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Abstract

An agent-based approach is used to explain the formation of vortex swarms in biological

systems. The dynamics of the multiagent system is described by 3N coupled equations, mod-

eling for each agent its position, its velocity and its internal energy depot. The energy depot

considers the conditions for active biological motion, such as energy take-up, metabolism,

and energy conversion. The equation of motion results from a superposition of deterministic

and stochastic terms (random noise). The deterministic part considers indirect interactions

with other agents to describe local avoidance behavior, and external influences resulting from

an attractive environmental potential. Stochastic computer simulations of the multi-agent

system are shown in very good agreement with the behavior observed in Daphnia swarms.

1 Introduction

One of the major conceptual challenges of system biology is the understanding of the behavior at

the system level from the interactions of the entities comprising the system. To reach this goal,

discrete, individual-based or agent-based modeling has become a very promising and powerful

methodology. Recently, different computer architectures in distributed artificial intelligence have

been developed to simulate the collective behavior of interacting agents. However, due to their

rather complex simulation facilities many of these simulation tools lack the possibility to inves-

tigate systematically and in depth the influence of specific interactions and parameters. Instead

of incorporating only as much detail as is necessary to produce a certain emergent behavior,

they put in as much detail as possible, and thus reduce the chance to understand how emergent

behavior occurs and what it depends on.

In our paper, we investigate a prominent example of complex behavior in biological systems,

namely swarming. Pioneering work has been done by Reynolds1 that is based on behavioral

rules for artificial creatures (boids), while our aim is to obtain the same behavior based on

interactive forces between reactive agents. Therefore, in our approach, we use Brownian agents

1http://www.red3d.com/cwr/boids/
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[14] (see Sect. 2), that – in addition to their computational suitability – can be also investigated

by means of analytical methods from statistical physics and mathematics. Swarming is a form

of collective motion that may emerge from local interactions of a large number of individuals

(agents). Swarms (also called herds, flocks, schools) can often be observed in certain mammals,

fish, insects, and birds for various benefits such as enhaced feeding and mating as well as more

successful predator avoidance. Detailed experimental investigations on swarming, however, are

rare, either because of the size of the animals or because well defined conditions for experiments

are difficult to realize. Fortunately, as Ordemann et. al have shown [9, 10], zooplankton is a

suitable candidate for experiments on swarming, as briefly described in the following.

2 Modeling swarming in biological systems

Daphnia (water flea) is an ideal object to study swarming behavior under well defined lab condi-

tions, because of its intermediate size and biological complexity. The sketch of the experimental

setup (Fig. 1) shows a water tank penetrated vertically from an artificial light source. While

it may seem that this condition is highly artificial, we note similarities to light conditions in

field observations [10]. In particular, in such a tank, Ordemann et. al [10] have investigated the

motion of both single Daphnia and many Daphnia.

Daphnia

Light source

Water tank

Figure 1: Sketch of the Daphnia experiments carried out by Ordemann et. al [10]. The trajectory

indicates the cycling motion of a single animal.[6]

In such a setup it has been found that a single Daphnia starts to cycle (i.e. rotate) around the

artificial light source, keeping its cycling direction for quite a while. In repeated experiments,

however, the cycling direction may change to the opposite, which lead to the conclusion that
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single Daphnia, while rotating around the light beam, do not have a preferred direction of

motion.

Interestingly, the situation changes if instead of single Daphnia a larger number of animals is

put in the water tank. In this case, the Daphnia start again with their cycling motion, but then

all tend to move into the same direction of motion. From a physical perspective, a symmetry

break is observed, i.e., the symmetry between the two possible cycling directions (left, right

rotation) is clearly broken toward one of the possibilities (left or right rotation). Both of these

possibilities have the same chance to occur, but only one of them is eventually realized.

It has been further observed that the Daphnia swarm, while rotating round the light beam in

the same direction, mostly keeps a certain distance to the light source. This kind of swarming

behavior is also called vortex swarming.

The vortex formation as well as the symmetry break in the cycling direction are clearly self-

organized phenomena that result from the collective interaction of many animals. In order to

understand this in more detail, we derive a multiagent model in the following.

Our approach is based on Brownian agents [14], each of them described by three state variables:

spatial position ri, velocity vi and internal energy depot ei. The first two state variables describe

the movement of the agent and can be observed from the outside. The agent’s energy depot,

however, is an internal variable describing its capability of active movement. Different from

physical Brownian particles that move passively and randomly because of the impacts from

surrounding molecules, the Brownian agent may move actively and in a preferred direction. But

the term “Brownian” refers to the fact that the agent may still be subject to fluctuations that

are described by a stochastic force, as explained further below.

The internal energy depot ei(t) of agent i has to consider that active motion is based on the

take-up of energy from the environment, the storage of energy and conversion of stored energy

into energy of motion. These three processes are summerized in the following balance equation

[11]:

µ
d

dt
ei(t) = q(r) − c e(t) − d2v

2 e(t) ; d2 > 0 (1)

q(r) is the flux of energy into the internal depot. If the availability of energy is heterogeneously

distributed, the energy flux may depend on the space coordinate, r. In this model we assume

a homogeneous distribution of energy, i.e. a constant influx q(r) = q0. c describes the loss of

energy due to internal dissipation, which is assumed to be proportional to the internal energy.

The last term in eq. (1) considers the conversion of internal energy into kinetic energy with a

rate, which should be a function of the actual velocity, v, of the agent. Here, d2 · v2 is assumed

in agreement with physical equations for the energy balance. The formal parameter µ in eq. (1)

can be used to describe the time scale of relaxation of the internal energy depot, as described

below.
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In order to discuss the dynamics of the two external state variables, position r i and velocity vi,

we have to consider (i) the influence of the internal energy depot on the (active) motion of the

agent, and (ii) the influence of the environment. The experiments described above have used a

vertical beam of light that causes an attractive force on the Daphnia, which tend to cycle around

it. In order to cope with this, we may choose the very simple assumption of an external potential

of the form

U(r) =
a

2
r2 (2)

which generates an attractive force F = −∇U(r) = −ar towards the center, r = 0. The two

effects can then be put into dynamic equations for the change of the agent’s state variables,

which have the following form [3, 11]:

d

dt
ri = vi ;

d

dt
vi = −γ0 vi − ∇U(r)|ri

+ d2e(t)vi +
√

2D ξi(t) (3)

Here, for the mass m = 1 is used. Causes for the change of the variables are summarized on the

right-hand side of the equations. The change of the agent’s position, r i is caused by the movement

of the agent, described by the velocity vi, that in turn can be changed by four different forces:

(i) friction, with γ0 being the friction coefficient, (ii) attraction toward the center of the light

beam, expressed by the gradient of the environmental potential, (iii) active motion in forward

direction driven by the energy from the internal depot, (iv) a stochastic force ξ of strength D,

which describes the influence of random events on the agent’s motion.

Both terms (i) and (iv) are already known from Langevin’s equation to describe the motion of

(passive) Brownian particles. Without the stochastic force, the particle would eventually come to

rest because its kinetic energy would be dissipated due to friction. The stochastic force, however,

keeps it (passively) moving into a random direction, where ξ(t) is assumed to be Gaussian white

noise with 〈ξi(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′).

We conclude that in our approach of Brownian agents, the dynamics is described on the individ-

ual agent level by three coupled equations for the three state variables characterizing each agent,

ri, vi, ei, eqs. (3), (1). For theoretical investigations, these equations can be reduced to two by

assuming that the internal energy depot relaxes very fast into a quasi-stationary equilibrium.

This adiabatic approximation, i.e. the limit µ → 0 in eq. (1), results in

ei(t) =
q0

c + d2v2

i

(4)

and we can rewrite the equations of motion as:

d

dt
ri = vi ;

d

dt
vi = −γ(v2

i )vi − ∇U(r)|ri
+

√
2Dξi(t) (5)

γ(v2

i ) is a non-linear friction function:

γ(v2

i ) = γ0 −
d2 q0

c + d2v2

i

(6)
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which describes the active motion of the agent. It has a zero for

v2

0
=

q0

γ0

− c

d2

(7)

Active motion, i.e. |v0| > 0 becomes possible only for a certain supercritical take-up of energy

from the environment, q0 > cγ0/d2. The actual motion of the agent is then a compromise between

its active motion – which eventually would lead it everywhere, as long as internal energy is

provided – and the environmental conditions which set some restrictions on this motion.

3 Simulating swarming without interaction

For the case of an attractive potential, eq. (2), Fig. 2 shows computer simulations for the active

movement of a single agent, as described by the three eqs. (3), (1) for the state variables, r i, vi, ei.

The results clearly indicate the cyclic motion round the center, which has been also observed in

single Daphnia motion, as explained above (vortex motion). Running the computer simulations

for single agents with different initial conditions eventually results in the same kind of cyclic

motion, but with different rotational directions, i.e. left-handed or right-handed rotations. Due

to stochastic influences, also a change of the direction of motion becomes possible. Thus, we

may conclude that our model of Brownian agents sufficiently describes the observed behavior

of single Daphnia. We now turn to the case of many, i.e. i = 1, ..., N Brownian agents, which

is of importance for swarming. The dynamics of the multiagent system is then described by

3N coupled (stochastic) equations of the form (3), (1). In this case, we observe from computer

simulations again the characteristic rotational motion, where, however, about half of the agents

rotate clockwise, while the other half rotates counterclockwise. The two different cyclic directions

can be clearly observed when looking at the angular momentum distribution, ρ(L), where L (for

m = 1) is defined as L = r × v. As Fig. 3 shows, this is a bimodal distribution of about equal

height, indicating the both left- and righthanded rotational directions with the same probability.

This simulation result does not quite agree with the observation of swarming in Daphnia, which

apparently cycle into one, i.e. the same direction. The reasons for this mismatch are quite

obvious: in our model, we have so far only considered “point-like” agents without any kind

of mutual interaction, whereas in real biological systems the coherent motion of the swarm

is certainly based on interactions between the entities. Thus, the question arises, which kind

of interaction may lead to the break in the rotational symmetry, as observed in the Daphnia

experiments.

So far, different forms of global or local interactions have been introduced into swarming models.

We mention (i) local interactions via a self-consistent field that has been created by the agents

and in turn influences their further movement and/or “behavior” [5, 13] – chemotactic response is
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Figure 2: Trajectory (t = 200) of a single Brownian agent moving in an environmental potential,

eq. (2) with supercritical take-up of energy, q0 > cγ0/d2. Initial conditions: {x(0), y(0)} = {0, 0},
{vx(0), vy(0)} = {0, 0}, e(0) = 0, parameters: γ = 5.0, d2 = 1.0, q0 = 10.0, c = 1.0, D = 0.005,

a = 0.5.[6]
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Figure 3: Angular momentum distribution ρ(L) of N = 1000 Brownian agents after t = 150. The

positive or negative sign of L indicates the right- or lefthanded rotation. Parameters: q0 = 10.0,

c = 1.0 γ = 20.0, d2 = 10.0, D = 0.001, a = 1.0.[6]

a prominent example here, (ii) local interactions based on the coupling of the agents’s individual

velocity to a local average velocity [2, 15, 16] (iii) global interactions, such as the coupling of the

agent’s individual orientation (i.e. direction of motion) to the mean orientation of the swarm
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[1, 2], or the coupling of the agent’s individual position to the mean position (center of mass)

of the swarm [7], further couplings via the mean momentum or mean angular momentum or a

combined set of invariants of motion [1, 12], (iv) interactions based on hydrodynamics coupling

between agents [4].

Despite the fact that some of these models simulate coherent swarm behavior or even rotation of

the swarm into the same direction, there is evidence that many of the underlying assumptions for

interactions can hardly be satisfied by biological observations, thus their biological relevance is

highly questionable. Therefore, in the following section, we introduce local interactions between

the agents that indeed match with biological reality.

4 Modeling swarming with avoidance behavior

Experiments on Daphnia swarming has shown that these animals tend to cycle into the same

direction. The simple and obvious reason for this is that animals try to avoid as much as possible

collisions with other animals – which would occur much more frequently if different animals

cycled into opposite directions at the same time. Thus, a biologically satisfied assumtion is to

include avoidance behavior in our model of swarming, in order to test, whether this would lead

to the observed break in the rotational symmetry described above.

Daphnia are able to visually sense their environment to a certain degree, i.e. they can detect

animals approaching them from the front, and then try to avoid collisions. In our model, we

account for this by assuming that there is a short-range repulsive force between agents, to prevent

their collisions, which will result from a repulsive interaction potential V (ri) around each agent

i that depends on its actual position, ri:

V (ri) = p · exp

(

−Ri

σ

)

(8)

p denotes the strength and σ the range of the potential, the latter being a measure of the sight,

i.e. the range of visibility. Ri is a specific function of the distance between agents, as explained

in the following. Since all agents are moving, agent i needs to account for the space that will

be occupied by all other agents j in the vicinity during the next time step. This space needed,

depends both on the agent’s positions rj and their velocity of motion, vj , so Ri is a function

of these. For further specification, we introduce the unit vector in the direction of motion of

agent i, n0

i = vi/||vi||; n0

j is defined similarly. This allows to define a new velocity-dependent

coordinate system for agent i, namely yi and xi defined by:

yi =
vin

0

i − δvjn
0

j

||vin
0

i − δvjn
0

j || ; xi ⊥ yi and 〈xi,xi〉 = 1 . (9)
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If δ > 0, the direction of motion of agent j is also taken into account for agent i. The xi can

be constructed by the orthonomalization algorithm by Gram-Schmidt. Using this coordinate

system, the dependence of Ri on the position and velocity of agent j is now given as

Ri =

√

〈ri − rj ,xi〉2 + β2 〈ri − rj ,yi〉2 (10)

with a velocity-dependent function:

β =







β′ : 〈ri − rj,yi〉 ≥ 0
β′

1 + λ · vi

: 〈ri − rj,yi〉 < 0
(11)

-1 0 1
x

-1

0

1

2

3

4

5

y

-1 0 1

Figure 4: Equipotential lines of the re-

pulsive potential V (ri), eq. (8). The

black arrow indicates the agent in the

origin, having a velocity of v = {0, 1}.
The two gray arrows representing other

agents have the same absolute value of

1 and point towards the origin.[6]

Eventually, with the known repulsive interaction potential V (ri), the force between any two

agents i and j is given as:

f ij = −∇V (ri) =
V (ri)

σ · Ri

(〈ri − rj,xi〉xi + 〈ri − rj , βyi〉 βyi) (12)

=
p

σ · Ri

exp

(

−Ri

σ

)

(ri − rj) (13)

The total force on agent i resulting from the assumed local interaction is then given as the sum

over all 2-agent forces, ~Fi =
∑

j 6=i f ij. This repulsive force of course changes eq. (5) for the
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Figure 5: Spatial snapshots (left) and distribution of angular momentum ρ(L) (right) for a

multiagent system (N = 20) at three different times: (a) t = 0 (b) t = 8 and (c) t = 55. The

length of the arrows indicates the velocities. [6]
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agents by an additional term, i.e. in the extended avoidance model, the dynamics now read:

d

dt
ri = vi ;

d

dt
vi = −γ(v2)vi − ari +

∑

i6=j

f ij +
√

2Dξ(t) (14)

We note that these assumptions lead to an asymmetric repulsive potential V (ri) around each

agent. Two different forms of such an asymmetrical potential have been introduced in [6]. The

one used in this paper – which has been originally used to simulate the movement of pedestrians

[8] – is preferred because it leads to smoother movements of the agents. The potential defined

by eq. (8) with eq. (10) can be seen in Fig. 4.

Fig. 5 shows spatial snapshots of a computer simulation of the multiagent system with respect

to avoidance behavior, together with the respective distribution of the angular momenta ρ(L).

The results can be concluded as follows: (i) On the spatial level, we observe the emergence of a

coherent motion of the multi-agent swarm out of a random initial distribution. This collective

motion is characterized by a unique cycling direction (either left- or righthanded rotation), as

can be also seen from the unimodal distribution, ρ(L). (ii) We further observe the formation of

a vortex, which is rather similar to the Daphnia swarm cycling round the light beam. (iii) While

in one simulation all agents cycle in the same direction, we note that in different simulations

the cycling direction can be also opposite, i.e. there is no preferred cycling direction for the

swarm, which also agrees with the observations of the Daphnia swarm. (iv) We note that for

certain parameters a spontaneous change in the rotating direction can be observed. This occurs

in particular if agent i takes strongly the movement of agent j into account (δ ≈ 0.5).

5 Conclusions

Our goal was to model vortex swarming behavior by means of rather minimal assumptions that,

however, should have a clear biological relevance. As we have shown the model of Brownian agents

introduced in this paper can indeed produce a reasonable swarming behavior that resembles

real Daphnia swarms. Although reasonable assumptions about local interactions (such as local

repulsion) are taken into account, a definite justification of the model is still pending. This is due

to the fact that data is difficult to gather, because defined lab conditions are hard to establish.

Currently, Ordemann et al. are testing this model on real Daphnia swarms.
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