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Abstract

Active motion relies on the supply of energy. In order to turn passive into active motion, we

need to consider mechanisms of energy take-up, storage and conversion. A suitable approach

which considers both the energetic and stochastic aspects of active motion is provided by the

model of Active Brownian particles. For a supercritical supply of energy these particles are able to

move in a “high velocity” or active mode, which results in deviation from the Maxwellian velocity

distribution. We investigate different types of complex motion of active Brownian particles

moving in external potentials. Among the examples are the occurence of stochastic limit cycles,

transitions between Brownian and directed motion, the “uphill” motion against the direction of

an external force, or the establishment of positive or negative net currents in a ratchet potential,

dependent on energy supply and stochastic influences.

1 Passive vs. Active Motion

The motion of a “simple” Brownian particle is due to fluctuations of the surrounding medium,

i.e. the result of random impacts of the molecules or atoms of the liquid or gas, the particle is

immersed in. This type of undirected motion would be rather considered as passive motion, simply

because the Brownian particle does not play an active part in this motion. Passive motion can be

also directed, if it is driven e.g. by convection, currents or by external fields.

Active motion, on the other hand relies on the supply of energy. Already in physico-chemical

systems a self-driven motion of particles can be observed [1]. On the biological level, active self-

driven motion can be found on different scales, ranging from cells [2] or simple microorganisms

up to higher organisms, such as bird or fish. Last, but not least, also human movement can be

described as active motion [3], as well as the motion of cars. All these types of active motion occur

under energy consumption and energy conversion and may also involve processes of energy storage.
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Recent investigations on interacting self-driven entities [4–6] focus on collective effects, such as the

formation of swarms or crowds, rather than on the origin of the entities’ velocity; i.e. it is usually

postulated that the entities move with a certain non-zero velocity. In order to describe both the

random aspects and the energetic aspects of active motion, we have introduced a model of active

Brownian particles [7–11]. These are Brownian particles with the ability to take up energy from the

environment, to store it in an internal depot and to convert internal energy to perform different

activities, such as metabolism or motion. Possible changes of the environment or signal-response

behavior are neglected here.

In order to turn passive (Brownian) motion into active motion, we need to consider mechanisms of

energy take-up. A very simple mechanism is the pumping of energy by space-dependent friction [7]

which in a certain spatial range can be also negative. Inside this area the Brownian particle, instead

of loosing energy because of dissipative processes, is pumped with energy, which in turn increases

its velocity. While such an approach will be able to model the spatially inhomogeneous supply of

energy, it has the drawback not to consider processes of storage and conversion of energy. In fact,

with only a space-dependent friction, the Brownian particle is instantaneously accelerated or slowed

down, whereas e.g. biological entities or cars have the capability to stretch their supply of energy

over a certain time interval.

In order to develop a more realistic model of active motion, we have considered an internal energy

depot for the Brownian particles [10, 11], which allows to store the taken-up energy in the internal

depot, from where it can be converted e.g. into kinetic energy, namely for the acceleration of motion.

Additionally, the internal dissipation of energy, due to storage and conversion (or metabolism in a

biological context) can be considered.

With these extensions, the Brownian particle becomes in fact a Brownian motor [12–14], which is

fueled somewhere and then uses the stored energy with a certain efficiency [11] to move forward,

also against external forces. Provided a supercritical supply of energy, we find that the motion of

active Brownian particles in the two-dimensional space can become rather complex as shown in the

sections below.

2 Pumping from an Internal Energy Depot

The motion of simple Brownian particles in a space-dependent potential, U(r) can be described by

the Langevin equation:

ṙ = v ; m v̇ = −γ0v −∇U(r) + F(t) (1)

where γ0 is the friction coefficient of the particle at position r, moving with velocity v. F(t) is a

stochastic force with strength D and a δ-correlated time dependence

〈F(t)〉 = 0 ;
〈

F(t)F(t′)
〉

= 2D δ(t− t′) (2)
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Using the fluctuation-dissipation theorem, we assume that the loss of energy resulting from friction,

and the gain of energy resulting from the stochastic force, are compensated in the average, and D

can be expressed as D = kBTγ0, where T is the temperature and kB is the Boltzmann constant.

In addition to the dynamics described above, the Brownian particles considered here are active

in the sense that they are able to take up energy from the environment, which can be stored in

an internal depot, e. q(r) shall be the space-dependent flux of energy into the depot. The internal

energy can be converted into kinetic energy with a rate d(v) which should be a function of the

actual velocity of the particle. Further, we consider internal dissipation, which is assumed to be

proportional to the depot energy, c being the rate of energy loss. The resulting balance equation

for the internal energy depot, e, of an active Brownian particle is then given by:

d

dt
e(t) = q(r)− c e(t)− d(v) e(t) (3)

A simple ansatz for d(v) reads d(v) = d2v
2, with d2 > 0. The energy conversion results in an

additional acceleration of the Brownian particle in the direction of movement. Hence, the equation

of motion has to consider an additional driving force, d2e(t)v. In [10, 11], we have postulated a

stochastic equation for pumped Brownian particles, which is consistent with the Langevin eq. (1):

ṙ = v ; mv̇ + γ0v +∇U(r) = d2e(t)v + F(t) (4)

From now on, m = 1 is used. The Langevin eq. (4) can be rewritten in the known form, eq. (1), by

introducing a velocity-dependent friction coefficient :

γ(v) = γ0 − d2 e(t) (5)

Here, the value of γ(v) changes dependent on the value of the internal energy depot, which itself is a

function of the velocity. If the term d2 e(t) exceeds the “normal” friction, γ0, the velocity dependent

friction coefficient can be negative which means the active particle’s motion is pumped with energy.

In order to get an estimate of the range of energy pumping, we assume a constant influx of energy

into the internal depot, q(r) = q0, and a fast relaxation of the internal energy depot, eq. (3), which

reads in an adiabatic approximation:

e0 =
q0

c + d2v2
(6)

The quasistationary value e0 can be used to appoximate the velocity-dependent friction coefficient,

γ(v), eq. (5):

γ(v) = γ0 −
q0 d2

c + d2v2
(7)

which is plotted in Fig. 1.

Dependent on the parameters γ0, d2, q0, c the friction function, eq. (7), may have a zero, where the

friction is just compensated by the energy supply. It reads in the considered case:

v2
0 =

q0

γ0

− c

d2

(8)

3/12



Frank Schweitzer: Active Brownian Particles with Internal Energy Depot
in: Traffic and Granular Flow ’99: Social, Traffic, and Granular Dynamics

(Eds. D. Helbing, H. J. Herrmann, M. Schreckenberg, D. E. Wolf)
Springer, Berlin 2000, pp. 161–172

0.0 2.0 4.0 6.0 8.0
v

−6.0

−4.0

−2.0

0.0

2.0

 γ
(v

)

pumping

γ0

γ0−(d2q0/c)

dissipation

Figure 1: Velocity-dependent friction coefficient, γ(v), eq. (7) vs. velocity v. The velocity ranges for

“pumping” (γ(v) < 0) and “dissipation” (γ(v) > 0) are indicated. Parameters: q0 = 10; c = 1.0;

γ0 = 20, d2 = 10. [16]

We see that for v < v0, i.e. in the range of small velocities pumping due to negative friction occurs,

as an additional source of energy for the Brownian particle. Hence, slow particles are accelerated,

while the motion of fast particles is damped.

Due to the pumping mechanism discussed here, the conservation of energy clearly does not hold

for the particle, i.e. we now have a non-equilibrium, canonical-dissipative system instead of an

equilibrium canonical system. This should result in deviations from the known Maxwellian velocity

distribution.

We restrict the further discussion to the two-dimensional space r = {x1, x2}. Then the stationary

velocities v0, eq. (8), where the friction is just compensated by the energy supply, define a cylinder,

v2
1 + v2

2 = v2
0, in the four-dimensional state space {x1, x2, v1, v2} which attracts all deterministic

trajectories of the dynamic system [16]. The probability density for the velocity, P (v, t), can be

described by a Fokker-Planck equation, which reads for the friction function, eq. (7), and in the

absence of an external potential, i.e. U(x1, x2) ≡ 0:

∂P (v, t)

∂t
=

∂

∂v

[(

γ0 −
d2q0

c + d2 v2

)

v P (v, t) + D
∂P (v)

∂v

]

(9)

The stationary solution of eq. (9) yields:

P 0(v) = C

(

1 +
d2v

2

c

)

q0
2D

exp
(

− γ0

2D
v2
)

(10)

where C results from the normalization condition. Compared to the Maxwellian velocity distribution

of “simple” Brownian particles, a new prefactor appears now in eq. (10) which results from the

internal energy depot. In the range of small values of v2, the prefactor can be expressed by a power

4/12



Frank Schweitzer: Active Brownian Particles with Internal Energy Depot
in: Traffic and Granular Flow ’99: Social, Traffic, and Granular Dynamics

(Eds. D. Helbing, H. J. Herrmann, M. Schreckenberg, D. E. Wolf)
Springer, Berlin 2000, pp. 161–172

vx

vy

0P (v)

-4
-2

0
2

4 -4
-2

0
2

4

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012

vx

vy

0P (v)

-4
-2

0
2

4 -4
-2

0
2

4

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012

vx

vy

0P (v)

-4
-2

0
2

4 -4
-2

0
2

4

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012

Figure 2: Normalized stationary solution P 0(v), eq. (10), for d2 = 0.07 (top), d2 = 0.2 (middle)

and d2 = 0.7 (bottom). Other parameters: γ0 = 2, D = 2, c = 1, q0 = 10. Note that d2 = 0.2 is the

bifurcation point for the given set of parameters. [16]

series truncated after the first order, and eq. (10) reads then:

P 0(v) ∼ exp

[

− γ0

2D

(

1− q0d2

cγ0

)

v2 + · · ·
]

(11)

In eq. (11), the sign of the expression in the exponent depends significantly on the parameters

which describe the balance of the energy depot. For a subcritical pumping of energy, q0d2 < cγ0,

the expression in the exponent is negative and an unimodal velocity distribution results, centered

around the maximum v0 = 0. This corresponds to the Maxwellian velocity distribution. However,

for supercritical pumping,

q0d2 > cγ0 (12)

the exponent in eq. (11) becomes positive, and a crater-like velocity distribution results, which indi-

cates strong deviations from the Maxwell distribution (cf. Fig. 2). The maxima of P 0(v) correspond

to the solutions for v2
0, eq. (8).
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3 Motion in a Parabolic Potential

In the following we discuss the motion of a Brownian particle with an internal energy depot in a

two-dimensional parabolic potential:

U(x1, x2) =
a

2
(x2

1 + x2
2) (13)

This potential originates a force directed to the minimum of the potential, however, the random

force in eq. (4) keeps the particle moving, even without the take-up of energy (cf. Fig. 3). If we

consider a take-up of energy which is constant in space, q(x1, x2) = q0, Fig. 3 demonstrates that

the particle reaches out farther, moving on a stochastic limit cycle, if some critical conditions are

satisfied. In [11] it was shown that for the case of the harmonic potential these critical conditions

coincide with those obtained for U(x1, x2) ≡ 0, i.e. eq. (12) has to be fulfilled again.
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Figure 3: Stochastic motion of an active Brownian particle in a parabolic potential. (left) q = 0

(simple Brownian motion), (right) q0 = 1.0 (other parameters: γ0 = 0.2 d2 = 1.0, c = 0.1, D = 0.01,

a = 2, initial conditions: (x1, x2) = (0, 0), (v1, v2) = (0, 0), e(0) = 0). [10]

If we consider that the energy influx is not constant, but space dependent, for example

q(x1, x2) =

{

q0 if
[

(x1 − b1)
2 + (x2 − b2)

2
]

≤ R2

0 else
(14)

then the internal depot of the active Brownian particles can be refilled only in a restricted area.

Eq. (14) assumes that the supply area (energy source) is modeled as a circle, the center being

different from the minimum of the potential. Noteworthy, the active particle is not attracted by the

energy source due to long-range attraction forces. In the beginning, the internal energy depot of the

particle is empty and active motion is not possible. So, the particle may hit the supply area because

of the action of the stochastic force. But once the energy depot is filled up, it increases the particles

motility, as presented in Fig. 4. Most likely, the motion into the energy area becomes accelerated,
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Figure 4: Trajectories in the x1, x2 space for the stochastic motion of an active Brownian particle

in a parabolic potential. The circle (cooordinates (1,1), radius R = 1) indicates the area of energy

supply, eq. (14). Parameters: d2 = 1, q0 = 10, γ0 = 0.2, c = 0.01, D = 0.01, a = 2, initial conditions:

(x1, x2) = (0, 0), (v1, v2) = (0, 0), e(0) = 0. [10]

therefore an oscillating movement between the energy source and the potential minimum occurs

after an initial period of stabilization.

Interestingly, the oscillating motion breaks down after a certain time. Then the active particle,

with an empty internal depot, moves again like a simple Brownian particle, until a new cycle

starts, as indicated in Fig. 4. This way the particle motion is of intermittent type. We found

that the trajectories eventually cover the whole area inside certain boundaries, however during an

oscillation period the direction is most likely kept.

We may also consider that active motion occurs in more complex landscapes which typically not

only contain localized areas of energy supply, but also obstacles. We have discussed such a case

while assuming a hard-core like obstacle where the particle is simply reflected at the boundary if it

hits the obstacle. Considering a continuous supply of energy but only a deterministic motion, we

found a chaotic motion of the active particle in the phase space Γ = {x1, x2, v1, v2, e} [10]. Hence,

we concluded that for the motion of Brownian particles with energy depots reflecting obstacles have

an effect similar to stochastic influences (external noise).

4 Motion in a Linear/Periodic Potential

In the following, we restrict the discussion to the one-dimensional case, i.e. the space coordinate is

given by x. For the potential, we assume a linear function, U(x) = ax, hence the resulting force is

a constant: F = −∇U = −a. Further the flux of energy into the internal depot of the particle is

assumed as constant, q(x) = q0. Then, the dynamics for the pumped Brownian motion is described
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by the following set of equations:

v̇ = −
(

γ0 − d2e(t)
)

v + F +
√

2Dξ(t) (15)

ė = q0 − ce− d2v
2e

In the deterministic case, the stationary solutions of eq. (15) obtained from v̇ = 0 and ė = 0 lead

to a cubic polynom for the velocity v0:

d2γ0v
3
0 − d2F v2

0 − (q0d2 − cγ0)v0 − cF = 0. (16)

Here vn+1

0
is defined as a vector |v0|n v0. Depending on the value of F and in particular on the sign

of the term (q0d2 − cγ0), eq. (16) has either one or three real solutions for the stationary velocity,

v0. This is also shown in the bifurcation diagram, Fig. 5.
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Figure 5: (right) Sketch of the one-dimensional motion of the particle in the presence of a constant

force F = −∇U(x) =const. Provided a supercritical amount of energy from the depot, the particle

might be able to move “uphill”, i.e. against the direction of the force. (left) Stationary velocities v 0,

eq. (16), vs. conversion rate d2. Above a critical value of d2, a negative stationary velocity indicates

the posssibility to move against the direction of the force. Parameters: F = +7/8, q0 = 10, γ0 = 20,

c = 0.01. [17]

The always existing solution expresses a direct response to the force in the form: v0 ∼ F , i.e. it

results from the analytic continuation of Stokes’ law, v0 = F /γ0, which is valid for d2 = 0. We

denote this solution as the “normal” mode of motion, since the velocity v has the same direction

as the force F resulting from the external potential U(x).

As long as the supply from the energy depot is small, we will also name the normal mode as the

passive mode, because the particle is simply driven by the external force. More interesting is the

case of three stationary velocities, v0, which significantly depends on the (supercritical) influence of

the energy depot. In this case the particle will be able to move in a “high velocity” or active mode
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of motion. Fig. 5 shows that the former passive normal mode, which holds for subcritical energetic

conditions, is transformed into an active normal mode, where the particle moves into the same

direction, but with a much higher velocity. Additionally, in the active mode a new high-velocity

motion against the direction of the force F becomes possible, which corresponds to an “uphill”

motion.

It is obvious that the particle’s motion “downhill” is stable, but the same does not necessarily

apply for the possible solution of an “uphill” motion. In [17], we have investigated the necessary

conditions for such a motion in a linear potential. For the deterministic case, we found the following

critical condition for a possible “uphill” motion of the pumped Brownian particle:

dcrit
2 =

F 4

8q3
0

(

1 +

√

1 +
4γ0q0

F 2

)3

(17)

In the limit of negligible internal dissipation c → 0, eq. (17) describes how much power has to be

supplied by the internal energy depot to allow a stable uphill motion of the particle.

This result will be used to explain the motion of an ensemble of N active Brownian particles in a

piecewise linear, asymmetric potential (cf. Fig. 6), which is known as a ratchet potential [14, 15].

0 L 2L

Uo

x

U(x)

b b+L

Figure 6: Sketch of the ratchet potential U(x). For the computer simulations, the following values

are used: b=4, L=12, U0 = 7 in arbitrary units.

Fig. 7 shows the net current expressed by the mean velocity 〈v〉, dependent on the conversion rate,

d2. For the determinstic motion (D = 0), we see the existence of two different critical values for

the parameter d2. For values of d2 near zero and less than dcrit1
2 , there is no net current at all.

This is due to the subcritical supply of energy from the internal depot, which does not allow an

uphill motion on any flank of the potential. With an increasing value of d2, we see the occurence

of a negative net current at dcrit1
2 . That means, the energy depot provides enough energy for the

uphill motion along the flank with the lower slope. For dcrit1
2 ≤ d2 ≤ dcrit2

2 , a stable motion of

the particles up and down the flank with the lower slope is possible, but not for the steeper slope.

Only for d2 > dcrit2
2 , the energy depot also supplies enough energy for the particles to climb up the

steeper slope, consequently a periodic motion of the particles into the positive direction becomes

possible, now.

For the computer simulations, we have assumed that the start locations of the particles are equally

distributed over the first period of the potential, {0, L} and their initial velocity is zero. Hence,
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Figure 7: Average velocity 〈v〉 vs. conversion parameter d2. The data points are obtained from

simulations of 10.000 particles with arbitrary initial positions in the first period of the ratchet

potential. (3) stochastic case (D = 0.1), (◦) deterministic case (D = 0). Parameters: q0 = 1.0,

γ0 = 0.2, c = 0.1. [18]

with respect to Fig. 6 more particle start into the positive direction, which eventually results in a

larger positive net current for d2 > dcrit2
2 [18]. If we insert the two different values for F (cf. Fig.

6) into the critical condition, eq. (17), we find for the critical values dcrit1
2 = 1.03 and dcrit1

2 = 11.3,

which agrees with the onset of the negative and the positive current in the deterministic computer

simulations, Fig. 7.

In the deterministic case, the particles will keep their direction determined by the initial conditions

provided the energy supply allows them to move “uphill”. In the stochastic case, however, the

initial conditions will be “forgotten” after a short time, hence due to stochastic influences the

particle’s “upill” motion along the steeper flank will soon turn into a “downhill” motion. In [18], we

have investigated the two-dimensional separatrix plane, which separates the motion into positive

and negative directions in the threedimensional phase space, {x, v, e}. We found that, if a particle

moves into the positive direction, most of the time the trajectory is very close to the separatrix.

That means it will be rather susceptible for small perturbations, i.e. even small fluctuations might

be able to destabilize the motion into the positive direction. The motion into negative direction, on

the other hand, is not susceptible in the same manner, since the respective trajectory remains in

a considerable distance from the separatrix or comes close to the separatrix only for a very short

time.

Thus, the stochastic fluctuations reveal the instability of the motion into the positive direction, i.e.

the “uphill” motion along the steeper slope. Hence, in the stochastic case the net current is always

negative. In addition, we find a very small positive net current in the range of small d2 (cf. the

insert in Fig. 7), because the fluctuations allow some particles to escape the potential barriers.

In order to investigate how much the strength D of the stochastic force may influence the magnitude

of the net current into the negative direction, we have varied D for a fixed conversion parameter
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Figure 8: Average velocity 〈v〉 vs. strength of the stochastic force D. The data points are obtained

from simulations of 10.000 particles with a fixed conversion parameter d2 = 1.0, for the other

parameters see Fig. 7. [18]

d2 = 1.0. As Fig. 7 indicates, for this setup there will be only a negligible net current, 〈v〉 ≈ 0 in

the deterministic case (D = 0), but a remarkable net current, 〈v〉 = −0.43 in the stochastic case for

D = 0.1. As Fig. 8 shows, there is a critical strength of the stochastic force, Dcrit(d2 = 1.0) ' 10−4,

where an onset of the net current can be observed, while for D < Dcrit no net current occurs. On

the other hand, there is also an optimal strength of the stochastic force, Dopt, where the amount

of the net current, |〈v〉|, reaches a maximum. An increase of the stochastic force above Dopt will

only increase the randomness of the particle’s motion, hence the net current decreases again. In

conclusion, this sensitive dependence on the stochastic force may be used to adjust a maximum net

current for the particles movement in the ratchet potential.
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