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Abstract

We investigate models of opinion formation which are based on the social impact theory.

The following approaches are discussed: (i) general mean field theory of social impact, (ii)

a social impact model with learning, (iii) a model of a finite group with a strong leader,

(iv) a social impact model with dynamically changing social temperature, (v) a model with

individuals treated as active Brownian particles interacting via a communication field.

1 Introduction

In recent years, there has been a lot of interest in applications of physical paradigms for a quantita-

tive description of social and economic processes [1–12]. These attempts usually raise controversial

discussions. From the perspective of the life and social sciences, one is afraid of an unjustified re-

duction of the complex relations in socio–economical systems, in order to fit them into a rather

“mechanical” description [9]. From the perspective of physics, on the other hand, one claims that the

description of such processes “evidently lies outside of the realm of physics” (to quote an unknown

referee, not for this manuscript).

Despite these objections, the development of the interdisciplinary field “science of complexity” has

lead to the insight that complex dynamic processes may also result from simple interactions, and

even social structure formation could be well described within a mathematical approach. This is

not an artifact. Statistical mechanics is meant to comprise any phenomena where the relationship
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between microscopic properties and macroscopic behavior plays a role. The problem, however,

is to understand carefully the reductions regarding the system elements and their interactions,

when turning to socio–economical systems. For example, one is usually confronted with individuals

capable of mental reflections and purposeful actions, creating their own reality, and the question,

how this interferes with a rather autonomous or “self-organized” social dynamics is far from being

solved.

Nevertheless, a broad range of dynamical methods originally developed in a physical context have

been successfully applied to socio-economic phenomena. For instance, economical models have been

extensively studied using the techniques of stochastic dynamics [10], percolation theory [11] or the

chaos paradigm [12]. Another important subject of this kind is the process of opinion formation

treated as a collective phenomenon. On the “macroscopic” level it can be described using the master

equation or Boltzmann-like equations for global variables [2,4,8,13,14], but microscopic models are

constructed and investigated as well [15, 16] using standard methods of statistical physics.

A quantitative approach to the dynamics of opinion formation is related to the concept of social

impact [17–23], which enables to apply the methods similar to the cellular automata [24]. The aim

of this review is to revise various models of opinion formation that are based on the social impact

theory. Sec. 2 is devoted to general properties of the social impact model studied within a mean field

approach [20]. Sec. 3 investigates the influence of learning processes on the final phases of social

impact models. In Sec. 4 we consider phase transitions in a social impact model that can occur in a

finite group in the presence of a strong individual (a leader) [25–27]. As two special cases, we discuss

a purely deterministic limit and a noisy model. In Sec. 5, we discuss a social impact model where

the social temperature is a dynamical variable coupled to changes of the global group opinion.

Sec. 6 is devoted to an extension of social impact models to include phenomena of migration,

memory effects and a finite velocity of information exchange. Here the concepts of active Brownian

particles [9–12, 28–30] and the communication field [31] will be applied.

2 Nowak-Szamrej-Latané models

A class of models of opinion formation based on the concept of cellular automata has been proposed

by Nowak, Szamrej and Latané [21]. The sociological basis of these models is the theory of social

impact formulated by Latané [17] who claimed that the impact exerted on an individual by a group

of people is a multiplicative function of their social immediacy, strength and number. Meanwhile,

a large empirical support to this statement has been gathered [18, 19]. Here the formulation and

properties of the models are briefly recalled [20].

The model group consists of N individuals, each of them can hold one of two opposite opinions

σi = ±1. This is relevant not only to typical ”yes”-”no” questions, but also to important issues

where the distribution of opinions seems to be bimodal, peaked on extreme values. Every individual
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is characterized by two strength parameters: persuasiveness pi and supportiveness si, describing the

strength of interactions with individuals holding opposite or the same opinions. These parameters

are assumed to be random numbers with the mean values s and p respectively, this way introducing

disorder in the system and allowing a complex dynamics in contrast to plain Ising models. The

individuals are located in social space, each pair is ascribed a distance dij ; the magnitude of mutual

interactions decreases with the distance. The dynamics of the opinion changes is given by the rule

σi(t + 1) = −sign(σi(t)Ii(t) + hi) (1)

applied synchronously to every individual. The quantity Ii is the social impact given as the sum

of influences on individual i from all other individuals. Positive influences arise from those sharing

the opposite opinion and negative from those sharing the same opinion:

Ii = Ip





N
∑

j=1

t(pj)

g(dij)
(1− σiσj)



− Is





N
∑

j=1

t(sj)

g(dij)
(1 + σiσj)



 (2)

Here g is an increasing function of the distance dij , t is the strength scaling function, and Ip, Is

are the impact form functions. The parameter β = 1/g(dii) is a so called self-supportivness. The

additional term hi can be a random variable introducing noise to the system; it can also describe

a general preference towards one of the opinions.

Extensive computer simulations have been performed [21] for the model using Euclidean geometry

with g(dij) = dα
ij, 2 < α ≤ 8, uniformly distributed strength parameters, the scaling function

t(x) = x and various forms of impact functions e.g. I(x) =
√

x or I(x) = x. The most dominant

phenomena that have been observed are the clustering and polarization of opinions. Starting from

some random distribution of opinions the system converges quickly to a stationary state in which

the minority has shrunk with respect to the initial number and their members are grouped in

clusters (the clustering proceeds due to changes of opinion only, movements of individuals in social

space are not included). In the presence of noise the clusters appear to be metastable states; they

remain stationary for some time, then suddenly shrink to some other clustered minority state which

in turn persists for another relatively long time period. This kind of behaviour has been called a

staircase dynamics. In the case of unbounded noise the only globally stable state is the unification

of opinions, however for relatively low noise intensities the states of the clustered minority can

remain stationary for an exponentially long time.

The results of computer simulations have been supported by a theoretical analysis of the model

based on a mean field-like approach [17]. Different types of geometry have been considered: (i) a

fully connected model, where g(dij) = N for all i 6= j, (ii) strongly diluted connections, on the other

hand, (iii) a hierarchical geometry, in which the distance between individuals belonging to the same

subgroup are identical, and (iv) an Euclidean geometry. The essence of the theory is to choose an

appropriate order parameter reflecting the complexity of the system, which is averaged over the

3/21



Janusz A. Ho lyst, Krzysztof Kacperski, Frank Schweitzer:
Social Impact Models of Opinion Dynamics

in: Annual Reviews of Computational Physics, vol. 9 (Ed. D. Stauffer)
World Scientific, Singapore 2001, pp. 253-273

quenched disorder (it no longer depends on random parameters si and pi), and to derive from

(1) an equation describing equivalently the time evolution of the order parameter. Fixed points of

this equation correspond to stationary states. In the presence of noise the stability of the solutions

against perturbations should be additionally considered.

For example in the case of the fully connected model, i.e. when g(dij) = N for all i 6= j the order

parameter n(ξ) is a function of a variable ξ ∈ [0,∞]:

n(ξ) =

〈

1

N

N
∑

j=1

sj + pj

s + p
Θ(aj − ξ)

〉

; ai =
s− p

s + p
+

βsi

s + p
(3)

where Θ(x) is the Heaviside function. The parameters ai describe the effective self-supportiveness

and the brackets < > denote the average over the quenched disorder (random variables si and pi).

¿From the dynamical rule (1), in the absence of noise (hi = 0), one can derive an equation for

evolution of n(ξ):

n′(ξ) = [g(m, ξ) + n(|m|)]Θ(|m| − ξ) + n(ξ)Θ(ξ − |m|), (4)

where m = n(0) is a weighted majority-minority difference (m ∈ [−1, 1]), and

g(m, ξ) =

〈

1

N
sign(m)

N
∑

j=1

sj + pj

s + p
Θ(|m| − aj)Θ(aj − ξ)

〉

. (5)

Further, the map describing the dynamics of m follows from (4):

m′ = g(m, 0) + n(|m|). (6)

It can be shown that |m| is an increasing and bounded function of the time step so it has at least

one stable fixed point. Actually in a generic case it has many fixed points, separated by unstable

ones, corresponding to many possible stationary states. In the presence of noise the fixed points

form a kind of sequence of metastable states with increasing |m|. The system remains in subsequent

states for a long time interrupted by noise induced jumps to the next state (staircase dynamics).

If the noise level is small, the residence times in the metastable states may be extremely long.

A similar approach can be extended for the case of a hierarchical geometry. The strongly diluted

model with randomly changing connections is shown to be equivalent to the fully connected one

in the limit of small noise. For all these geometries the staircase dynamics remains the persistent

feature of the system.

3 Learning effects in social impact theory

Kohring [23] has considered a model of opinion formation where parameters describing interactions

between members of the social group can change in time, which would correspond to a learning
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procedure. He has assumed that the opinion dynamics is given by

σi(t + 1) = σi(t) sign





N
∑

j=1

Sij(1 + σiσj)−
N

∑

j=1

Pij(1− σiσj)



 (7)

where the positive parameters Sij and Pij describe the strength of social influence of the individual

j on the individual i. Now, one can apply the principle of cumulative advantage by Price [34] saying

that the increase of one’s performance is proportional to the current level of performance. It follows

that the simple learning rule can be introduced as

S
′

ij =

{

Sij + αsSij if σj(0) = σj(F ) = σi(F ) = σi(0)

Sij otherwise
(8)

and

P
′

ij =

{

Pij + αpPij if σj(0) = σj(F ) = σi(F ) 6= σi(0)

Pij otherwise
. (9)

Here σi(0) and σi(F ) are the mean initial and the mean final state, while αs and αp are constant

parameters that determine the learning speed. Numerical simulations have shown that there is a

large difference between the case of low speed learning, αs = αp → 1, and the case of high learning

rates, αs = αp ≈ 1.3. The first case corresponds to the model without learning and is characterized

by large values of the final mean opinion

m =
1

N

N
∑

i=1

σi(F ) (10)

and by normally distributed correlations of the initial and final values of individual opinions d(i) =

〈σi(0)σi(F )〉, which can be attributed to the presence of a ferromagnetic state. The second case is

characterized by low values of the final mean opinion m and by large values of correlations d(i),

which can be attributed to a frozen spin–glass state

Apart from the learning rules given by (8,9) Kohring [23] has also studied the example Pij = Sij

where

S
′

ij =

{

Sij + αSij if σj(0) = σj(F ) = σi(F )

Sij otherwise
(11)

The above learning rule leads to large values of the mean opinion m even for large learning rates

α ≤ 10, i.e. the ferromagnetic order in the final state has been found. If one studies the correlation

function

c(i) =
1

N

N
∑

j=1

〈σj(F )σi(0)〉 (12)
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between the initial value of the individual opinion σi and the final values of all other opinions, the

difference between lower and higher learning rates can be observed. Computer simulations have

shown that for larger values of α most of the final opinions are highly correlated with the initial

opinion of a single individual or with those of a small number of individuals. Thus a single individual

or a few individuals determine the final opinion of the whole group, a phenomenon which can be

interpreted as the emergence of leaders in such a model.

4 Phase transitions in the presence of a strong leader

4.1 The model

In [25–27] Kacperski and Ho lyst have studied a special case of social impact model namely when

a strong individual (leader) is present in a social group. Similarly as in Sec.2 the system consists

of N individuals sharing the opinions σi = ±1, i = 1, 2, ...N . Each individual is characterised by

the parameter si > 0 which describes the strength of his/her influence. The strength parameters

si of the individuals are positive random numbers with the probability distribution q(s) and the

mean value s. We assume that our social space is a two-dimensional disc of radius R � 1, with

the individuals located on the nodes of a quadratic grid. The distance between nearest neighbours

equals 1, while the geometric distance models the social immediacy. In the centre of the disc there

is a strong individual (who we will call the “leader”); his/her strength sL is much larger than that

of all the others (sL � si).

Changes of opinions are determined by the following social impact exerted on every individual:

Ii = −siβ − σih−
N

∑

j=1,j 6=i

sjσiσj

g(dij)
, (13)

where g(x) is an increasing function of the social distance dij . β is a self–support parameter reflecting

the inclination of an individual to maintain his/her current opinion. h is an additional (external)

influence which may be regarded as a global preference towards one of the opinions stimulated by

mass–media, government policy, etc.

Opinions of individuals may change simultaneously (synchronous dynamics) in discrete time steps

according to the rule:

σi(t + 1) =















σi(t) with probability
exp(−Ii/T )

exp(−Ii/T ) + exp(Ii/T )

−σi(t) with probability
exp(Ii/T )

exp(−Ii/T ) + exp(Ii/T )

. (14)

Eq. (14) is analogous to the Glauber dynamics with −Ii σi corresponding to the local field. The

parameter T may be interpreted as a “social temperature” describing a degree of randomness in the
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behaviour of individuals, but also their average volatility (cf [16]). The impact Ii is a “deterministic”

force inclining the individual i to change his/her opinion if Ii > 0, or to keep it otherwise. The

model is a particular case of the system considered in [20].

4.2 Deterministic limit

Let us first recall the properties of the system without noise, i.e. at T = 0 [25, 26]. Then, the

dynamical rule (14) becomes strictly deterministic:

σi(t + 1) = −sign(Iiσi). (15)

Considering the possible stationary states we find either the trivial unification (with equal opinion

±1 for each individual) or, due to the symmetry, a circular cluster of individuals who share the

opinion of the leader. This cluster is surrounded by a ring of their opponents (the majority). These

states remain stationary also for a small self-support parameter β; for sufficiently large β any

configuration may remain “frozen”.

Using the approximation of a continuous distribution of individuals (i.e. replacing the sum in (13)

by an integral) one can calculate the size of the cluster, i.e. its radius a as a function of the other

parameters. In the case of g(r) = r and s = 1 we get from the limiting condition for the stationarity

I = 0 at the border of the cluster:

a ≈ 1

16

[

2πR−
√

π ± β − h±
√

(2πR −
√

π ± β − h)2 − 32sL

]

. (16)

This is an approximate solution valid for a � R, but it captures all the qualitative features of the

exact one which can be obtained by solving a transcendent equation (cf. Fig. 1). Here and in the

next section we assume that the leader’s opinion is σL = +1, but the analysis is also valid for the

opposite case if h → −h.

The branch with the “−” sign in front of the square root in Eq. (16) corresponds to the stable

cluster. The one with “+” corresponds to the unstable solution which separates the basins of

attraction of the stable cluster and unification (cf. Fig. 1). Owing to the two possible signs at the

self–support parameter β in (16), the stable and unstable solutions are split and form in fact two

bands. The states within the bands are “frozen” due to the self–support which may be regarded as

an analogy of the dry friction in mechanical systems. This way also the unstable clusters can be

observed for β > 0 and appropriately chosen initial conditions.

According to Eq. (16) real solutions corresponding to clusters exist provided

(2πR −
√

π ± β − h)2 − 32sL ≥ 0. (17)

Otherwise the general acceptance of the leader’s opinion (unification) is the only stable state. When,

having a stable cluster, the condition (17) is violated by changing a parameter e.g. sL or h, one can

observe a discontinuous phase transition: cluster → unification.
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If, on the other hand, the leader’s strength is too weak, it may be impossible for him/her not only

to form a cluster but also to maintain his/her own opinion. The limiting condition for the minimal

leader’s strength sLmin to resist against the persuasive impact of the majority can be calculated

from the limiting condition IL = 0 (IL - the impact exerted on the leader):

sLmin =
1

β
(2πR −

√
π − h). (18)

Fig. 1 shows a phase–diagram sL-a for h = 0. All the plots are made for a space of radius R = 20

(1257 individuals) and β = 1 unless stated otherwise. Points in Fig. 1 are obtained by numerical

simulations of (15) while the curves are solutions of a transcendent equation following from the

stationary condition I(a) = 0. Solid lines represent stable fixed points – attractors (they correspond

to the solution (16) with “−” sign before the square root); dashed lines represent unstable repellers

(corresponding to “+” in (16)).

We find two kinds of attractors: (i) unification (a = R when the leader’s opinion wins, a = 0 when

it ceases to exist) and (ii) a stable cluster resulting from a solution of (16). In the sL-a space one

can distinguish between three basins of attraction. Starting from a state in the area denoted as I,

the time evolution leads to unification with a = 0. The stable cluster attractor divides its basin of

attraction into the areas IIa and IIb. All states from III will evolve to unification with a = 20.

Owing to the two possible signs of the self–support parameter β in (16), the attractor and repeller

are split. The space between their two parts enclose the “frozen” states that do not change in the

course of time. These states correspond to local equilibria of the system dynamics similar to spin

glass states. Thus, as a result of self–support, even repeller states can be stabilized. As one can see,

the results of computer simulations fit the calculated curves very well.

Taking into account the conditions (17), (18) and the two possible opinions of the leader one can

draw a phase-diagram h− sL distinguishing the regions where different system states are possible

[25, 27]. Apparently, the system shows multistability in a certain range of sL and h. It depends

on the history which of the states is realized, so we can observe a hysteresis phenomenon [25, 27].

Moving in the parameter space sL − h, while starting from different configurations one can have

many possible scenarios of phase transitions [27].

4.3 Effects of social temperature

It is obvious that the behaviour of an individual in a group depends not only on the influence of

others. There are many more factors, both internal (individualal) and external, that induce opinion

formation and should be modeled somehow. In our model, we do this by means of a noisy dynamics,

i.e. we use equation (14) with the parameter T > 0. In the presence of noise, the marginal stability

of unstable clusters due to the self-support is suppressed and they are no longer the stationary

states of the system. The borders of the stable clusters become diluted, i.e. individuals of both
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opinions appear all over the group. Our simulations [25, 27] prove that the presence of noise can

induce the transition from the configuration with a cluster around the leader to the unification of

opinions in the whole group. There is a well defined temperature Tc that separates these two phases.

To estimate the dependence of Tc on other system parameters analytically, one can use a mean field

approach, like methods developed in [25,27]. The two limiting cases of such an approach correspond

to low temperature and high temperature approximations and are discussed in the following.

4.4 Low–temperature mean–field approximation

For low temperatures T , i.e. for a small noise level, the cluster of leaders followers is only slightly

diluted and its effective radius a(T ) can be treated as an order parameter. One can then calculate

the impact I(d) acting on the group member inside (d < a) and outside (d > a) the cluster

respectively [25]:

Ii(d) = −sL

d
− 8aE

(

d

a
,
π

2

)

+ 4R E

(

d

R
,
π

2

)

+ 2
√

π − β, (19)

Io(d) =
sL

d
+ 8aE

(

d

a
, arcsin

a

d

)

− 4R E

(

d

R
,
π

2

)

+ 2
√

π − β, (20)

where E(k, ϕ) =
∫ ϕ
0

(1 − k2 sin2 α)1/2dα is the elliptic integral of the second kind. Both functions

are plotted in Fig. 2 for sL = 400. The system remains in equilibrium, therefore the impact on

every individual is negative (nobody changes his/her opinion). It approaches zero at the border

of the cluster which means that individuals located in the neighbourhood of that border are most

sensitive to thermal fluctuations. We can however observe a significant asymmetry of the impact.

It is considerably stronger inside the cluster. Individuals near the leader are deeper confirmed in

their opinion, so they are also more resistant against noise in dynamics. When we increase the

temperature starting from T ' 0, random opinion changes begin. Primarily it concerns those near

the border (the weakest impact). As a result individuals with adverse opinions appear both inside

and outside the cluster. They are more numerous outside because of the weaker impact (cf. Fig. 2).

Effectively, we observe the growth of a minority group. This causes the supportive impact outside

the cluster to become still weaker and the majority to become more sensitive to random changes.

It is a kind of positive feedback. At a certain temperature, the process becomes an avalanche, and

the former majority disappears. Thus, noise induces a jump from one attractor (cluster) to another

(unification). Such a transition is possible for every non-zero temperature, but its probability re-

mains negligible until the noise level exceeds a certain critical value that corresponds to our critical

temperature Tc.

Using Eq. (14) and taking into account Eqs. (19) and (20) we can compute the probability Pr(σ =

1)(r) that an individual at the distance r from the leader, shares opinion +1, which is assumed

as the opinion of the leader. Then, the mean number of all individuals with opinion +1 may be
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calculated by integrating this probability multiplied by the surface density (equaling 1) over the

whole space:

n(σ = 1)(T ) =

∫ R

0

Pr(σ = 1)(r) 2πr dr. (21)

This number equals the effective area of the circular cluster, so its radius is

a(T ) =

√

n(σ = 1)(T )

π
. (22)

Eq. (22) is a rather involved transcendental equation for a(T ) (it appears on the right hand side

in Ii(r) and Io(r)). For low temperatures T it has three solutions a(T ) corresponding to a stable

cluster, an unstable cluster and a socially homogeneous state. The numerical solution for the radius

of the stable cluster is presented in Fig. 3 together with results of computer simulations. One

should point out that the radius of the cluster a is an increasing function of the temperature T

for the reasons discussed above. At some critical temperature, a pair of solutions corresponding

to the stable and the unstable cluster coincide [25, 27]. Above this temperature, there exists only

the solution corresponding to the socially homogeneous state. Fig. 4 shows the plot of the critical

temperature Tc obtained from (22) as the function of the leader strength sL together with results

of computer simulations.

4.5 High–temperature mean–field approximation

For high temperatures or small values of the leader’s strength sL, the cluster around the leader is

very diluted and it is more appropriate to assume that there is a spatially homogeneous mixture of

leaders followers and opponents, instead of a localized cluster with a radius a(T ). It follows that

at each site there is the same probability 0 < p(T ) < 1 to find an individual sharing the leaders

opinion, and p(T ) plays the role of order parameter. Neglecting the self–support (β = 0) one can

write the social impact acting on a opponent of the leader at place x as [27]:

I(x) =
sL

g(x)
+ (2p− 1)ρsJD(x) + h (23)

JD(x) =
∫

DR
1/g(|r−x|)d2

r is a function which depends only on the size of the group and the type

of interactions. After a short algebra one gets the following equation for the probability p(T ) [27]:

p =
1

πR2ρ

∫ R

0

ρ Pr(r) 2πr dr =
1

R2

∫ R

0

exp [I(r, p)/T ]

cosh [I(r, p)/T ]
rdr ≡ f(p), (24)

where I(x, p) is given by (23). Similar to equation (22) obtained for low temperatures, there are

three solutions of Eq. (24): the smallest one corresponds to the stable cluster around the leader,

the middle one to the unstable cluster which, in fact, is not observed, and the largest one to the
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unification. The size of the stable cluster grows with increasing temperature up to a critical value

Tc when it coincides with the unstable solution. At this temperature, a transition from a stable

cluster to unification occurs [27]. For T > Tc, unification is the only solution, but it is no longer a

perfect unification because due to the noise individuals of the opposite opinion appear. When the

temperature increases further, p(T ) tends to 1/2 which means that the dynamics is random and

both opinions appear with equal probability.

5 Social temperature as a dynamical variable

So far we treated the social temperature as a system parameter which may change due to some

arbitrary reasons, but the changes are not influenced by the changes of opinions (only the opposite

is of course true). In order to capture also this aspect in the model we introduce a coupling between

the changes of global minority-majority proportion and the social temperature, understood as

the degree of randomness in the process of decision making by individuals, or the volatility. We

assume that large changes in the opinion distributions increase the temperature because first, many

individuals who have just changed their minds are still not deeply convinced to their new opinion

and second, large scale changes encourage others to verify and possibly change their opinions.

On the other hand, when the global minority-majority ratio remains constant, the temperature

decreases due to the general lack of changes (social inertia) or “weariness” by endless changes (if

the temperature remains high inducing almost random permanent changes of opinions and thus a

constant global ratio).

Based on these assumptions, we suggest the following rule for the dynamics of T :

T (t + 1) = T0 + γ[T (t)− T0 + a(σ(t)− σ(t− 1))2] (25)

where σ(t) =
∑N

i=1
σi(t)/N is the average instantaneous opinion. T0 is the “background temper-

ature” independent of the changes of opinion, the constant γ < 1 describes the rate of “cooling

down”, while a > 0 the coupling between the opinion and temperature changes.

Let us consider the case without the leader. Using the mean field approximation one gets from (13)

and (14) the dynamics of σ:

σ(t + 1) = tanh

[

σ(t)sm

T (t)

]

(26)

The equations (25) and (26) can be transformed into a three-dimensional map describing the global

dynamics of the system:
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σ(t + 1) = tanh[
σ(t)

θ(t)
]

θ(t + 1) = θ0 + γ[θ(t)− θ0 + c(σ(t) − σp(t))2] (27)

σp(t + 1) = σ(t)

where θ = T/(s m), c = a/(s m).

It can be easily checked that the map has a fixed point (σ = 0, θ = θ0) which is stable for θ0 > 1.

For θ0 < 1 it becomes unstable and two stable symmetric fixed points (σ∗, θ0) appear (pitchfork

bifurcation), where σ∗ are the solutions of the equation σ∗ = tanh(σ∗/θ0). However, at least for some

parameter values, a weakly chaotic attractor coexists. The dynamics has the form of oscillations with

slightly (chaotically) fluctuating period and amplitude. These oscillations correspond to permanent

switching: “high temperature phase”σ ≈ 0 → “cooling down” → “low temperature phase” σ ≈ σ∗

→ rapid change of σ, “heating up” → “high temperature phase”. The example of such dynamics

is shown in Fig. 5.

Since the mean field approximation is correct only for large N this kind of chaotic oscillations can

be observed in systems with a finite number of individuals only as transients; after some time a

convergence to the stable fixed points occurs.

6 Modelling opinion dynamics by means of active Brownian par-

ticles

6.1 The model

There are several basic disadvantages of the models considered in the previous chapters. In par-

ticular, it is assumed, that the impact on an individual is updated with infinite velocity, and no

memory effects are considered. Further, there is no migration of the individuals, and any “spatial”

distribution of opinions refers to a “social”, but not to the physical space.

An alternative approach [31] to the social impact model of collective opinion formation, which tries

to include these features is based on active Brownian particles [28–30, 32, 33], which interact via a

communication field. This scalar field considers the spatial distribution of the individual opinions,

further, it has a certain life time, reflecting a collective memory effect and it can spread out in the

community, modeling the transfer of information.

The spatio-temporal change of the communication field is given by the following equation:

∂

∂t
hσ(r, t) =

N
∑

i=1

siδσ,σi
δ(r − ri) − γhσ(r, t) + Dh∆hσ(r, t). (28)
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Every individual contributes permanently to the field hσ(r, t) with its opinion σi and with its

personal strength si at its current spatial location ri. Here, δσ,σi
is the Kronecker Delta, δ(r − ri)

denotes Dirac’s Delta function used for continuous variables, N is the number of individuals. The

information generated by the individuals has a certain average life time 1/γ, further it can spread

throughout the system by a diffusion-like process, where Dh represents the diffusion constant for

information exchange. If two different opinions are taken into account, the communication field

should also consist of two components, σ = {−1, +1}, each representing one opinion.

In this model, the scalar spatio-temporal communication field hσ(r, t) [31], plays in part the role

of social impact Ii used in [25, 27]. Instead of a social impact, the communication field hσ(r, t)

influences the individual i as follows: At a certain location r i, the individual with opinion σi = +1

is affected by two kinds of information: the information resulting from individuals who share his/her

opinion, hσ=+1(ri, t), and the information resulting from the opponents hσ=−1(ri, t). Dependent

on the local information, the individual reacts in two ways: (i) it can change its opinion, (ii) it can

migrate towards locations which provide a larger support of its current opinion. These opportunities

are specified in the following.

We assume that the probability pi(σi, t) to find the individual i with the opinion σi changes in the

course of time due to the master equation (the dynamics is continuous in time):

d

dt
pi(σi, t) =

∑

σ′

i

w(σi|σ′i)pi(σ
′
i, t)− pi(σi, t)

∑

σ′

i

w(σ′i|σi). (29)

where the transition rates are described similar to Eq. (14)

w(σ′i|σi) = η exp{[hσ′(ri, t)− hσ(ri, t)]/T} for σ 6= σ′ (30)

and w(σi|σi) = 0. The movement of the individual located at space coordinate r i is described by

the following overdamped Langevin equation:

dri

dt
= αi

∂he(r, t)

∂r

∣

∣

∣

∣

ri

+
√

2 Dn ξi(t). (31)

In the last term of Eq. (31) Dn means the spatial diffusion coefficient of the individuals. The

random influences on the movement are modeled by a stochastic force with a δ-correlated time

dependence, i.e. ξ(t) is white noise with 〈ξi(t) ξj(t′)〉 = δij δ(t − t′). The term he(r, t) in Eq. (31)

means an effective communication field which results from hσ(r, t) as a certain function of both

components, h±1(r, t) [31]. The parameters αi are individual response parameters. In the following,

we will assume αi = α and he = hσ .
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6.2 Critical conditions for spatial opinion separation

The spatio-temporal density of individuals with opinion σ can be obtained as follows:

nσ(r, t) =

∫ N
∑

i=1

δσ,σi
δ(r − ri)P (σ1, r1..., σN , rN , t)dr1...drN (32)

P (σ, r, t) = P (σ1, r1, ..., σN , rN , t) is the canonical N -particle distribution function which gives the

probability to find the N individuals with the opinions σ1, ..., σN in the vicinity of r1, ...., rN on the

surface A at time t. The evolution of P (σ, r, t) can be described by a master equation [31] which

considers both Eqs. (30), (31). Neglecting higher order correlations, one obtains from Eq. (32) the

following reaction-diffusion equation for nσ(r, t) [29, 31]:

∂

∂t
nσ(r, t) = − ∇

[

nσ(r, t) α∇hσ(r, t)
]

+ Dn ∆nσ(r, t)

−
∑

σ′ 6=σ

[

w(σ′|σ) nσ(r, t) + w(σ|σ′) nσ′(r, t)
]

(33)

with the transition rates given by eq. (30). Eq. 33 together with Eq. 28 form a set of four equations

describing our system completely.

Now, let us assume that the spatio-temporal communication field relaxes faster than the related

distribution of individuals to a quasi-stationary equilibrium. The field hσ(r, t) should still depend

on time and space coordinates, but, due to the fast relaxation, there is a fixed relation to the spatio-

temporal distribution of individuals. Further, we neglect the independent diffusion of information,

assuming that the spreading of opinions is due to the migration of the individuals. Using ḣσ(r, t) =

0, si = s and Dh = 0 we get:

hσ(r, t) =
s

γ
nσ(r, t) (34)

Inserting Eq. (34) into Eq. (33) we reduce the set of coupled equations to two equations.

The homogeneous solution for nσ(r, t) is given by the mean densities:

n̄σ =
n̄

2
where n̄ =

N

A
(35)

Under certain conditions however, the homogeneous state becomes unstable and a spatial separation

of opinions occurs. In order to investigate these critical conditions, we allow small fluctuations

δnσ ∼ exp (λt + ikr) around the homogeneous state n̄σ and perform a linear stability analysis [31].

The resulting dispersion relations read:

λ1(k) = −k2 C + 2B ; λ2(k) = −k2 C

B =
η s n̄
γT − η ; C = Dn − αs n̄

2γ
(36)
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It follows that stability conditions of the homogeneous state, nσ(r, t) = n̄/2, can be expressed as:

T > T c
1 =

s n̄

γ
; D > Dc

n =
α

2

s n̄

γ
(37)

If the above conditions are not fulfilled, the homogeneous state that corresponds to a paramagnetic

phase is unstable (i) against the formation of spatial “domains” where one of opinions σ = ±1

locally dominates, or (ii) against the formation of a ferromagnetic state where the total number of

people sharing both opinions are not equal.

Case (i) can occur only for a systems whose linear dimensions are large enough, so that large–scale

fluctuations with small wave numbers can destroy the homogeneous state [31]. In case (ii), each

subpopulation can exist either as a majority or as a minority within the community. Which of

these two possible situations is realized, depends in a deterministic approach on the initial fraction

of the subpopulation. Breaking the symmetry between the two opinions due to external influences

(support) for one of the opinions would increase the region of initial conditions which lead to

a majority status. Above a critical value of such a support, the possibility of a minority status

completely vanishes and the supported subpopulation will grow towards a majority, regardless of

its initial population size, with no chance for the opposite opinion to be established [31].

7 Conclusions

The Nowak-Szamrej-Latané models can be described within a mean field theory, using in some cases

quite complicated order parameters. The presence of the social clusters and ”staircase dynamics”

are the generic properties of the models. Adding learning mechanism (changes of individual social

strengths) to the opinion dynamics can induce the emergence of leaders in social groups. In the

presence of a strong leader situated in the centre of a finite group, a transition can take place from

a state with a cluster around the leader to a state of uniform opinion distribution where virtually

all members of the group share the leaders’s opinion. The transition occurs if a leader’s strength

exceeds a well defined critical value or if the noise level (“social temperature”) is high enough. The

weaker the leader’s strength is, the larger is the needed noise. The value of the critical temperature

can be calculated using mean field methods where either the existence of an effective value of

the cluster radius (low temperature method) or a spatially homogeneous mixture of both opinions

(high temperature method) is assumed. Numerical simulations confirm the analytic results. When

the social temperature is coupled to the mean opinion dynamics (in a mean field approximation)

chaotic oscillations of both quantities can appear.

The extension of the social impact model can be based on the concept of active Brownian particles

which communicate via a scalar, multi-component communication field. This allows us to take into

account effects of spatial migration (drift and diffusion), a finite velocity of information exchange

and memory effects. We have obtained a reaction-diffusion equation for the density of individuals
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with a certain opinion. In this model, the transition can take place between the “paramagnetic”

phase, where the probability to find any of opposite opinions is 1/2 at each place (a high temperature

and a high diffusion phase), the “ferromagnetic” phase with a global majority of one opinion and

a phase with spatially separated “domains” with a local majority of one opinion.
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Figures

Figure 1: Cluster’s radius a vs. leader’s strength sL – phase diagram for circular social space.

Interactions proportional to inverse of mutual distance (I ∝ 1/r). Lines correspond to analytical

results, points to computer simulations.
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Figure 2: Social impact I as a function of distance d to the leader. Leader’s strength sL = 400.

Figure 3: Mean cluster radius a vs. temperature T ; sL = 400. Results of calculation (solid) and

computer simulation (dotted).
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Figure 4: Critical temperature Tc (above which no stable cluster exists) vs. leader’s strength sL.

Leader’s opinion fixed (independent of the group). Line – calculations (Eq. (22)), points – simula-

tions.
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Figure 5: Time evolution of the map (27) for θ0 = 0.3, b = 0.95, c = 40.
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