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Abstract

Biological motion, human traffic and many other types of active motion rely on the supply

of energy. In order to derive a rather general approach for active motion, we have proposed

a model of active Brownian particles, which have the ability to take up energy from their

environment, to store it in an internal energy depot and to convert internal energy to perform

different activities, such as metabolism, acceleration of motion, changes of the environment, or

signal-response behavior. The basic description is given by an extended Langevin equation for

the motion of the particles, which is coupled to a balance equation for the internal energy depot.

Different to the case of passive Brownian motion, we find several new features of the dynamics,

such as non-equilibrium velocity distributions, uphill motion, transitions between Brownian and

directed motion, or excited collective motion and spontaneous rotations in an ensemble of active

particles.

1 Introduction

It is well known from the thermodynamics of irreversible processes that systems may exhibit a

rich variety of complex behavior if there is a supercritical influx of free energy. This energy may

be provided in different forms, i.e. matter (chemical components, resources), high temperature

radiation, or signals. What kind of complex behavior is observed in a system, will of course not

only depend on the influx of energy but also on the interaction of the entities that comprise the

system. Among the prominent examples that can be observed are processes of pattern formation,

and different types of collective motion, such as swarming.

In this paper, we will especially focus on active motion, which is a phenomenon found in a wide

range of systems. Already in physico-chemical systems a self-driven motion of particles can be

observed (Mikhailov and Meinköhn, 1997). On the biological level, active, self-driven motion can
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be found on different scales, ranging from cells (Tranquillo and Lauffenburger, 1987; Gruler and

Boisfleury-Chevance, 1994) or simple microorganisms up to higher organisms, such as bird or fish

(Okubo, 1986, Alt and Hoffmann, 1990). Last, but not least, also human movement can be described

as active motion (Helbing et al., 1997), as well as the motion of cars (Helbing, 1997; Helbing and

Huberman, 1998). All these types of active motion occur under energy consumption and energy

conversion and may also involve processes of energy storage.

In order to derive a general concept of active motion, we need to consider different aspects:

• deterministic influences, such as a preferred or intended direction of motion,

• stochastic influences, which may interfere with the deterministic motion and would be able

to change the direction of motion, for instance,

• the take-up of energy needed for active motion,

• the (internal) storage of energy, for instance in a depot, a tank, a battery etc.

• the conversion of stored energy into (kinetic) energy of motion

Our realization of the concept outlined above is based (i) on the Langevin equation which describes

the motion of an entity and (ii) on the idea of an internal energy depot, where the taken-up energy

can be stored and used for different activities such as acceleration of motion. This model will be

described in detail in Sect. 2.

The Langevin approach is well known in physics as a description of Brownian motion. This is the

motion of small, but larger than molecular particles which are immersed in a liquid. The British

botanist Robert Brown, who in 1827 discovered the random motion of these particles, reported

that their motion resembles that of microscopic living creatures. However, as the pioneering work

of Einstein, Smoluchowski, Langevin at the beginning of the 20th century have shown, this motion

can be completely understood and described by means of physical principles. It means that the

motion of a “simple” Brownian particle is due to fluctuations of the surrounding medium, i.e. the

result of random impacts of the molecules or atoms of the liquid or gas, the particle is immersed

in.

This type of motion would be rather considered as passive motion, simply because the Brownian

particle does not play an active part in this motion. It is an undirected motion, driven by thermal

noise. Passive motion can be also directed, e.g. if it is driven by convection, currents or by external

fields.

Active motion, on the other hand relies on the supply of energy. Therefore, we have introduced

active Brownian particles (Steuernagel et al., 1994; Schimansky-Geier et al., 1995, 1997; Schweitzer,

1997; Ebeling et al., 1999), which are Brownian particles with the ability to take up energy from the
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environment, to store it in an internal depot and to convert internal energy to perform different ac-

tivities, such as metabolism, acceleration of motion, changes of the environment, or signal-response

behavior (Schweitzer and Schimansky-Geier, 1994; Lam, 1995; Schweitzer et al., 1997). The internal

energy depot adds a new degree of freedom to the particle, it would allow the particle to gradually

spend the energy on its activity and therefore to “overcome” periods where an energy take-up is

not possible.

While such an extension of the concept of Brownian particles is evidently inspired by some biological

analogies, we want to note explicitely, that we do not intend to model a particular system. Our

aim is merely to extend a known dynamics by some plausible arguments, thus adding some more

complexity to a physical system. We will, on the other hand, show that even these rather simple

additional assumptions will lead to remarkable dynamic phenomena, which find an interesting

analogy in a variety of systems.

The paper is organized as follows: In the following section, we will give an outline of the basic model

both in terms of a particle-based description and in terms of the corresponding density description.

In Sect. 3, we will discuss different variants of the one-dimensional model, which consider external

and interaction potentials for the particle’s motion. In Sect. 4, we investigate the motion active

particles and “swarms” in a two-dimensional external potential and investigate the influence of

spatially localized energy sources. The final Sect. 5 will discuss related work on active motion done

by different authors and will also provide some hints for further applications of the model.

2 Model of driven Brownian dynamics

2.1 Equations of motion and energy balance

The motion of a Brownian particle with mass m, position r, and velocity v moving in a space-

dependent potential, U(r), can be described by the following Langevin equation:

ṙ = v ; v̇ = −γ0 v − 1

m
∇U(r) + F(t) (1)

Here, γ0 is the friction coefficient and F(t) is a stochastic force with strength D and a δ-correlated

time dependence

〈F(t)〉 = 0 ;
〈

F(t)F(t′)
〉

= 2D δ(t− t′) (2)

In the case of thermal equilibrium systems we may assume that the fluctuation-dissipation theorem

(Einstein relation) applies:

D = γ0
kBT

m
(3)

T is the temperature and kB is the Boltzmann constant.
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The Langevin equation describes the motion of a Brownian particle within a particle-based ap-

proach. In statistical physics, there is a correspondence to the density approach which is based

on the distribution function P (r,v, t). It describes the probability density to find the particle at

location r with velocity v at time t. As well known, the distribution function P (r,v, t) which

corresponds to the Langevin eq. (1), can be described by a Fokker-Planck equation of the form:

∂P (r,v, t)

∂t
=

∂

∂v

{

γ0 v P (r,v, t) + D
∂P (r,v, t)

∂v

}

−v
∂P (r,v, t)

∂r
+

1

m
∇U(r)

∂P (r,v, t)

∂v
(4)

The stationary solution of eq. (4), P 0(r,v), is known to be the Boltzmann distribution:

P 0(r,v) = C exp

{

−U(r)

kBT

}

exp
{

− γ0

2D
v2
}

= C exp

{

− 1

kBT

[m

2
v2 + U(r)

]

}

(5)

where the constant C results from the normalization condition.

This known picture will become more complex if we add a new degree of freedom to the model by

considering that Brownian particles can be also pumped with energy. This extension leads to the

model of active Brownian particles. It is based on the idea that the particles have the ability to

take up energy from the environment (Steuernagel et al., 1994; Schweitzer et al., 1998; Ebeling et

al., 1999), to store it in an internal energy depot, e(t), and to convert internal energy to perform

different activities, such as metabolism, motion, change of the environment, or signal-response

behavior.

If we assume that the (external) space-dependent potential U(r) describes the environment, then

changes caused by the active particles may result in an additional contribution, which can be

summarized in a “effective” or quasi-potential :

U?(r, t) = U(r)− h(r, t) (6)

The space and time dependent contribution of the active particles, h(r, t), is also denoted as a self-

consistent field (Schimansky-Geier et al., 1995, 1997, Schweitzer, 1997). This can be for instance a

chemical field used for the communication among the particles (Calenbuhr and Deneubourg, 1991),

as it is widely observed in the aggregation of larvae and other biological species (Deneubourg et al.,

1990, Stevens and Schweitzer, 1997). Since the Langevin eq. (1) considers that particles respond to

the gradient of the potential, the minus sign in eq. (6) indicates that the particles try to follow the

ascent of the field h(r, t), while they also follow the descent of the external potential U(r).

Taking into account the different activities, the internal depot may be changed due to the following

processes:
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1. gain of energy from the environment, where q(r, t) is the (space and time dependent) flux of

energy into the depot. It may be a random function because of the stochastic variable r.

2. loss of energy due to internal dissipatve processes. The rate of dissipation, c, is assumed to

be proportional to the content of the depot.

3. conversion of internal energy for environmental changes, i.e. generation of a self-consistent

field h(r, t) at a rate s.

4. conversion of internal energy into kinetic energy with a rate d(v2) and an efficiency η(v2),

which both may depend on the square of the actual velocity, v, of the particle. A simple

ansatz for the conversion rate d(v2) reads: d(v2) = d2v
2, with d2 > 0.

The resulting balance equation for the energy depot is then given by:

d

dt
e(t) = q(r)− c e(t)− s− η(v2) d2v

2 e(t) (7)

Considering both the existence of a self-consistent field, eq. (6), and the additional acceleration of

the active particle due to conversion of internal into kinetic energy, the Langevin eq. (1) now has

to consider additional driving forces and needs to be modified to:

v̇ = −γ0 v − 1

m
∇

[

U(r)− h(r, t)
]

+ η(v2) d2e(t)v +
√

2D ξ(t) (8)

Here the random function ξ(t) is assumed to be Gaussian white noise. In order to demonstrate the

effect of the internal energy depot on the motion of the active particle, we will discuss some special

cases in the following sections. Let us from now on set the mass of the particle to m = 1, and the

flux of energy into the internal depot of the particle as constant: q(r) = q0.

2.2 Non-linear friction functions and free motion

In this section, we restrict the discussion to a constant potential U ?(r, t) = const. That means,

environmental changes such as the generation of a self-consistent field and responses to external

gradients are neglected here. Let us further assume that the efficiency of conversion of internal into

kinetic energy, η(v2), decreases with increasing velocity, for example (Tilch et al., 1999):

η(v2) =
η1

1 + η2v2
(9)

where η1 and η2 are constants. Then, the Langevin eq. (8) reads:

v̇ = −γeffv +
√

2D ξ(t) (10)
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where two dissipative terms are combined in an effective friction function:

γeff = γ0 −
η1 d2 e(t)

1 + η2v2
(11)

The content of the energy depot e(t) which is in general time-dependent, may be eliminated in two

limiting cases:

1. The depot energy is so large, that it may be considered as constant, i.e. e(t) = const.

2. The internal energy is an adiabatic variable which relaxes fast compared to changes of the

velocity and space variables, i.e. ė(t) = 0.

In both cases the energy depot may be considered as quasistationary and reads then:

e(t) → e0 =
q0

c + d2v2
(12)

In this case, the effective friction function becomes a velocity dependent function:

γeff → γ(v) = γ0 −
η0

1 + η2v2
(13)

with η0 = η1d2 e0. Dependent on the parameters, the friction function, eq. (13) may have a zero at

a definite velocity, v0. Defining the constants η1, η2 in relation to the parameters influencing the

energy depot (Erdmann et al., 2000),

η0 = η1 d2 e0 = q0
d2

c
; η2 =

d2

c
(14)

we find for the velocity v0:

v2
0 =

1

η2

(

η0

γ0
− 1

)

=
q0

γ0
− c

d2
(15)

which allows us to express the effective friction function, eq. (13) as:

γ (v) = γ0

(

v2 − v2
0

)

(q0/γ0) +
(

v2 − v2
0

) (16)

We see that for v < v0, i.e. in the range of small velocities, pumping due to negative friction occurs,

as an additional source of energy for the Brownian particle (cf. Fig. 1) . Hence, slow particles are

accelerated, while the motion of fast particles is damped. Due to the pumping mechanism introduced

in our model, the conservation of energy clearly does not hold for the active particles, i.e. we now

have a non-equilibrium, canonical-dissipative system (Feistel and Ebeling, 1989).
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Negative friction plays an important role e.g. in technical constructions or in the theory of sound

developed by Rayleigh (1945) already at the end of the last century. Here, the velocity-dependent

friction function can be expressed as:

γ(v) = −γ1 + γ2 v2 = γ1

(

v2

v2
0

− 1

)

(17)

This Rayleigh-type model is a standard model for self-sustained oscillations studied also in the

context of Brownian motion (Klimontovich, 1994). We note that v2
0 = γ1/γ2 defines here the special

value where the friction function, eq. (17), is zero (cf. Fig. 1). Another example for a velocity

dependent friction function with a zero v0 introduced in by Schienbein and Gruler (1993), reads:

γ(v) = γ0

(

1− v0

v

)

(18)

It has been shown that eq. (18) allows to describe the active motion of different cell types, such as

granulocytes, monocytes or neural crest cells (Schienbein and Gruler, 1993; Gruler and Boisfleury-

Chevance, 1994). Here, the speed v0 expresses the fact that the motion of cells is not only driven

by stochastic forces, instead cells are also capable of self-driven motion.

Compared to eqs. (17), (18), the velocity-dependent friction function in eq. (13) is bound to a

maximum value γ0 reached for v →∞ and avoids the singularity for v → 0 on the other hand (cf.

Fig. 1).

γ (v)

−γ
1

1
(γ /γ )

2
1/2 v

γ (v)
γ

0

v0 v

−η0

γ (v)
γ

0

v0 v

0γ

Figure 1: Different types of a velocity-dependent friction function, γ(v) with a zero v0. (left) eq.

(17), (middle) eq. (18), (right) eq. (13). For γ(v) < 0 “pumping” dominates, while for γ(v) > 0

“dissipation” dominates.

Provided a supercritical influx of energy, i.e. for v0 > 0, the passive motion of “usual” Brownian

particles could be transformed into active motion. If we consider e.g. a two-dimensional space, the

stationary velocity v0 where the friction is just compensated by the energy supply, defines a cylinder

in the four-dimensional space:

v2
1 + v2

2 = v2
0 (19)

which attracts all deterministic trajectories of the dynamic system. This will be discussed in more

detail in Sect. 4.2.
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We note that instead of γeff also a more general friction function γ(r,v) can be considered which

may result in a similar dynamics. For example, Steuernagel et al. (1994) have discussed a space-

dependent friction function, γ(r), which can be possibly negative in a certain range of space:

γ(r) < 0 for r ∈ R. It has been shown that above a critical pumping, the particles may perform

motion on a limit cycle, as well.

2.3 Stationary solutions for the distribution function

The existence of additional mechanisms of energy pumping will of course result in deviations from

the known Boltzmann solution, eq. (5), for the distribution function P (r,v, t) as will be discussed

for the different types of non-linear friction functions introduced above. Let us consider a two-

dimensional space without an external potential, i.e. U(x1, x2) ≡ 0.

The stationary solution of the Fokker-Planck eq. (4) reads for the friction function of the Rayleigh

type, eq. (17)

P 0(v) = C exp
[ γ1

2D
v2 − γ2

4D
v4
]

(20)

For the friction function, eq. (18) the stationary solution of the Fokker-Planck eq. (4) is of particular

simplicity (Schienbein and Gruler, 1993)

P 0(v) = C exp
[ γ0

2D
(v − v0)

2
]

(21)

For the effective friction function, eq. (16), which is based on the effect of the internal energy depot,

we find the stationary solution in the form (Erdmann et al., 2000):

P 0(v) = C ′

(

1 +
d2v

2

c

)

q0
2D

exp
(

− γ0

2D
v2
)

(22)

For a subcritical pumping of energy, q0d2 < cγ0, an unimodal velocity distribution results, centered

around the velocity v0 = 0 like the Maxwellian velocity distribution. This is the case of the “low

velocity” or passive mode for the stationary motion. However, for supercritical pumping, q0d2 >

cγ0, a crater-like velocity distribution results. The corresponding “high velocity” or active mode

(Schweitzer et al., 2000) for the stationary motion is described by strong deviations from the

Maxwell distribution.

In the limit of strong noise D ∼ T →∞, i.e. at high temperatures, we get from eq. (22) the known

Maxwellian distribution by means of eq. (3):

P 0(v) =

(

1

2πkBT

)

exp

(

− v2

2kBT

)

(23)

which corresponds to standard Brownian motion in two dimensions. Hence, many characteristic

quantities are explicitly known as e.g. the dispersion of the velocities
〈

v2
〉

= 2kBT (24)
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and the Einstein relation for mean squared displacement

〈

(

r(t)− r(0)
)2
〉

= 4
kBT

γ0
t (25)

In the other limiting case of strong activation, i.e. relatively weak noise D ∼ T → 0 and/or strong

pumping, we find a δ-distribution instead:

P 0(v) = Cδ
(

v2 − v2
0

)

;
〈

v2
〉

= v2
0 (26)

In order to treat this case in the full phase space, we follow Schienbein and Gruler (1993); Mikhailov

and Meinköhn (1997) and introduce first an amplitude-phase representation in the velocity-space:

v1 = v0 cos (φ) ; v2 = v0 sin (φ) (27)

This allows us to separate the variables and we get a distribution function of the form:

P (x1, x2, v1, v2, t) = P (x1, x2, t) · δ(v2
1 + v2

2 − v2
0) · P (φ, t) (28)

The distribution of the phase φ satisfies the Fokker-Planck equation:

∂

∂t
P (φ, t) = Dφ

∂2

∂φ2
P (φ, t) (29)

By means of the known solution of eq. (29) we are able to calculate the mean square:

〈

φ2(t)
〉

= Dφt ; Dφ =
D

v2
0

(30)

where Dφ is the angular diffusion constant. By means of this, the mean squared spatial displacement
〈

r2(t)
〉

of the particle can be calculated according to Mikhailov and Meinköhn (1997) as:

〈

r2(t)
〉

=
2v4

0t

D
+

v6
0

D2

[

exp

(

−2Dt

v2
0

)

− 1

]

(31)

For times t � v2
0/D, we find from eq. (31) the following expression for the effective spatial diffusion

constant (Erdmann et al., 2000):

Deff
r =

2v4
0

D
=

2

D

(

q0

γ0
− c

d2

)2

(32)

where v0, eq. (15), considers the additional pumping of energy resulting from the friction function,

γ(v). Due to this additional pumping, we obtain a high sensitivity with respect to noise expressed

in the scaling with (1/D). Moreover, just small changes in the direction of the active particles

motion induce large excursion in space.
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3 One-dimensional driven dynamics including forces

3.1 Motion in linear and ratchet-like potentials

In this section, the one-dimensional motion of active Brownian particles will be discussed. We

denote the space coordinate by x. Further, the efficiency of energy conservation is assumed as η = 1.

Moreover, we will neglect the possibility of environmental changes again. Then, the dynamics for

the active Brownian motion is described by the following set of equations:

v̇ = −
(

γ0 − d2e(t)
)

v −∇U +
√

2Dξ(t) (33)

ė = q0 − ce− d2v
2e

Let us first discuss the most simple case of a linear external potential, U(x) = ax, hence the

resulting force is a constant: F = −∇U = −a. The case of constant external forces was also

treated by Schienbein and Gruler (1993) and Gruler and Boisfleury-Chevance (1994).

In the deterministic case, the stationary solutions of eq. (33) obtained from v̇ = 0 and ė = 0 lead

to a cubic polynom for the velocity v0:

d2γ0v
3
0 − d2F v2

0 − (q0d2 − cγ0)v0 − cF = 0. (34)

Depending on the value of F and in particular on the sign of the term (q0d2 − cγ0), eq. (34) has

either one or three real solutions for the stationary velocity, v0. This is also shown in the bifurcation

diagram, Fig. 2.

The always existing solution expresses a direct response to the force in the form: v0 ∼ F , i.e. it

results from the analytic continuation of Stokes’ law, v0 = F /γ0, which is valid for d2 = 0. We

denote this solution as the “normal” mode of motion, since the velocity v has the same direction

as the force F resulting from the external potential U(x).

As long as the supply from the energy depot is small, we will also name the normal mode as the

passive mode, because the particle is simply driven by the external force. More interesting is the

case of three stationary velocities, v0, which significantly depends on the (supercritical) influence of

the energy depot. In this case the particle will be able to move in a “high velocity” or active mode

of motion. Fig. 2 shows that the former passive normal mode, which holds for subcritical energetic

conditions, is transformed into an active normal mode, where the particle moves into the same

direction, but with a much higher velocity. Additionally, in the active mode a new high-velocity

motion against the direction of the force F becomes possible, which corresponds to an “uphill”

motion.

It is obvious that the particle’s motion “downhill” is stable, but the same does not necessarily

apply for the possible solution of an “uphill” motion. Schweitzer et al. 2000 have investigated the
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x

U(x)

10
−3

10
−2

10
−1

10
0

10
1

d2

−0.5

0.0

0.5

v 0

Figure 2: (left) Sketch of the one-dimensional motion of the particle in the presence of a constant

force F = −∇U(x) =const. Provided a supercritical amount of energy from the depot, the particle

might be able to move “uphill”, i.e. against the direction of the force. (right) Stationary velocities v 0,

eq. (34), vs. conversion rate d2. Above a critical value of d2, a negative stationary velocity indicates

the posssibility to move against the direction of the force. Parameters: F = +7/8, q0 = 10, γ0 = 20,

c = 0.01. (Schweitzer et al., 2000)

necessary conditions for such a motion in a linear potential. For the deterministic case, we found

the following critical condition for a possible “uphill” motion of the pumped Brownian particle:

dcrit
2 =

F 4

8q3
0

(

1 +

√

1 +
4γ0q0

F 2

)3

(35)

In the limit of negligible internal dissipation c → 0, eq. (35) describes how much power has to be

supplied by the internal energy depot to allow a stable uphill motion of the particle.

This result will be used to explain the motion of active Brownian particles in a piecewise linear,

asymmetric potential (cf. Fig. 3), which is known as a ratchet potential (Rousselet et al., 1994;

Luczka et al., 1995).

0 L 2L

Uo

x

U(x)

b b+L

Figure 3: Sketch of the ratchet potential U(x). For the computer simulations in Fig. 4 the following

values are used: b=4, L=12, U0 = 7 in arbitrary units.

In order to elucidate the class of possible solutions for the dynamics specified in eq. (33), let us

discuss the phase-space trajectories for the deterministic motion, i.e D = 0.

11/25



Werner Ebeling, Frank Schweitzer: Active Motion in Systems with Energy Supply
in: Integrative Systems Approaches to Natural and Social Dynamics – Systems Sciences 2000

(Eds. M. Matthies, H. Malchow, J. Kriz), Springer, Berlin 2001, pp. 119–142

Due to friction, a particle moving in the ratchet potential, will eventually come to rest in one of

the potential wells, because the dissipation is not compensated by the energy provided from the

internal energy depot. The series of Fig. 4 shows the corresponding attractor structures for the

particle’s motion dependent on the supply of energy expressed in terms of the conversion rate d2.

In Fig. 4a, we see that for a subcritical supply of energy expressed in terms of the conversion rate

d2 only localized states for the particles exist. The formation of limit cycles inside each minimum

corresponds to stable oscillations in the potential well, i.e. the particles are not able to escape from

the potential well.

With increasing d2, the particles are able to climb up the potential flank with the lower slope, and

this way escape from the potential well into negative direction (d2 > dcrit1
2 ). As Fig. 4b shows, this

holds also for particles which initially start into the positive direction. Thus, we find an unbound

attractor corresponding to delocalized motion for negative values of v. Only if the conversion rate d2

is large enough to allow the uphill motion along the flank with the steeper slope, the particles can

escape from the potential well in both directions, and we find two unbound attractors corresponding

to delocalized motion into both positive and negative direction (d2 > dcrit2
2 ).

In the deterministic case, the particles will keep their direction determined by the initial conditions

provided the energy supply allows them to move “uphill”. In the stochastic case (D > 0), however,

the initial conditions will be “forgotten” after a short time, hence due to stochastic influences,

the particle’s “upill” motion along the steeper flank will soon turn into a “downhill” motion. This

motion into the negative direction will be most likely kept because less energy is needed. Thus, the

stochastic fluctuations reveal the instability of an “uphill” motion along the steeper slope (Tilch et

al., 1999).

3.2 The Role of Interactions: Model of Dissipative Toda Chains

So far, we have not considered interactions between the active Brownian particles. Therefore, in this

section, we consider an ensemble of N active particles located at the coordinates xi on a ring with

the total length L (cf. Fig. 5). These particles interact with their next neighbors via pair interactions

of a rather special form, namely exponential repulsion. These so-called Toda interactions have the

form:

U(ri;ω, b) =
ω2

b2
(exp [−b(ri − σ)]− 1 + b(ri − σ)) (36)

where ri = xi+1− xi is the distance to the next particle, and σ is the equilibrium distance (cf. Fig.

5). The Toda interaction can be imagined as a spring; the parameter b is the stiffness of the spring

and ω is the linear oscillation frequency around the equilibrium distance σ. We have assumed here

that the average distance of the particles on the ring is equal to the equilibrium distance σ. This

is not an essential restriction, since any change of the average distance may be compensated by a

change of other parameters. For any choice of the parameters the global minimum of the potential

corresponds to the equal distance of the particles.
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Figure 4: Phase-space trajectories of particles starting with different intitial conditions, for three

different values of the conversion parameter d2: (a: top) d2 = 1, (b: middle) d2 = 4, (c: bottom)

d2 = 14. Other parameters: q0 = 1, c = 0.1, γ0 = 0.2. The dashed-dotted lines in the middle

and bottom part show the unbound attractor of the delocalized motion which is obtained in the

long-time limit. (Tilch et al., 1999)

One of the reasons for the special interest in Toda systems is the existence of exact solutions for

the dynamics and the statistical thermodynamics. On this basis it was shown earlier that phonon

excitations determine the spectrum at low temperatures and strongly localized soliton excitations

are the most relevant at high temperatures. Ebeling and Jenssen (1991, 1992, 1999) have studied
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Figure 5: (left) Sketch of the one-dimensional Toda ring with N active Brownian particles. The

interaction potential U(ri;ω, b) between nearest neighbour particles is indicated by a spring. (right)

Toda potential U(ri;ω, b), eq. (36) vs. distance ri = xi+1−xi. Parameters: b = 0.1, ω = 0.1, σ = 2.0

several special effects in Toda rings with respect to noise and passive friction, the influence of non-

uniformities and several temperature regimes. A first approach to investigate Toda rings of active

particles with the aim to model dissipative solitons was given recently by Makarov et al. (2000).

Here, we follow Ebeling et al. (2000) who investigated a model of dissipative Toda chains with

noise and active (velocity-dependent) friction.

Using the interaction potential, eq. (36), the dynamics of an active Brownian particle i = 1, ..., N

is described by the following Langevin equation

v̇i −A
[

e−b(xi−xi−1) − e−b(xi+1−xi)
]

= −γ(vi)vi +
√

2Dξi(t) (37)

where A = (ω2/b) exp(b σ). The terms of the left-hand side of eq. (37) are of conservative nature,

while the terms of the right-hand side are of dissipative origin. The last term describes again the

fluctuations with strength D, whereas γ(vi) denotes the non-linear friction function for which the

velocity dependence of eq. (13) is assumed again. That means, we assume here a quasistationary

energy depot, e0, and the parameters η0, η2, eq. (14), and v0, eq. (15), characterize the pumping of

energy.

It follows from eq. (15) that the condition η0 > γ0 has to be fulfilled for the active mode of motion.

Consequently, the parameter

α =
η0

γ0
− 1 (38)

plays the role of the bifurcation parameter. Let us now study the solutions of eq. (37) with respect

to α in the case of zero noise D = 0 (Ebeling et al. 2000). We have to distiguish between two

different situations:
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(i) For α < 0, i.e. passive motion and only positive friction, η0 < γ0, the motion of all particles come

to rest after a finite relaxation time which is of the order 1/γ(0). The dynamical system has only

one attractor then, and any initial condition converges to the only stationary and stable solution

vi = 0; ri = σ; k = 1, 2, ..., N (39)

This means that all particles are distributed on the ring at equal distances. The system has neutral

stability with respect to a drift on the ring.

(ii) For α > 0, we observe the appearance of N +1 coexisting attractors (Ebeling et al., 2000), since

the particles will move with a stationary non-zero velocity v0i. These attractors possess left-right

symmetry with respect to rotations on the ring. The main difference between the attractor states

is in qualitative respect given by different average velocities of the particles on the ring:

〈v〉t =
1

τ

∫ τ

0

1

N

N
∑

i=1

vi(t) dt (40)

where τ is the largest period of oscillations. The two left-right symmetrical attractors which corre-

spond to the largest mean velocity are

vi = ±v0 ; ri = σ ; k = 1, 2, ..., N (41)

In this case, the particles are located at equal distances on the ring, their mean density being

ρ = N/L, and rotate with the constant velocity v0 either in clockwise or in counter-clockwise

direction. This is a point attractor, the stability follows by an elementary analysis.

The remaining attractors correspond to excitations of two or more local compression pulses. Gen-

erally we can say that in areas where the nonlinear interaction forces are smaller than the pumping

influence (e.g. around equilibrium distance) the particles aim to reach velocities vi = ±v0. In areas

dominated by the interaction, the particles are forced to slow down and finally change their direc-

tions of motion. In a first approximation, the combination of (N − k) particles moving clockwise

(vi > 0) and k counterclockwise prepares an attractor with a temporal mean of velocity per particle:

〈v〉t ≈
N − 2k

N

(

α

η2

)
1

2

. (42)

It depends on the initial conditions, which attractor is eventually reached by the N particle system.

Numerical investigation of the deterministic system confirm the existence of these attractors (Ebel-

ing et al., 2000). In the case of strongly nonlinear interaction forces we observe for k > 0 different

combinations of stationary soliton excitations. For a ring with N = odd we find, in addition to the

left-right constant rotations, (N − 1) attractors with non-zero average velocity, all having left-right

symmetry. The two attractors with the second-largest average velocity are characterized by local
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compressions which are concentrated mostly on one of the springs and which are running left-right

around the ring. This kind of excitation reminds on dissipative solitons. Such soliton-like excitations

were investigated by Makarov et al. (2000) in a closely related model. The subsequent attractors

show with decreasing average velocity, i.e. with incerasing k, more complicated compression patterns

running left-right around the ring.

For N = even a central attractor k = N/2 appears in addition to the attractors described above. It

is characterized by a vanishing average velocity, i.e. all particles oscillate in a mode which reminds

on the optical oscillation mode of lattices. Ebeling et al. (2000) have shown that simulations

with stochastic initial conditions (random particle distribution and Gaussian velocity distribution)

always lead to one of the attractors and give an idea of the attractor basins. Each attractor is

characterized by a certain temporal mean of physical quantities, e.g. the mean energy per particle

increases with the number k.

4 Active Brownian motion in two-dimensional potentials

4.1 Active Motion with localized energy sources

In the following, we discuss the particle’s motion on a plane r = {x1, x2} under the influence of

an external force F = −∇U(r). While the case of constant forces was discussed in Sect. 3.1, we

specify here the potential U(r) as a parabolic potential:

U(x1, x2) =
1

2
a (x2

1 + x2
2) (43)

Again, we neglect environmental changes of the particles, i.e. h(r, t) ≡ 0. Further, also direct

interactions between the active particles as discussed in the previous section, are neglected here.

Then, the equations for the particle motion and the internal energy deopt are given again by eq.

(33). However, in addition to the two-dimensional case, in this section we will also focus on a

different aspect, namely the space-dependent take-up of energy, q(r).

The parabolic potential, eq. (43), originates a force directed to the minimum of the potential. In

a biological context, it simply models a “home”, and the moving object always feels a driving

force pointing back to its “nest” (Ebeling et al., 1999). Without an additional take-up of energy,

the particle’s position will fluctuate around the origin of the potential. For a supercritical supply,

however, we find the motion of the particle on a stochastic limit cycle (Schweitzer et al., 1998;

Ebeling et al., 1999; Erdmann et al., 2000).

In the previous sections, we have always assumed a constant in space supply of energy, i.e. q(r) = q0.

If, on the other hand, energy sources are localized in space, the internal depot of the active Brownian

particles can be refilled only in a restricted area. This is reflected in a space dependence of the energy
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influx q(r), for example:

q(x1, x2) =

{

q0 if
[

(x1 − b1′)
2 + (x2 − b2′)

2
]

≤ R2

0 else
(44)

Here, the suppy area (energy source) is modeled as a circle, the center being different from the

minimum of the potential. Noteworthy, the active particle is not attracted by the energy source

due to long-range attraction forces. In the beginning, the internal energy depot is empty and

active motion is not possible. So, the particle may hit the supply area because of the action of

the stochastic force. But once the energy depot is filled up, it increases the particles motility, as

presented in Fig. 6. Most likely, the motion into the energy area becomes accelerated, therefore an

oscillating movement between the energy source and the potential minimum occurs after an initial

period of stabilization.

−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
x1

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

x 2

Figure 6: Trajectories in the x1, x2 space for the stochastic motion of the active Brownian particle

in a parabolic potential, eq. (43) (a = 2). The circle (cooordinates (1,1), radius R = 1) indicates

the area of energy supply, eq. (44). Parameters: q0 = 10, γ0 = 0.2, c = 0.01, S = 0.01, d2 = 0.1,

initial conditions: (x1, x2) = (0, 0), (v1, v2) = (0, 0), e(0) = 0. (Ebeling et al., 1999)

Fig. 7 presents more details of the motion of the active Brownian particle, shown in Fig. 6. Con-

sidering the time-dependent change of the internal energy depot, the velocities and the space coor-

dinates, we can distinguish between two different stages: In a first stage, the particle has not found

the energy source, thus its energy depot is empty while the space coordinates fluctuate around the

coordinates of the potential minimum. The second stage starts when the particle by chance, due to

stochastic influences, reaches the localized energy source. Then the internal depot is soon filled up,

which in turn allows the particle to reach out farther, shown in the larger fluctuations of the space

coordinates. This accelerated movement, however, leads the active particle away from the energy

source at the expense of the internal energy depot, which is decreased until the particle reaches the

energy source again. Fig. 7 shows the corresponding oscillations in the energy depot.
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Figure 7: Space coordinates x1, x2 and internal energy depot e vs. time for the stochastic motion

with d2 = 1 shown in Fig. 6. (Ebeling et al., 1999)

Interestingly, due to stochastic influences, the oscillating motion breaks down after a certain time,

as shown in Fig. 7. Then the active particle, with an empty internal depot, moves again like a

simple Brownian particle, until a new cycle starts. This way the particle motion is of intermittent

type. Every new cycle starts with a burst of energy in the depot, indicated by the larger peak in

e(t), Fig. 7, which can be understood on the basis of eq. (7). We note that the transition time into

the oscillation regime, as well as the duration of the oscillatory cycle depend remarkably on the

conversion parameter, d2 (Schweitzer et al. 1998). We also found that the trajectories eventually

cover the whole area inside certain boundaries, however during an oscillation period the direction

is most likely kept.

The motion of active Brownian particles in two-dimensional landscapes with localized energy sources

could be extended to describe more complex situations. We just want to mention the case of many

separated potential minima of U(r). On the other hand, we can also assume many separated

energy sources, randomly distributed on the surface, which means a specification for q(r). We can

also generalize the situation by considering that the availablility of energy is both space and time

dependent, which means additional conditions for the take-up of energy, q(r, t). Let us consider

a situation, where the supplied external energy (“food”) grows with a given flow density Φ(r) =

ηqf (r), with η being a dimensional constant. Then, we assume that the change of the energy take-up

function may depend both on the increase and the decrease in supplied energy, i.e:

q̇(r, t) = Φ(r)− ηq(r, t) = η
[

qf (r)− q(r, t)
]

(45)
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The formal solution for the energy take-up yields:

q(r, t) = e−ηtq(r, 0)− η

∫ t

−∞

dτ e−η(t−τ)qf

(

r(τ), τ
)

(46)

As we see, the actual value of the energy influx now depends on the whole prehistory of the motion of

the particle and reflects a certain kind of memory. However, those memory effects will be neglected

here, which means η →∞.

We may also consider that active motion occurs in more complex landscapes which typically not

only contain localized areas of energy supply, but also obstacles. We have discussed such a case

while assuming a hard-core like obstacle where the particle is simply reflected at the boundary if

it hits the obstacle. Considering a continuous supply of energy but only a deterministic motion,

Schweitzer et al. (1998) found a chaotic motion of the active particle in the phase space Γ =

{x1, x2, v1, v2, e}. Hence, we concluded that for the motion of Brownian particles with energy depots

reflecting obstacles have an effect similar to stochastic influences (external noise).

4.2 Motion of “swarms”

Eventually, we may consider again the motion of an ensemble of N active Brownian particles.

The case of direct interactions between the particles (cf. Sect. 3.1) will be neglected here, further,

we may assume a constant take-up of energy, q(r) = q0. Thus, the question arises under which

conditions a kind of coordinated motion of the particles can be observed in a two-dimensional

parabolic potential.

Fig. 8 shows two snapshots of an ensemble of active particles. Initially, all particles start with an

empty internal energy depot. Further, in this particular simulation, the initial position was the same

for all particles and different from the potential minimum. Thus, for intermediate times, the motion

of the particle ensemble reminds on swarming, i.e. a coherent motion with slow spatial dispersion

(Schweitzer et al., 2001). After an inital stage, we find the occurence of two branches of the swarm

which results from a symmetry break (cf. Fig. 8 a). These two branches will, after a sufficient long

time, move on two limit cycles (as already indicated in Fig. 8 b). One of these limit cycles refers to

the left-handed, the other one to the right-handed direction of motion in the 2d-space.

The radius of the limit cycles obeys the relation (Erdmann et al., 2000):

x2
1 + x2

2 = r2
0 =

v2
0

a
= const. (47)

where v0 is the stationary velocity of the particles on the limit cycle. It has been shown by Ebeling

et al. (1999) that for the case of a parabolic potential, v0 has the same value as for the force-free

case (U = const.) eq. (15), namely:

v2
1 + v2

2 = v2
0 =

q0

γ0
− c

d2
= const. (48)
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Figure 8: Snapshots of a swarm of N = 2000 active Brownian particles moving in a two-dimensional

potential, eq. (43). (top) t = 15, (bottom) t = 99. Initial conditions for all particles: x1 = 0.0,

x2 = 0.5, v1 = 0.0, v2 = 0.0, e(0) = 0. Parameters: q0 = 10; c = 1.0; γ0 = 20, d2 = 10. (Schweitzer

et al., 2001)

We note that the swarm-like motion of the particles, which eventually reaches a limit cycle, will

only occur for a supercritical supply of energy from the depot, i.e. for v2

0
> 0. The total mechanical

energy of an active particle moving on the limit cycle can then be expressed as:

E0 =
1

2
(v2

1 + v2
2) +

a

2
(x2

1 + x2
2) =

1

2
v2
0 +

a

2
r2
0 (49)

Ebeling et al. (1999) have shown that any initial value of the energy converges (at least in the limit

of strong pumping) to

H −→ E0 = v2
0 (50)

This corresponds to an equal distribution between kinetic and potential energy, i.e. similar to the

harmonic oscillator in one dimension, both parts contribute the same amount to the total energy.

A closer inspection of the limit cycles (Erdmann et al., 2000) shows that the trajectories of the

particles are like a hoop in the four-dimensional space {x1, x2, v1, v2}. Most projections to the two-

dimensional subspaces are circles or ellipses, as shown above, however there are two subspaces,
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namely {x1, v2} and {x2, v1} where the projection is like a rod. A second limit cycle is obtained

by time reversal, t → −t, v1 → −v1, v2 → −v2. This limit cycle also forms a hula hoop which is

different from the first one in that the projection to the {x1, x2} plane has the opposite rotation

direction compared to the first one. However both limit cycles have the same projections to the

{x1, x2} and to the {v1, v2} plane. The separatrix between the two attractor regions is given by the

plane (v1 + v2 = 0) in the four-dimensional space.

In the stochastic case (Erdmann et al., 2000) we find that the two hoop rings are converted into a

distribution looking like two embracing hoops with finite size, which for strong noise convert into

two embracing tires in the four-dimensional space. While in the deterministic case either left- or

righthanded rotations are found, in the stochastic case the system may switch randomly between

the left- and righthand rotations, since the separatrix becomes transparent.

5 Discussion and applications

Active motion is a phenomenon found in a wide range of systems. For instance, biological motion,

i.e. the motion of organisms or cells, can be active and passive (Alt and Hoffmann, 1990). Passive

motion can be driven by convection, currents, external fields, or even by thermal fluctuations if

the organism is microscopically small. Active motion, on the other hand, occurs under energy

consumption and requires metabolic activity and a supply of fuel.

A possible physical approach to active motion is based on active particles, which are resently used

for modelling several types of complex motion. On the physico-chemical level, for example, Brownian

particles with chemical interactions were studied by Nossal (1983), Mikhailov and Meinköhn (1997)

and by Schimansky-Geier et al. (1995, 1997).

Among the phenomena presently investigated in cell biology is the directed movement of “particles”

(e.g. kinesin or myosin molecules) along periodic structures (e.g. microtubules or actin filaments)

(Finer, 1994) in the absense of a macroscopic force, which may have resulted from temperature or

concentration gradients. In order to reveal the microscopic mechanisms resulting in directed move-

ment, different physical ratchet models based on Brownian particles have been proposed (Magnasco,

1993; Maddox, 1994; Millonas and Dykman, 1994; Rousselet et al., 1994; Luczka et al., 1995; Derenyi

and Vicsek, 1995). These models have in common to transfer the undirected motion of Brownian

particles into a directed motion, therefore the term “Brownian rectifiers” has been established.

Applications to molecular motors were studied by Magnasco (1994), Astumian and Bier (1994),

Jülicher and Prost (1995), Hänggi and Bartussek (1996).

Further, active particle models were used to describe the motion of cells (Schienbein and Gruler,

1993; Gruler and Boisfleury-Chevance, 1994), or the motion of macroscopic biological objects like

insects (Deneubourg et al., 1990, Calenbuhr and Deneubourg, 1991; Schweitzer et al. 1997), or the

coherent motion of animals like birds (Viscek et al., 1995). Eventually, we also mention related

21/25



Werner Ebeling, Frank Schweitzer: Active Motion in Systems with Energy Supply
in: Integrative Systems Approaches to Natural and Social Dynamics – Systems Sciences 2000

(Eds. M. Matthies, H. Malchow, J. Kriz), Springer, Berlin 2001, pp. 119–142

applications to the motion of pedestrians (Helbing et al., 1997) and to traffic problems (Wolf et al.,

1996; Helbing, 1997; Mahnke and Pieret, 1997; Helbing and Huberman, 1998).

The main objective of the work summarized in this paper, is to study active motion which relies on

energy supply from the environment. Further, mechanisms of energy take-up, storage and conversion

are taken into account. In order to derive a simple approach for these features, we have suggested

a model of active Brownian particles, which are Brownian particles with an internal energy depot

as a new degree of freedom. The basic equations of this approach are an extended Langevin eq.

(8), which is coupled to the balance eq. (7) for the internal energy depot. The depot energy can

be used to perform different activities, such as metabolism, acceleration of motion, changes of the

environment, or signal-response behavior. This way, the particles become more complex, which

result in new dynamical features, such as:

1. non-linear, velocity dependent friction functions (cf. Sect. 2.2),

2. non-equilibrium velocity distributions with crater-like shape (cf. Sect. 2.3),

3. new diffusive properties with large mean square displacement (cf. Sect. 2.3),

4. uphill motion and directed transport in periodic potentials (cf. Sect. 3.1),

5. excited collective motion of interacting active particles (cf. Sect. 3.2),

6. intermittent (active/passive) “behavior” and directed motion in the presence of localized

energy sources (cf. Sect. 4.1),

7. the formation of limit cycles corresponding to left/righthand rotations (cf. Sect. 4.2).

We note that some of these features may resemble active biological motion, although we point out

again that we did not intend to model a particular system. Instead, the basic idea of our approach

can be formulated as follows: How much of physics is needed to achieve a degree of complexity

which gives us the impression of phenomena found in biological or technical systems?

In this paper, we have studied only some of the physical aspects with respect to active motion, such

as mechanisms of energy pumping and energy dissipation. These investigations should contribute

to the development of a microscopic theory of active biological motion. Moreover, modifications of

our model may also be used to simulate coherent motion of higher organisms, or traffic problems.
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