func-

tional information, i.e. the “algorithm” to process a specific structural information, and (ii) on the

availability of this structural information, i.e. the access to the respective blackboard at a particular

time or place. For different applications, we may consider various possibilities to restrict the access

to the blackboard both in space and time. This way, the communication between the agents can be

modeled as a local or a global one. On the other hand, we may also assume that there are different

spatially distributed blackboards in the system, modeling a spatially heterogeneous distribution of

(structural) information.

Additionally, we may consider exchange processes between different blackboards, for instance for

the reconciliation of data. The data originally stored on a particular blackboard may then also

propagate to other blackboards in the course of time. This way, we observe a rather complex

interaction dynamics determined by two quite different space- and time-dependent processes: (i)

changes of blackboards caused by the agents, (ii) changes of blackboards caused by an eigendynamics

of the structural information. The latter one may also involve dynamic elements such as (i) a finite

life time of the data stored which models the existence of a memory, (ii) an exchange of data in the

system with a finite velocity, (iii) the spatial heterogeneity of structural information available.

As one possibility to consider these features within a minimalistic agent model, we have introduced
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the concept of a spatio-temporal communication field (Schweitzer and Ho lyst, 2000), which models

the eigendynamics of an array of spatially distributed blackboards. This communication field is

external to the agents, but is created by the various types of data (structural information) consec-

utively produced by them. For example, agents contribute to the communication field by making

choices, by consuming resources, by producing some output – e.g. in economic production or simply

as waste or thermal radiation which heats up the atmosphere, etc. The distribution of the different

kinds of structural information is spatially heterogeneous and time dependent. However, it may

affect other agents in different regions of the system, provided they notice this information and are

capable to extract some meaning out of it, which then may influence their own decisions, output,

etc.

This concept has proved its applicability in a variety of models. We want to mention only two

examples here. In a model of economic agglomeration, the communication field has been regarded

as a spatially heterogeneous, time dependent wage field, from which agents can extract meaningful

information for their migration decisions. The model then describes the emergence of economic

centers out of a homogeneous distribution of productivity (Schweitzer, 1998). Another example

deals with spatial self-organization in urban growth (Schweitzer and Steinbrink, 1997). In order to

find suitable places for aggregation, “growth units” (specific urban agents) may use the information

of an urban attraction field, which has been created by the existing urban aggregation and this way

provides an indirect communication between different types of urban agents. To be more specific,

we want to discuss in the following a simple model of agents communicating by means of a two-

component communication field, which contains information for their local decisions.

5 Basic model of communicating agents

Let us consider a rather simple toy model of agent interaction. Suppose, we have a 2-dimensional

spatial system with the total area A, where a community of N agents exists. In general, N can

be changed by birth and death processes but A is assumed fixed. Each agent i is assigned two

individual parameters: its position in space, ri, which should be a continuous variable, and its

current “opinion”, θi (with respect to a definite aspect or problem). The latter one is a discrete

valued parameter representing an internal degree of freedom (which is a rather general view of

“opinion”).

To be specific, let us discuss the following example. Imagine a certain problem, for instance the

separate disposal of recycling material. Each agent in the system needs to decide whether he/she

will collaborate in the recycling campaign or deny to do so. Then, there are only two (opposite)

opinions, i.e. θi ∈ {+1,−1}. From the classical economic perspective, the agents’ decision about

his/her opinion may depend on an estimate of his/her utility, i.e. what he/she may gain compared

to her own effort, if he/she decides to collaborate or not. Here, we neglect any question of utility
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and may simply assume that the agent will more likely do what others do with respect to the

specific problem, i.e. he/she will decide to collaborate in the recycling campaign if most of his/her

neighbors will do so, and refuse to collaborate in the campaign if most of their neighbors have the

same opinion in this case. This kind of contagious behavior in decision processes is well known from

different fields, i.e. fashion demand or selection of movies (Weidlich, 1991; Helbing, 1995; Lane and

Vescovini, 1996; Solomon et al., 2000).

This problem raises the question about the interaction between agents at different locations, i.e. how

is agent i at position ri affected by the decisions of other agents at closer or far distant locations?

In a checkerboard world, commonly denoted as cellular automaton, a common assumption is to

consider only the influence of agents which are at the (four or eight) nearest neigbour sites or also

at the second-nearest neighbor sites etc. (Schelling, 1969; Sakoda, 1971, Hegselmann and Flache,

1998). Contrary, in a mean-field approximation, all agents are considered as influencial via a mean

field which affects each agent at the same time in the same manner.

Our approach will be different from these ones in that we will consider a continuous space and a

gradual, time delayed interaction between all agents. We assume that agent i at position ri is not

directly affected by the decisions of other agents, but only receives information about their decisions

via a communication field generated by the agents with the different opinions. This field is assumed

a scalar multi-component spatio-temporal field hθ(r, t), which obeys the following equation:

∂

∂t
hθ(r, t) =

N
∑

i=1

si δθ,θi
δ(r − ri) − kθhθ(r, t) + Dθ∆hθ(r, t). (1)

Every agent contributes permanently to this field with its personal “strength” or influence, si. Here,

δθ,θi
is the Kronecker Delta indicating that the agents contribute only to the field component which

matches their opinion θi. δ(r − ri) means Dirac’s Delta function used for continuous variables,

which indicates that the agents contribute to the field only at their current position, r i.

The structural information generated this way has a certain life time 1/kθ [s], further it can spread

throughout the system by a diffusion-like process, where Dθ [m2/s] represents the diffusion constant

for information exchange. We have to take into account that there are two different opinions in the

system, hence the communication field should also consist of two components, θ = {−1, +1}, each

representing one opinion. Note, that the parameters describing the communication field, si, kθ, Dθ

do not necessarily have to be the same for the two opinions.

Eq. (1) for the communication field hθ(r, t) is a partial differential equation continuous in space

and time. In a discretized version, it describes a spatial array of two different kinds of blackboards,

each storing the contributions si (“data”, structural information) produced by the agents of a

particular opinion in a particular spatial domain x+∆x, y +∆y. These blackboards are updated in

time intervals ∆t and have an eigendynamics determined by the exchange and the life time of the

“data” stored. This eigendynamics can be used to reflect some important features of communication

in social systems:
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(i) the existence of a memory, which reflects the past history of actions. In our model, this

memory exist as an external memory, the lifetime of which is determined by the decay rate

of the structural information, kθ.

(ii) an exchange of information in the community with a finite velocity. In our model, this ex-

change is described by a diffusion-like process with the exchange constant Dθ. This implies

that the structural information will eventually reach every agent in the whole system, but of

course at different times.

(iii) the influence of spatial distances between agents. Thus, the information generated by a specific

agent at position ri will affect agents at a closer spatial distance earlier and thus with larger

weight, compared to far distant agents.

The communication field hθ(r, t) influences the agent’s decisions as follows: At a certain location

ri, the agent i with opinion θi is affected by two kinds of information: the information hθ(ri, t)

resulting from agents who share his/her opinion, and the information h−θ(ri, t) resulting from the

opponents. The diffusion constants Dθ determine how fast he/she will receive any information,

and the decay rate kθ determines, how long a generated information will exist. Dependent on the

information received locally, the agent has two opportunities to act: he/she can change his/her

opinion or he/she can keep it. A possible ansatz for the transition rate to change the opinion reads

(Schweitzer and Ho lyst, 2000):

w(−θi|θi) = η exp

{

−
hθ(ri, t)− h−θ(ri, t)

T

}

(2)

The probability to change opinion θi is rather small, if the local field hθ(ri, t), which is related

to the support of opinion θi, overcomes the local influence of the opposite opinion. Here, η [1/s]

defines the time scale of the transitions. The scaling parameter T may be interpreted as a “social

temperature” (Kacperski and Ho lyst, 1996) describing a degree of randomness in the behavior of

the agents, but also their average volatility (Bahr and Passerini, 1998).

In order to summarize our model, we note the non-linear feedback between the agents and the

communication field as shown in Fig. 1. The agents generate the field, which in turn influences

their further decisions. In terms of synergetics, the field plays the role of an order parameter, which

couples the individual actions, and this way initiates coherent behavior within the agent community.

For N = const., the community of agents may be described by the multivariate distribution func-

tion P (θ, r, t) = P (θ1, r1, ..., θN , rN , t) which gives the probability to find the N agents with the

opinions θ1, ..., θN at positions r1, ...., rN on the surface A at time t. The time depentent change of

P (θ, r, t) can then be described by a master equation which considers any possible transition within

the opinion distribution θ (the formal details are skipped here, cf. Schweitzer and Zimmermann,

2000). The master equation, together with eqs. (1), (2) forms a complete description of our system,
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Figure 1: Circular causation between the agents, C−1, C+1, and the two-component communication

field, hθ(r, t).

which depends on the parameters describing the agent density (N , A) and the components of the

communication field (si, kθ, Dθ). In order to find possible solutions of the master equation, we will

use computer simulations, and in particular apply the stochastic simulation technique. The results

are presented in the following sections.

6 Mean-field approach

Before investigating the spatially distributed system, we first discuss a mean-field approximation, in

order to get some insight into the complex dynamics of the agent system. This case, which has been

discussed in more detail also by Schweitzer and Ho lyst (2000), may have some practical relevance for

communities existing in small systems with small distances between different agents. In particular,

in such small communities a very fast exchange of information may hold, i.e. spatial heterogenities

in the communication field are equalized immediately. In terms of the blackboard interpretation,

this means consequently that all agents have access to the same (two) blackboards independent

of their loactions. Thus, in this section, the discussion can be restricted to subpopulations with a

certain opinion rather than to agents at particular locations.

Let us define the share xθ of a subpopulation θ and the respective mean density n̄θ in a system of

size A consisting of N agents:

xθ(t) =
Nθ(t)

N
; n̄θ(t) =

Nθ

A
(3)

where the total number of agents sharing opinion θ at time t fulfills the condition

∑

θ
Nθ(t) = N+1(t) + N−1(t) = N = const. ; x+1(t) = 1 − x−1(t) (4)

The dynamics of the system is then determined by the equations for the subpopulation xθ(t), which

are coupled via the equations for the two-component communication field hθ(r, t). The stationary

states of the dynamics follow from the conditions ẋθ = 0, ḣθ = 0. For the two field components we

find with the assumption that agents with the same opinion θ will have the same influence si → sθ
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and with n̄ = N/A (Schweitzer and Ho lyst, 2000):

h̄stat
+1 =

s+1

k+1

n̄x+1 ; h̄stat
−1 =

s−1

k−1

n̄(1 − x+1) (5)

Let us for the moment assume that the parameters of both field components are identical, i.e.

s+1 = s−1 ≡ s, k+1 = k−1 ≡ k, a more complex case will be discussed below. Then, we find for the

stationary values of xθ in the case θ = +1 (Schweitzer and Ho lyst, 2000):

(1 − x+1) exp [κx+1] = x+1 exp [κ (1 − x+1)] (6)

Here, the bifurcation parameter

κ =
2s n̄

k T
(7)

includes the specific internal conditions within the community, such as the population density,

the social temperature, the individual strength of the opinions, or the life time of the information

generated.

0 1 2 3 4 5
κ

0

0.2

0.4

0.6

0.8

1

x +
1

st
at

Figure 2: Stationary solutions for x+1 (eq. 6) for different values of κ. The bifurcation at the critical

value κc = 2 is clearly visible.

Schweitzer and Ho lyst (2000) found that depending on κ different stationary values for the fraction

of the subpopulations exist (cf. also Fig. 2). For κ < 2, x+1 = 0.5 is the only stationary solution,

which means a stable community where both opposite opinions have the same influence. However,

for κ > 2, the equal distribution of opinions becomes unstable, and a separation process towards a

preferred opinion is obtained, where x±1 = 0.5 plays the role of a separation line. Then two stable

solutions are found where both opinions coexist with different shares in the community, as shown

in Fig. 2. Hence, each subpopulation can exist either as a majority or as a minority within the

community. Which of these two possible situations is realized depends in a deterministic approach
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on the initial fraction of the subpopulation. For initial values of x+1 below the separatrix, 0.5,

the minority status will be most likely the stable situation (Schweitzer and Ho lyst, 2000). In the

stochastic approach considered here, the realization of a possible minority/majority relation will

also depend on the fluctuation during the early stage of the evolution of the agent system as shown

below.

From the condition κ = 2 we can derive a critical population size,

N c = k AT/s, (8)

where for larger populations an equal fraction of opposite opinions is certainly unstable. If we

consider e.g. a growing community with fast communication, then both contradicting opinions are

balanced, as long as the population number is small. However, for N > N c, i.e. after a certain

population growth, the community tends towards one of these opinions, thus necessarily separating

into a majority and a minority. Which of these opinions would be dominating, depends on small

fluctuations in the bifurcation point. Fig. 3 shows a particular realization obtained from computer

simulation of 400 agents who at t = 0 are randomly assigned one of the opinions {+1,−1}.

10
0
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2
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4

t

0
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0.4

0.6

0.8

1

x θ

Figure 3: Computer simulation of the relative subpopulation sizes x+1 (◦) and x−1 (3) vs. time t

for a community of N = 400 agents. Parameters: A = 400, s = 0.1, k = 0.1, T = 0.75, i.e. κ = 2.66.

Initially, each agent has been randomly assigned opinion +1 or −1. The dashed lines indicate the

inital equal distribution (xθ = 0.5) and the minority and majority sizes (xθ = {0.115; 0.885}) which

follow from eq. (6).

As indicated in Fig. 3, there is a latent period in the beginning before the minority/majority relation

emerges, i.e. during this period it is not clear which one of the two subpopulations will gain the

majority status. This initial time lag t? is needed to establish the communication field which plays
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the role of an order parameter known from synergetics (Haken, 1978). Consequently, for t ≥ t?, a

transition from the unstable equal distribution between both opinions toward a majority/minority

relation is clearly visible in Fig. 3. The time period to eventually establish this relation is then rather

short, since the case discussed in this section is related to a very fast exchange of information.

Eventually, we want to note that the symmetry between the two opinions can be broken due to

external influences on the agents. Schweitzer and Ho lyst (2000) have considered two similar cases: (i)

the existence of a strong leader in the community, who possesses a strength sl which is much larger

than the usual strength s of the other individuals, (ii) the existence of an external field, which may

result from government policy, mass media, etc. which support a certain opinion with a strength sm.

The additional influence sext := {sl/A, sm/A} mainly effects the mean communication field due to

an extra contribution, normalized by the system size A. It was found within the mean-field approach

that at a critical value of sext, the possibility of a minority status completely vanishes. Hence, for a

certain supercritical external support, the supported subpopulation will grow towards a majority,

regardless of its initial population size, with no chance for the opposite opinion to be established.

This situation is quite often realized in communities with one strong political or religious leader

(“fundamentalistic dictatorships”), or in communities driven by external forces, such as financial

or military power (“banana republics”).

7 Spatial information distribution

The previons section has shown within a mean-field approach the emergence of a minority/majority

relation in the agents community. With respect to the example of the recycling campaign adressed

previously, it means that either most of the agents decide to collaborate or most of them decide

to refuse to collaborate. If we start from an unbiased initial distribution, i.e. an equal distribution

between both opinions, then there is no easy way to break the symmetry towards a preferred

opinion, except an external bias is taken into account.

In this section, we will investigate a possibility to break the symmetry by means of different infor-

mation distribution. That requires now to consider the spatial dimension of the system explicitely.

Let us start with the previous example of N = 400 agents randomly distributed in a system of

size A (cf. Fig. 4), with random initial opinions. They get information about the opinions of other

agents by means of the two-component communication field hθ(r, t), eq. (1), which now explicitely

considers space and therefore “diffusion” of information. The two-dimensional system is treated

here as a torus, i.e. we assume periodic boundary conditions.

As a first example, we assume that the parameters decribing the communication field, are again

the same for both components, i.e. s+1 = s−1 ≡ s, k+1 = k−1 ≡ k, D+1 = D−1 ≡ D. Fig. 4

shows three snapshots of the spatial distribution of the agent’s opinion, while Fig. 5 shows the

respective evolution of the subpopulation shares. Evidently, we find again the emergence of a
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majority/minority relation – this time however, on a larger time scale compared to Fig. 3, which

is basically detemined by the information diffusion, expressed in terms of D. But the initial latent

time lag t? for the emergence of the majority/minority relation is about the same, which is needed

again to establish the communication field.

As the different snapshots of Fig. 4 show, the minority and majority organizes itself in space in such

a way that both are separated. Thus, besides the existence of a global majority, we find regions in the

system which are dominated by the minority. From this we can conclude a spatial coordination of

decisions, i.e. agents which share the same opinion are spatially concentrated in particular regions.

With respect to the example of the recycling campaign this means that those agents who refuse

to collaborate (or collaborate in the opposite case), are mostly found in a spatial domain of a like-

minded neighborhood. This result might remind on the famous simulations of segregation in social

systems (Schelling, 1969; Sakoda, 1971; Hegselmann and Flache, 1998) - however, we would like to

note that in our case the agents do not migrate toward supportive places; they rather adapt to the

opinion of their neighborhood.

The spatial distribution of the majority and the minority is also reflected in the different components

of the communication field, as shown in Fig. 6. We find that the maxima of both components are

of about equal value, however, the information generated by the majority, is roughly spread over

the whole system, whereas the information generated by the minority eventually concentrates only

in specific regions dominated by them.

So far we have noticed the importance of fluctuations during the initial time lag t?, which decide

which of the two possible opinions will appear as the majority opinion. For the spatial coordination

of decisions we may now exploit the different properties of the information exchange in the system,

as expressed in terms of the parameters sθ, kθ, Dθ of the communication field. For instance, we

may assume that the information generated by one of the subpopulations is distributed faster in

the system than the information generated by the other one. Alternatively, we may also consider

different life times of the different components of the communication field. However, in order to

model a faster exchange of information, it is not sufficient to simply increase the value of Dθ, we need

to consider its effect on the local values of the communication field in more detail. A closer inspection

of eq. (1) shows (Schweitzer and Zimmermann, 2000) that a faster communication in the system via

a faster diffusion of the generated information, also lowers the information available at the agent’s

position. This might be considered as a drawback in modeling information exchange by means of

reaction-diffusion equations. Obviously, the field hθ(r, t) obeys certain boundary conditions and

conservation laws, which do not hold for “information per se”. In particular, the local value of

available information is not lowered if this information spreads out faster, but the local value of

the “communication field” obeying eq. (1) does.

In order to compensate the unwanted effect of a local decrease of hθ(r, t), we have to choose the
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Figure 4: Computer simulations of the spatial distribution of agents with opinion +1 (3) and −1

(◦). The snapshots are taken at three different times: (a) t = 100, (b) t = 102, (c) t = 104. For the

parameters and initial conditions see Fig. 3, additionally D = 0.06.

parameters sθ, kθ, Dθ in such a way that both the ratios

kθ

sθ

= β ;
Dθ

sθ

= γ (9)
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Figure 5: Relative subpopulation sizes x+1 (3) and x−1 (◦) vs. time t for the computer simulation

shown in Fig. 4.

need to be constant for both components θ = {+1,−1}. In this case, eq. (1) for the dynamics of

the multi-component communication field can be rewritten as:

∂

∂τ
hθ(r, τ) =

N
∑

i=1

δθ,θi
δ(r − ri) − β hθ(r, τ) + γ ∆hθ(r, τ). (10)

where the time scale τ is now defined as τ = t (Dθ/γ). If both parameters β and γ are kept constant,

eq. (10) means that the dynamics of the respective component of the communication field occurs

on a different time scale τ , dependent on the value of Dθ. In terms of the blackboard interpretation

this means that the array of blackboards containing the information about a particular opinion

θ will be updated more (or less) frequently than the blackboard array representing the opposite

opinion. An increase in the diffusion constant Dθ then models indeed the information exchange

on a faster time scale, as expected, without affecting the stationary distribution resulting from eq.

(10).

Computer simulations of the evolution of the subpopulations for the case of different information

diffusion are shown in Fig. 7. We find again the emergence of a majority/minority relation - but

this time the subpopulation (−1) with the faster diffusing communication field becomes more likely

the majority in the system. We have also found that the minority is no longer concentrated in

particular regions, but only randomly distributed, so there is no longer a coordination of decisions

on the side of the minority.

From various runs of computer simulations we can deduce the following general conclusions regard-

ing the influence of the ratio d = D+1/D−1, under the presumption that β and γ are kept constant

(cf. also Schweitzer and Zimmermann, 2000):
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Figure 6: Spatial distribution of the two-component communication field, (top) h+1(r, t), (bottom)

h−1(r, t) at time t = 104, which refers to the spatial agent distribution of Fig. 4c.

• For d = 1, both subpopulations have an equal chance to become the majority in the system.

With an increasing difference in the values of D+1 and D−1, the subpopulation with the faster

(more “efficient”) communication more likely becomes the majority.

• With an increasing difference between D+1 and D−1, the initial time lag, when the decision

about which subpopulation becomes the majority is yet pending, decreases (cf. Figs. 3, 7).

This reduces the influence of early fluctuations to break the symmetry toward one of the

subpopulations.

• With an increasing difference between D+1 and D−1, the size of the respective minority size

will be decreasing (which can be also seen by comparison of Figs. 3, 7). A smaller minority

will also have a smaller chance to organize itself in space, to form regions of coordinated

decisions. Further, due to the shorter initial time lag, they will also do not have the time to

establish their own communication field.

In order to summarize our simulations, we want to link the discussion to the different kind of in-

formation introduced in Sect. 4. At the individual or microscopic level, we have the genuine local

decisions of each agent which result from an interplay between the functional and the structural
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Figure 7: Relative subpopulation sizes x+1 (3) and x−1 (◦) vs. time t for the computer simulation

with different information diffusion. Parameters: D+1=0.02, D−1=0.06, β = 1, γ = 0.6.

information. The latter one describes the data stored on the different arrays of blackboards, which

are modeled here as a two-component communication field hθ(r, t). Functional information means

here the ability of the agent to read data from and to write data to the blackboards or the com-

munication field, respectively. The functional information also considers the contextual situation

of the agent, i.e. whether he/she is able to get access to a particular blackboard dependent on

his/her current position etc. It further describes how these data are processed by the agent - in this

particular example, just their values are compared.

As the result of this interplay pragmatic information emerges that allows the agent to make a

decision whether to collaborate or not. This pragmatic information is individual information, it

exists only for a particular agent at a particular position and a particular time. Already the next

time step may change the whole situation: dependent on the structural information read, the

agent may make a quite different decision; thus pragmatic information is not an invariant of the

dynamics, it has to be consecutively generated by each agent. The local and independent decisions

of the different agents are coupled via the communication field, which is commonly generated by

the agents but also feeds back to their decisions. This kind of non-linear feedback between local

actions and non-local coupling suddenly results in global repercussions: the random distribution of

agents with a particular opinion changes toward an ordered state on the macro scale. Thus, the

emergence of a spatial coordination of decisions can be regarded as a transition from the locally

independent decision to the globally coordinated decision of the agents.
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8 Conclusions

Self-organization and the emergence of new properties at the collective level play an important role

in socio-economic dynamics. Despite this commonly accepted conclusion, a number of conceptual

problems associated with defining and simulating complex socio-economic systems still exist. In

the first part of this paper, we have addressed some of these issues. Since complex systems usually

consist of a large number of interacting components, multi-agent models can play a valuable role

in exploring and simulating their dynamic behavior. However, the dependence of emergent system

properties on specific agent’s interactions is sometimes hard to investigate systematically, because

of the rather complex design of multi-agent systems.

Therefore, we have proposed a “minimalistic” agent approach which focuses only on particular in-

teractions, with no attempt to model a socio-economic system most realistically. The minimalistic

agent design can be seen as a stepping stone strategy where more sophistication can be added

gradually on the path to a deeper understanding of complex phenomena. At first, the restriction

to a possibly simple set of interaction rules certainly involves reductions, but on the other hand

it opens the door to apply quantitative methods developed within physics for the analysis of in-

teracting systems. Different promising examples for this transfer of methods can be found in the

fields of quantitative sociology (Weidlich, 1991, 2000; Helbing, 1995) or econophysics (Mantegna

and Stanley, 2000; Schweitzer and Helbing, 2000).

In our approach, the basic interaction between the agents can be described as a generalized form of

communication. Each agent produces/releases structural information (generalized form of “data”)

in the course of time which is stored externally on blackboards. On the other hand, each agent

is also able to “read” the structural information stored, provided he/she possesses an algorithm

denoted as functional information for processing these data. This way, pragmatic or action-relevant

information can emerge from the interplay between functional and structural information. That

means the agent is enabled to perform a specific task, to make a decision etc.

In order to give an example of the minimalistic agent design described above, in the second part of

the paper we have investigated the spatial coordination of decisions within a multi-agent system.

Each agent at his/her current location has to decide whether he/she wants to collaborate in a

campaign or not. Different from classical economic approaches, this decision is not based on the

calculation of utilities, but simply on the decision of other agents. This raises the problem of

communication, i.e. how an agent at a particular location gets the information about the decision

of other agents. The spatio-temporal distribution of information in the system is described by

means of a two-component communication field, which couples the actions of the different agents

and this way plays the role of an order parameter. We find both analytically and by means of

stochastic computer simulations, that for some critical parameters such as the population density

a majority/minority relation appears, i.e. a majority of the agents either decides to collaborate

or not to collaborate. Additionally, considering the spatial extension of the system, we find that
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both the majority and the minority organizes itself in particular spatial domains. That means we

clearly find a spatial coordination of particular decisions mediated by the communication among

the agents.

Both the appearence of the majority/minority and the spatial concentration of these like-minded

subpopulations are emergent properties of the multi-agent system; in addition to the spatial self-

organization (emergence of spatial domains) we also observe the self-organization in the state space

of possible decisions (majority/minority relation). This dynamical process can be influenced by

means of the communication among the different subpopulations. We find from our computer

simulations, that the subpopulation with the more efficient communication (i.e. the structural

information is distributed faster, the blackboard arrays are updated more frequently) will have a

much better chance to become the majority in the system. This also allows an interpretation in the

socio-economic context: if the decision between competiting opinions about a given subject is yet

pending and not particular determined by the private utilities of the agents, the faster distribution

about the relevant information may decide about the success of a given opinion.

Our papers has focused on the communication between the agents from a rather “minimalistic”

point of view - but it is worth to notice that in contrast to other approaches widely used in eco-

nomics we have not embarked on common knowledge assumptions or rational decisions. Contrary,

we have emphasized important questions such as the heterogeneous distribution of information,

effects of local decisions, or the “effectivity” of communication among the different subpopulations.

Besides the possibility to obtain some quantitative results (such as the critical population size), our

minimalistic agent model also allows to understand the process of self-organization in more detail;

simply because in this case the complex dynamics emerges from readily understandable interactions

between relatively unsophisticated agents.
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