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Abstract

Brownian agents denote a particular class of agents that combines features of reactive and

reflexive agent concepts. A Brownian agent is characterized by a set of state variables that include

also internal degrees of freedom. The dynamics of these state variables is in general described by

a stochastic equation that further considers direct and indirect interactions with other agents

and external influences. An important state variable, the internal energy depot, captures the

costs of each action of the agent. In the paper, we discuss two biological applications of the

Brownian agent concept: (i) the formation of swarms which depends on the active motion of the

agents and some appropriate coupling, (ii) the formation of aggregates based on chemotactic

interaction of the agents. We also demonstrate one of the major advances of the Brownian agent

concept, namely the derivation of macroscopic equation from the agent dynamics, which can be

used to analyze and predict the behavior of the MAS.

1 Introduction

Discrete, individual-based or agent-based modeling has become a very promising and powerful

methodology to describe the occurence of complex behavior in biological systems. This holds for

instance for population dynamics [2, 5], but also for the collective behavior in social insects [1, 13].

Trail following in ants is one of the examples, where the interplay between individual properties

and collective behavior has been successfully simulated by means of individual-based models [8, 19].

Also different forms of biological structures, namely biological aggregates in different species such

as slime molds, bacteria, larvae, or in cells have been modeled within a individual-based approach

[3, 4, 9, 12, 21].
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While the patterns emerging are observable only on the “macroscopic” system level, the modelling

effort aims to understand their emergence from the “microscopic” level of interacting individuals

[16]. The advantage of such an individual-based approach is given by the fact that it is applicable

also in cases where only a small number of agents govern the further evolution. Here deterministic

approaches or mean-field equations are not sufficient to describe the behavior of the complex system.

Instead, the influence of history, i.e. irreversibility, path dependence, the occurence of random events

play a considerable role.

Recently, different computer architectures in distributed artificial intelligence have been developed

to simulate the collective behavior of interacting indivudals or agents (cf. for instance the Swarm

project at http://www.swarm.org/). However, due to their rather complex simulation facilities

many of the currently available simulation tools lack the possibility to investigate systematically

and in depth the influence of specific interactions and parameters. Instead of incorporating only

as much detail as is necessary to produce a certain emergent behavior, they put in as much detail

as possible, and thus reduce the chance to understand how emergent behavior occurs and what it

depends on.

Therefore, it would be feasible to have multi-agent systems (MAS) that can be also investigated

by means of analytical methods (from statistical physics or mathematics) – in addition to their

computational suitability. The concept of Brownian agents [17] is one of the possible approaches

to serve for this purpose. In addition to rather complex (direct and indirect, global and local)

interactions among the agents, the concept also provides an appropriate represention of (i) physical

space and time, (ii) external, environmental (boundary) conditions, and (iii) stochastic influences.

This will be outlined in the following sections. In order to demonstrate the applicability of the

Brownian agent concept, a variety of applications in physical, physico-chemical, biological and

socio-economic systems have been investigated [17]. In this paper, we may pick some examples

with close relation to biology, namely the formation of swarms in Sect. 3 and the aggregation of

individuals based on chemotactic interaction in Sect. 5.

2 Brownian Agents

In distributed artificial intelligence, often a distinction is made between the reflexive and the reactive

agent. The first one has an (internal) model or at least some knowledge about its environment

that allows its to draw conclusions about some certain actions in a given situation. The reactive

agent, on the other hand, simply “reacts” to signals from the environment without referring to

internal knowledge. The Brownian Agent [17] combines features of both reactive and reflexive

agent concepts. It is described by a set of state variables u
(k)
i where the index i = 1, ..., N refers

to the individual agent i, while k indicates the different variables. These could be either external

variables that can be observed from the outside, or internal degrees of freedom that can only be
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indirectly concluded from observable actions. Important external variables are u
(1)
i = ri, which

denotes the space coordinate (mostly a vector in the two-dimensional physical space), or u
(2)
i = vi,

which is the individual velocity in the case of a moving agent. Both are assumed as continuous

variables.

The internal degrees of freedom on the other hand that cannot be directly observed, could be

continuous or discrete variables. For instance, the state variable u
(3)
i = θi ∈ {−1, 0,+1} may

describe three different responses to certain environmental conditions or to incoming information.

For example, agents with θ = −1 may not be affected by a particular signal, while agents with

θ = +1 may respond to it. An important continuous state variable in the context of Brownian

agents is the internal energy depot u
(4)
i = ei, which determines whether agent i may perform

a certain action or not. This includes the assumption that all actions – be it active motion or

communication or environmental changes – need to use “energy”. In general, this term describes

not just the physical free energy that is dissipated e.g. during active motion, it intends to cover

also other resources needed to perform a certain action.

Noteworthy, the different (external or internal) state variables can change in the course of time,

either due to impacts from the surrounding, or due to an internal dynamics. Thus, in a most general

way, we may express the dynamics of the different state variables as follows:

d u
(k)
i

dt
= f

(k)
i + F stoch

i (1)

For the Brownian agents, it is assumed that the causes for the temporal change of ui may be

described as a superposition of deterministic and stochastic influences, imposed on agent i. This

picks up the ingenious idea first used by Langevin in early 1900 to describe the motion of Brownian

particles – and is basically the reason why this agent concept is denoted as Brownian agent. A

Brownian particle moves due to the impacts of the surrounding molecules whose motion however

can be observed only on a much smaller time and length scale compared to the motion of the

Brownian particle. Thus, Langevin invented the idea to sum up all these impacts in a stochastic

force with certain statistical properties.

For the Brownian agent, we will exploit Langevins idea in a similar manner, i.e. we will sum up

influences which may exist on a microscopic level, but are not observable on the time and length

scale of the Brownian agent, in a stochastic term F stoch
i , while all those influences that can be

directly specified on these time and length scales are summed up in a deterministic term f
(k)
i . Such

a distinction basically defines the level of coarse-grained description for the multi-agent system. The

“cut” may prevent us from considering too much “microscopic” details of the MAS, while focussing

on particular levels of description. The summed up stochastic influences might result from a more

fine-grained deterministic description – but instead of taking this into detailed account, just some

specific statistical (gross) properties are considered on the coarse-grained level. Notheworthy, the
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strength of the stochastic influences may also vary for different agents and may thus depend on

local parameters or internal degrees of freedom.

The deterministic part f
(k)
i contains all specified influences that cause changes of the state variable

u
(k)
i . This could be

• non-linear interactions with other agents j ∈ N - thus f
(k)
i can be in principle a function of

all state variables

u =
{

u
(1)
1 , u

(2)
1 , ..., u

(1)
2 , ..., u

(k)
j , ..., u

(k)
N

}

(2)

describing any agent (including agent i),

• external conditions - such as forces resulting from external potentials, or the in/outflux of

resources etc. These circumstances shall be expressed as a set of (time-dependent) control

parameters

σ = {σ1, σ2, ...} (3)

• an eigendynamics of the system that does not depend on the action of the agents. In the

example of an ecosystem this eigendynamics may describe day/night or seasonal cycles, or the

agent-independent diffusion of resources within the system. This is expressed in an explicite

time-dependence of f
(k)
i .

Hence, in general we have f
(k)
i = f

(k)
i (u, σ, t). In order to set up a Brownian multi-agent system we

need to specify (i) the relevant state variables u
(k)
i , (ii) the dynamics for changing them, i.e. u̇

(k)
i ,

(iii) the external conditions, i.e. σ1, ..., σn, or a possible eigendynamics of the system. Thus, basically

the dynamics of the MAS is specified on the level of the individual agent, not on a macroscopic

level. In the following, we will discuss two different examples from a biological context in order to

demonstrate the applicability of the Brownian agent concept.

3 Swarming of Brownian Agents

A swarm can seen as a multi-agent system with two important features: (i) direct or indirect

interactions such as additional coupling, that would account for the typical correlated motion of

the agents, (ii) active motion of the agents, i.e. some energetic conditions must be satisfied in order

to keep the swarm moving.

In the following, we consider an ensemble of i = 1, ..., N Brownian agents, each of them described

by three state variables: spatial position ri, velocity vi and internal energy depot ei. The dynamics
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of these variables is given by the following set of coupled equations:

d u
(1)
i

dt
=

d ri

dt
= f

(1)
i = vi

d u
(2)
i

dt
=

dvi

dt
= f

(2)
i + F stoch

i = Fdiss
i + Fext

i + F int
i + F stoch

i

d u
(4)
i

dt
=

d ei

dt
= f

(4)
i = qi(ri, t)− pi(ri, t)− ci ei(t)

(4)

Here the change of the space coordinate results from the velocity of the agent without any additional

stochastic influences, which are summed up in the dynamic equation for the velocity itself. For the

stochastic force we may use a standard expression from statistical physics,

F stoch
i =

√
2S ξi(t) (5)

where S denotes the strength of the stochastic force and the random function ξ i(t) is assumed to

be Gaussian white noise. Fdiss
i denotes the non-conservative (dissipative) forces that may affect the

active motion of the agent. Here we have to consider (i) the friction γ0 that decelerates the agent’s

motion, and (ii) power from the internal energy depot that is used for the acceleration of motion

[7]:

Fdiss
i = −γ0 v + di(vi) ei(t)v (6)

di(vi) is the agent specific rate of converting depot energy into kinetic energy, that may depend on

the agent’s actual velocity, vi. In the following we will assume di(vi) = d2v
2, where d2 is a constant

conversion rate.

Fext
i describes the influence of external forces and will be omitted here. F int

i eventually describes

influences that may result from interactions with other agents. For the example of a harmonic

swarm [6, 11, 18], we may assume a mutual interaction of the agents due to a harmonic potential

that depends on the spatial positions of the agents. This results in linear attractive forces between

all pairs of agents. The force acting on agent i reads:

F int
i = −a

(

ri −R(t)
)

; R(t) =
1

N

N
∑

i=1

ri(t) (7)

where R denotes the center of mass of the swarm.

In the dynamics of the internal energy depot ei(t) of the Brownian agent the term qi(ri, t) describes

the influx of ressources into the agent’s depot, for example the take-up of energy that can later be

used for active motion. These ressources may not be homogeneously distributed in the system or

may not be available at all time [7], however, in this paper we may assume qi(ri, t) = q0 = const.

The term pi(ri, t) on the other hand describes different kind of “outfluxes” from the agent’s depot,
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i.e. what the depot energy is used for. Specifically, we will consider two different processes in the

following two sections:

pi(ri, t) = si(ri, t) + di(vi) ei(t) (8)

si(ri, t) describes for example environmental changes performed by the agent at its current position.

In Sect. 4 we will assume that the agent is able to change an “adaptive landscape” or to establish

a “communication field” to interact with other agents. Again, si(ri, t) = s0 = const. is chosen for

simplicity. The second term di(vi)ei(t) is used to describe the active (accelerated) motion of the

agent as described above. Eventually, the term ciei(t) in eq. (4) describes the internal dissipation of

the energy depot at a specific loss rate ci. In a biological context, internal dissipation is analogous to

metabolism of the organism. According to eq. (1), it is possible to consider also explicite stochastic

influences on the internal energy depot. This is neglected here since the equation for the depot

is implicitely coupled to the equations of motion, where stochastic forces are taken into account.

With the assumed specifications, the two-dimensional motion of a swarm of N Brownian agents

can be simulated on the “individual level” by means of the 5N coupled (stochastic) equations (4).

Fig. 1 presents snapshots of a computer simulation of 2.000 agents. (A movie of these computer

simulations – with the same parameters, but a different random seed – can be found at http:

//ais.gmd.de/~frank/swarm-tb.html). In the simulations, we have assumed that the agents are

initially at rest and at the same spatial position. Due to a supercritcal take-up of energy, expressed

by the condition (q0 − s0) > γ0c/d2 [7], the agents are able to move actively, the interaction

however prevents the swarm from simply dispersing in space. Thus, the collective motion of the

swarm becomes rather complex, as a compromise between spatial dispersion (driven by the energy

pumping) and spatial concentration (driven by the mutual interaction) [6, 11, 18].

4 Brownian Agents in an Adaptive Landscape

In this section, we assume that the Brownian agents use their internal energy depot ei mainly for

environmental changes, si(ri, t) = s0, and not for an accelerated motion, i.e. d2 ≡ 0. Further, we

assume that the different state variables ri, vi, ei may change on different time scales which allows

a so-called adiabatic approximation for the fast variables, as known e.g. from synergetics.Treating

the internal energy depot and the velocity as quasistationary variables, we find for the dynamics

of eq. (4):

d u
(1)
i

dt
=

d ri

dt
= v0

i

d u
(2)
i

dt
=

dvi

dt
= 0 ⇔ v0

i =
1

γ0
F int

i +
√

2D ξi(t)

d u
(4)
i

dt
=

d ei

dt
= 0 ⇔ e0

i =
q0 − s0

c

(9)
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Figure 1: Snapshots (spatial coordinates) of a swarm of 2.000 Brownian agents moving according

to eq. (4). t gives the different times. Note that the picture for t = 100 has a shifted x1-axis. Initial

conditions at t = 0: {x1i, x2i} = {0.0, 0.0}, {v1i, v2i} = {0.0, 0.0} for all agents. Parameters: a = 1,

S = 10−8, s0 = 0, q0 = 10; c = 1.0; γ0 = 20, d2 = 10. [6]

D = S/γ2
0 refers to the spatial diffusion coefficient of the agents. For the interaction of the agents,

we may assume that they indirectly interact via an adaptive landscape. Every action of each agent

is assumed to change the state of the adaptive landscape - either locally or globally, dependent on

the model under consideration. On the other hand, the changes of the landscape may affect the

actions of other agents in near or far distance. This way, a non-linear feedback occurs that is of

importance for all processes of structure formation and self-organization.

In our approach, the adaptive landscape is modeled as a self-consistent spatial field, he(r, t) that

may consist of different components, hθ(r, t) [10, 14, 15]. In a biological context, the field can for

example represent a chemical field of different pheromones that are produced e.g. by ants or other

insects in order to communicate to their mates. In this respect, the field can be envisioned as a

communication field that contains spatial information produced by the insects. The response to the

chemical field is then known as chemotaxis, i.e. the insects are either attracted or rejected by the
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chemical. Such a reactive behavior is a basic feature of phenomena such as trail formation in ants

[8, 19] or aggregation of slime molds and myxobacteria [4, 9, 12, 21].

In order to capture these features of chemical communication, we assume that the field components

may follow a general dynamics [14, 15, 20]:

∂

∂t
hθ(r, t) =

N
∑

i=1

si δθ,θi
δ(r − ri) − kθhθ(r, t) + Dθ∆hθ(r, t). (10)

In eq. (10) every agent contributes to the field with an amount of si. δθ,θi
is the Kronecker Delta

indicating that the agents contribute only to the field component which matches their internal

parameter θi. δ(r− ri) means Dirac’s Delta function used for continuous variables to indicate that

the agents contribute to the field only at their current position, r i. The information generated this

way has a certain life time 1/kθ, further it can spread throughout the system where Dθ represents

the diffusion constant for the dissemination of information. Note, that the parameters describing

the communication field do not necessarily have to be the same for the different agents i or internal

parameters θ. In the following we may assume si ≡ s0. Further, we wish to emphasize the fact that

the effort of the agent for establishing the communication field, denoted by s0, is also related to

the internal energy depot ei, eq. (9) of the agent. This shall reflect that every change of the agent’s

environment, such as generation of information or changes of the adaptive landscape in general,

has some costs and therefore needs to be considered in the “energetic” balance equation.

In accordance with the chemotactic dynamics, the nonlinear feedback between the field he(r, t)

and the agent’s behavior shall be determined by spatial gradients (for other applications, different

assumptions can of course be made):

F int
i = αi

∂he(r, t)

∂r

∣

∣

∣

∣

ri

(11)

We note that the gradient of the effective field he(r, t) is in general a specific function of the dif-

ferent field components hθ(r, t): ∇he(r, t) = ∇he(. . . , hθ(r, t), hθ′(r, t), . . .) In eq. (11) the agent’s

individual response parameter αi can be further used to describe different responses, for instance

(i) attraction to the field, αi > 0, or repulsion, αi < 0, (ii) response only if the local value of the

field is above a certain threshold, (iii) response only if the agent is in a specific internal state.

5 “Heatbugs” revisited

In the specification of Sect. 4 the Brownian agent model captures essential features of the so-called

“heatbug” simulation, one of the standard examples to demonstrate the capabilities of the Swarm

simulation platform:
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“Each agent in this model is a heatbug. The world has a spatial property, heat,

which diffuses and evaporates over time. Each heatbug puts out a small amount of

heat, and also has a certain ideal temperature it wants to be. The system itself is

a simple time stepped model: each time step, the heatbug looks moves to a nearby

spot that will make it happier and then puts out a bit of heat. One heatbug by itself

can’t be warm enough, so over time they tend to cluster together for warmth.” (http:

//www.swarm.org/examples-heatbugs.html)

The “spatial property” heat is formally described by eq. (10) for the spatio-temporal field hθ(r, t).

Since there is only one field component, we may simply choose θ = 0, which in turn also means that

all agents have the same internal degree of freedom, θi ≡ 0. The amount of heat each agent puts

out, is a constant s0 in our model, while in the original heatbug simulation it can vary between a

lower and an upper value. Additionally, in the heatbug simulation the agent may have a minimum

and a maximum ideal temperature which is not considered here.

Apart from these minor differences, the Brownian agent model of Sect. 4 (that has been already

published in 1994 [20]) provides a formal description of the heatbug simulation. Moreover, it is also

applicable to many cases of biological aggregation based on chemotaxis where biological species,

such as insect larvae [3] or myxobacteria [4, 21] gather guided by chemical signals originated by the

individuals. For an analytical investigation of the aggregation dynamics of the “heatbugs” et al.,

we may start from a stochastic description, where P (r, t) = P (r1, . . . , rN , t) gives the probability

to find the N Brownian agents at time t at the positions r1, ..., rN , with N = const. Considering

further eq. (9) for the dynamics of the individuals, we can derive from the probability distribution

P (r, t) a macroscopic equation for the agent density, n(r, t) [20]:

∂

∂t
n(r, t) =

∂

∂r

{

− α

γ0

∂h0(r, t)

∂r
n(r, t) + D

∂n(r, t)

∂r

}

(12)

Using n(r, t) and θ = 0, eq. (10) becomes:

∂

∂t
h0(r, t) = s0 n(r, t)− k0 h0(r, t) + D0

∂2h0(r, t)

∂r2
(13)

Both macroscopic equations (12) and (13) can be used to further analyze the aggregation dynamics

[20]. Let us assume in an adiabatic approximation that the field h0(r, t) relaxes faster, compared

to the distribution of the agents n(r, t) into its stationary state, and the diffusion coefficient of the

field D0 is very small:

∂h0(r, t)

∂t
≈ 0 ; h0(r, t) =

s0

k0
n(r, t); if D0 → 0 (14)

Eq. (14) means that the spatio-temporal distribution of the field follows quickly the spatio-temporal

distribution of the agents. Then eq. (12) for the agent density n(r, t) can be rewritten in terms of
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a usual diffusion equation:
∂n(r, t)

∂t
=

∂

∂r

{

Deff
∂n(r, t)

∂r

}

(15)

where the effective diffusion coefficient, Deff in the quasistationary limit of eq. (14) can be expressed

as follows:

Deff = D − α

γ0

∂h0(r, t)

∂n(r, t)
n(r, t) = D − α

γ0

s0

k0
n(r, t) = D − α

γ0
h0(r, t) (16)

We note that Deff = 0 for a certain equilibrium density of the field, heq
0 . We may thus introduce a

(a)

(b)

Figure 2: (left) Spatial positions of 100 agents on a surface of A = 100 × 100 (periodic boundary

conditions), (right) corresponding spatial distribution of the reduced effective diffusion coefficient

σ(r, t), eq. (17). The black area indicates σ < 0, which means an attraction area for the agents,

the grey area indicates σ > 0. Time in simulation steps: (a) t = 5.000, (b) t = 50.000. Parameters:

s0 = 80, k0 = 0.001, D0 = 0.01, heq = 200, α/γ0 = 1. [20]

reduced variable:

σ(r, t) =
Deff

D
= 1− h0(r, t)

heq
0

(17)

σ > 0 means a spreading of agents over the whole surface as in a usual diffusion process. σ < 0, on

the other hand results in a lump of agents concentrating only in certain regions. The transition from
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σ > 0 to σ < 0 is driven by the local field production of the agents, i.e. σ becomes negative if h0(r, t)

locally exceeds the equilibrium value, heq
0 . Depending on the spatio-temporal density h0(r, t), the

local value of σ(r, t) can at the same time have quite different effects at different places. This is

shown in Fig. 2 that presents computer simulations of the spatial agent positions (left side) together

with the corresponding distribution of σ (right side). The inhomogeneously distributed black areas

indicate σ < 0, resulting in a bound motion of the agents and eventually in an aggregation in that

area. As shown in Fig. 2, the attraction area is decreasing with time in diversity as well as in size,

indicating a selection process among the attraction areas, which has been discussed in detail in

[17, 20].

6 Conclusions

The two examples discussed above have shown how the concept of Brownian agents can be used

to (i) simulate and (ii) analytically investigate the dynamic behavior of certain spatial multi-agent

systems. It is one of the major advantages of the Brownian agent concept that, by means of formal

methods known from statistical physics, we are able to derive from the agent-based (microscopic)

dynamics macroscopic equations for the system dynamics. This allows a more detailed theoretical

investigation of the dynamics of the multi-agent system and some predictions of the collective

behavior, for example bifurcations in the behavior at certain critical parameters.

While on one hand considerable advantanges result from the use of both a microscopic simulation

and their corresponding macroscopic investigation, we note that on the other hand not all kind of

MAS may be mapped to a Brownian agent model and thus not all kind of questions can be answered

by this approach. This is no surprise. As any other agent approach, the Brownian agent concept

is based on certain modeling reductions regarding the system elements and their interactions that

need to be carefully understood.

The Brownian agent concept has proven its use in a number of applications where (positive and

negative) local feedback processes play a considerable role, but an internal evolution of the agents

can be neglected: for example physico-chemical pattern formation, certain behavior in insect soci-

eties (such as aggregation, foraging behavior and trail formation), traffic dynamics, human behavior

(pedestrian dynamics, panics), urban and economic aggregation, opinion formation and coordina-

tion of decisions in social systems [17]. The Brownian agent approach would be less appropriate

in cases where agents display “intelligent” features, such as logical deduction, complex behavioral

adaptation to the environment, development of individual strategies to pursue a certain goal, or

developent of an individual world view. The question however is, to what degree these specifications

need to be taken into account in order to explain or to reproduce an observed emergent behavior.

Moreover, there is certainly a trade-off between a most realistic computer simulation that includes

as much microscopic details as possible, and the possibility to match such a system with a tractable
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analytical model. While the latter one is most desirable, it would need some compromises in the

design of the microscopic simulations.
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