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Abstract

Individual-based models are considered as a modern and flexible tool to describe self-
organization in complex systems. A physical approach is provided by active Brownian particles
with the ability to generate a self-consistent field which in turn feeds back to their behavior.
Different examples elucidate the broad variety of applications, ranging from physico-chemical
pattern formation, to self-assembling networks and ensemble search strategies. The considera-
tion of biological features, such as replication or internal energy depots, extents the description
of active Brownian particles towards an articifical agents model.

1 Introduction

In the science of complexity, today different variations of artificial agent models are applied to
simulate adaptive behavior, ranging from ecology to engineering and to artificial life (DeAngelis
and Gross (1992), Langton (1994), Varela and Bourgine (1992), Maes (1991), Meyer et. al (1991)).
In these individual- or particle-based models, the elements of the system are treated, in a very
general sense, as artificial agents, relatively autonomous entities which have a set of different rules
to interact with each other. Which of the rules applies for a specific case, may also depend on local
variables, which in turn can be influenced by the (inter)action of the artificial agents.

Individual-based models are not restricted to the social and life sciences, they are also useful in
physics in cases where only small particle numbers govern the structure formation. Here, partial
differential equations are not sufficient to describe the behavior of the system. The specific pattern
obtained in the asymptotic regime, is path-dependent which means it is intrinsically determined by
the history of its creation and irreversibility and early symmetry breaks play a considerable role.
Hence, a stochastic description is needed which considers fluctuations in the system.
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2 Equations for the Active Brownian Particles

The model featured in this paper, is based on Brownian particles, named after the Britisch botanist
Robert Brown, who in 1827 discovered the erratic motion of small particles immersed in a liquid.
Due to Langevin, the motion of a Brownian particle can be described by the stochastic differential
equations:

dr dv

— =v ; — =—yv++2¢ t 1
Here r(t) is the position of the particle at time ¢, and v(t) is its velocity permanently changed by
impacts of some surrounding liquid which is modelled by the random function £(t). v is the friction
coefficient, and ¢ is the intensity of the stochastic force £(t), which is assumed to be Gaussian white
noise:

(€@) =0 ;5 (E@)&)) =o(t —t). (2)

As Einstein pointed out, in the long-time limit, ¢ 3> v~!, there is a relation between the intensity
€ and the macroscpic diffusion coefficient D,, of the Brownian particles:

D, = E/’Y = kBT/A/ (3)

Obviously, simple Brownian motion is not sufficient to originate structures. Therefore, we introduce
active Brownian particles (Schimansky-Geier et. al (1995), (1996)) which are Brownian particles
with the ability to generate a self-consistent field, which in turn influences their further movement
and physical and chemical behavior. This non-linear feedback between the particles and the field
generated by themselves results in an interactive structure formation process on the macroscopic
level.

Within a discrete approximation, the particles can be described as Active Walkers — a term, intro-
duced by Freimuth and Lam (1992). Recently, Active Walker models have been used to simulate
a broad variety of pattern formations in complex systems (Kayser et. al (1992), Lam and Pochy
(1993), Schweitzer and Schimansky-Geier (1994), (1996), Lam (1995), Schweitzer et. al (1996)).

We consider an ensemble of IV active Brownian particles which are treated as individuals i =
1,...,N. In the following, a constant particle number is assumed, but birth- and death processes
of active Brownian particles could be considered as well (Schimansky-Geier et. al (1995), (1996)).
For N = const., we introduce the canonical N-particle distribution function P(ry,...,rn,t), which
gives the probability to find the IV active Brownian particles in the vicinity of the space coordinates
71,...,7N at time t. The equation of motion for particle i is given by the following Langevin equation:

dr; dv; Oh(r,t)
e _ . 0 2% . or . 4
dt Vi dt YV T O I N €; )E(t) ( )

which, in the Einstein-Smoluchowski limit, can be reduced to
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The Langevin equation considers the response of the particles to the gradient of the field h(r,t).
Further, two “individual” parameters appear in the equation:

(i) the individual intensity of the noise ¢;, which is related to the temperature (eq. 3) and
represents the stochastic influences. ¢; is a measure of the individual sensitivity s; of the
particle: s; o< 1/g;.

(ii) the individual response to the field, «;, which represents the strength of deterministic influ-
ences, resulting from the gradient of the field.

Both individual parameters may depend also an internal parameter, 8;, which represent internal
degrees of freedom for the particle. The relation between o; and ¢; has some impact on the behavior
of a particle: if both the response to the field and the sensitivity are low, the particle nearly behaves
as a random particle. On the other hand, a strong response or a high sensitivity may result in a
decrease of stochastic influences, and the particle pays more attention to the field, which guides its
motion.

The response of the particle to the field, a; may depend on the situation to be described, e.g.

(i) attraction to the field, a; > 0, or repulsion, a; < 0

(ii) response only if the local value of the field is above a certain threshold ho: a; = ©[h(r,t) — ho],
with O[y| being the Heavyside function: © = 1, if y > 0, otherwise © = 0.

(iii) response only if the particle has a specific internal value 8y: a; = §[6; — 6]. Here, 6 is assumed
as a discrete variable, with § being the delta function

(iv) response to the field depends on the direction of movement: this case might describe e.g. the
situation of biological creatures, which usually have a certain angle of perception

The non-linear feedback between the particles and the field is given by the fact, that the particles
can locally change the field with an individual rate ¢; which may also depend on the internal
parameter, 6;. Further, it is assumed that the field can diffuse with a diffusion coefficient D}, and
can decay with a rate k. Hence, for the field h(r,t), we obtain a linear evolution law:

% h(r,t) = Zqi d(r —ri(t)) — kn h + Dy, Ah. (6)

In order to summarize the model, the interaction between the active Brownian particles can be
described as a non-linear and indirect communication process (Schweitzer (1996)), which all particles
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are involved in. Communication is based on the exchange of information, and therefore needs a
medium; direct communication can be considered as a special case of indirect communication. In
the model of active Brownian particles, this medium is described as a space and time dependent
field h(r,t). With respect to the particles, the communication consists of three processes:

e “writing”: the particles locally generate information by contributing to the field
e “reading”: the particles locally receive information by measuring the gradient of the field

e “acting”: the particles locally change the direction of their movement based both on the
response to the information received and to erratic circumstances

By means of the field h(r, t), the information generated is stored and distributed through the system
via diffusion. On the other hand, the information can also fade out, expressed by a decay of the field.
Communication can be considered here as a special type of global coupling between the particles,
which feeds back to their individual actions.

3 A Simple Case: Identical Particles

For a first insight into the model, we now restrict to the simplest case, where all particles are
assumed to be indentical (a; = a,&; = €,¢; = ¢ = const.), and do not have internal degrees of
freedom (Schweitzer and Schimansky-Geier (1994), (1996)). Then, the (macroscopic) density of the
active Brownian particles, n(r,t), can be obtained by:

N
n(r,t) = /Z d(r —7i(t)) P(r1y ..., TN, t)dry...dry (7)
i=1

In the mean-field limit, from the Langevin equation (eq. 4) for the active Brownian particles the
following Fokker-Planck equation can be derived:

0 0 a Oh(r,t) on(r,t)
50 = 5 {5 T ) + D )

Further, in the mean-field limit eq. (6) becomes a linear deterministic equation:

% h(r,t) = gn(r,t) — ks h + Dy, Ah. (9)
For the coupled equations (8) and (9) a homogeneous solution

ng = N/S,ho = nog/kn exist; with S being the area of the surface the particles are assumed
to move on. This homogeneous state becomes instable, if

agng > e (ky + &% Dy) (10)
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where £ is the wave number of a fluctuation. This condition gives a relation for the parameters, «
and ¢, which can be used to distinct between different types of particle motion in the mean field
limit (cf. Fig. 1).

free motion

Qlm

bound motion

2
0 Dy K

Figure 1: Diagram indicating the transition from a free motion of the active Brownian particles
to a bound motion, in dependence on the “sensitivity” (1/¢)) and the “response” (a). Dp, is the
diffusion constant and kj the decay rate of the field.

Here, “free motion” means that the particles more or less ignore the attraction of the field, thus
behaving like random particles which move around. On the other hand “bound motion” means that
the particles in the average follow the gradient of the field, which restricts their movement to the
maxima of the field. Hence, the particles will be trapped in certain areas. In the example of Fig. 2,
the particles eventually concentrate at some locations forming groups (or aggregates).

Figure 2: Snapshots of the position of 100 active Brownian particles moving on a triangular lattice
(size: S = 100 x 100). Time in simulation steps: (left) ¢ = 10, (middle) ¢ = 1.000, (right) ¢ = 50.000
(from Schweitzer and Schimansky-Geier (1994))

In order to describe processes of structure formation or collective behavior, the parameter range
of the “bound motion” seems to be the more interesting one, with applications e.g. in biological
aggregation (Stevens and Schweitzer (1996)). In the other limit, all cooperative actions become
impossible either because of an overrunning diffusion, or by an overcritical temperature which
means a subcritical sensitivity. Althrough this insight results from a mean field analysis, it might
basically hold also for the case where we have particles with “individual” parameters, as discussed
in the following sections.
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4 Particles with Internal Degrees of Freedom

4.1 Example: Travelling Patterns

Let us now assume that the action of the active Brownian particles may depend on an internal
parameter 6;. In the first example (Schimansky-Geier et. al (1996)), 6; should be either 0 or 1.
Further, we assume that only particles in the internal state §; = 1 are able to contribute to the
field, h(r,t). Additionally, both kinds of particles can undergo a transition into the opposite state, by
changing their internal parameter. The total number of particles should be constant. The example
can be summarized using the following symbolic reactions:

*i) (o1 k(‘T; Co %) N = Ny + N1 = const. (11)

Here, C; denotes an individual particle C with the internal state . (3 is the transition rate from state
0 to 1. As eq. (11) indicates, an outflux of Cy particles is compensated by an influx of C; particles.
This situation is similar to a cross flow reactor. As an example, we investigate an exothermic
reaction within this reactor (Yakhin et. al (1994)), hence, the contribution of the C; particles to
the field can be specified as follows:

¢i(0 = 1) =nk(T) =nko exp(T /(To +T)), ¢i(6=0)=0 (12)

Here, 7 is the heat released during one reaction, and k(7T') is the temperature dependent reaction
rate for the transition from state 1 to 0. The field h(r,t) the particles contribute to, can in this
example be identified as a temperature field: h(r,t) — T'(r,t) which obeys an equation similar to

eq. (6):

N
%T(r, t) = Zqi(e =1)é(r —ri(t,0 = 1)) — kr h+ x AT. (13)
i=1

The decay of the field results from the coupling to a thermal bath outside the reactor, the diffusion
of the field is replaced by heat conduction. In this example, the non-linear feedback between the
motion of the particles and the field is not given by the response to the gradient of the field, but by
the intensity of the fluctuations, ¢; which is related to the temperature (eq. 3). Hence, the resulting
Langevin equation for the motion of the Cy and C; particles reads in the one-dimensional case as
follows:

a Y a7 (vi(8) — vo) + v/2eivE(2). (14)

In the cross flow reactor, in the average, all particles move with velocity vy relative to the temper-
ature field T'(r,t), and can undergo the transitions specified in eq. (11), which may locally increase
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the temperature. As the result, a travelling periodic pattern in the temperature field occurs, as
shown in Fig. 3.

Figure 3: Space-time plot of traveling periodic structures which occur in the temperature field. The
simulation is carried out with only 5000 particles and is very stable and fast. The results are in
good agreement with those obtained by Yakhin et. al (1994) (from Schimansky-Geier et. al (1996)).

This example gives the opportunity for some notes in favour of the proposed particle based al-
gorithm. Usually reaction-diffusion problems are solved by integrating the related equations on a
lattice. Hence, the system of partial differential equations corresponds to a large number of coupled
ordinary differential equations. The time step required for the integration, is mainly determined
by the nonlinearities of the equations. Considering for example eq. (8), the allowed time step At
should be less than (Vn(r,t))~2 if we suppose that n(r,t) and h(r,t) are of the same order. As large
gradients comes into play, the time step should be decreased according to the square of Vn. On
the other hand, if we solve the corresponding Langevin equations (eq. 4), the gradient appears only
in a linear manner and, therefore much larger time steps are allowed for the integration. Hence, a
simulation of a large number of particles do not necessarily cause larger simulation times, since in
the considered example the equations are in fact linearized.

4.2 Example: Network Formation

As a second example for active Brownian particles with an internal parameter, we discuss the
formation of links between a set of nodes (Schweitzer and Tilch (1996)). The nodes (j = 1,...,2)
are located on a surface at the positions 7,;. A number of n, nodes should be characterized by
a positive potential, V; = +1, while n. = z — n, nodes have a negative potential, V; = —1. It
is the (twofold) task of the particles, first to discover the nodes and then to link nodes with an
opposite potential, this way forming a self-organized network between the set of nodes. This task
is quite complicated since the nodes do not have any long-range interaction with the particles, like
attractive or repulsive forces. Their effect is restricted to their location, r;.

In this example, the internal parameter of the particles, 8; can take three different values 0, —1,+1.
Particles with the internal state 0 are considered as neutral particles which do not contribute to
the field h(r,t). Initially, 8;(¢9) = 0 yields for every particle. Further, 6; could be changed only, if
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a particle during its motion hits one of the nodes. Then it takes over the value of the potential of
the respective node, V;, which means 6; = const., if V; = 0;, and 6; — V}, if V; # 6;.

The self-consistent field h(r,t) generated by the active Brownian particles is, in the considered case,
a chemical field consisting of two components, A and B. Which of these chemicals will be produced
by the particle ¢, depends on the actual value of the internal parameter, 8;. The production rate,
qi(0;,t), is defined as follows:

GO0 =% [ (1+0)a% exp{—Ba(t —£5.))
(1 0)a exp{—p (L~ i)} (15)

q%,q% are the initial production rates and (34, 0p are the decay parameters for the production of
chemical A or B. Respectively, ¢, ,,t;_ are the times, when the particle 4 hits either a node with
a positive or a negative potential.

The chemical field generated by the particles is assumed again to obey a recation equation, as given
in eq. (6), but diffusion is not considered here (D, = 0). The field should influence the movement
of the particles according to the Langevin eq. (4). However, since the chemical field consists of
two components A, B, we assume that the internal state of the particles determines which of the
components affect the particle’s movement:

0;=0—h=0;60; = (—I—l) —h= hB(r,t); 0; = (—1) — h = hA(’l“,t) (16)

Here, ha(r,t), hp(r,t) mean the local concentration of the chemicals A and B, respectively.

The result of computer simulations, based on the model described above, is shown in Fig. 4. We
can observe the formation of a network, where the connections between the nodes exist as a two-
component chemical field generated by the active Brownian particles. This self-assembling network
is created very fast and remains stable after the initial period. Patterns, like the network shown, are
intrinsically determined by the history of their creation. Irreversibility and early symmetry breaks
play a considerable role in the determination of the final structure. An extension of the model
which also considers biological features has been applied to simulate the trunk trail formation in
ants connecting a nest to different food sources (Schweitzer et. al (1996)).

5 Ensemble Search with Active Brownian Particles

In this section, some suggestions are made to use active Brownian particles for search processes.
Here, we consider a potential U(r) which cannot be changed by the particles, however, they have
to find the minima of this potential during their search. For the simple case of Brownian particles
moving in a potential U(r,t), the related Langevin equation is, in the overdamped limit, given by
eq. (), considering h(r,t) — U(r,t) and o; = 1,&; = e. The search process has to ensure that the
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Figure 4: Time series of the evolution of a network after (a) 10, (b) 100, (c) 1000 simulation steps.
The network was generated by 5000 particles on a 100 x 100 lattice with 40 nodes (from Schweitzer
and Tilch (1996))

occupation probability for the minima of the potential will increase during the search, and indeed
it can be shown by means of the related mean field equation (8), that the probability distribution
for the Brownian particles in the stationary limit reads: p°(r) ~ exp (~U(r)/T'), which means that
the particles in the asymptotic regime can be found in the minima of the potential.

However, as known e.g. from frustrated optimization problems, in many practical situation a large
quantity of evenly matched minima exist. Here, the search strategy should avoid a total locking
of the searchers in the minima found so far in order to guarantee further search. In different
optimization routines, like the simulated annealing approach, this is realized by a temporary increase
of the temperature, which keeps the particles moving. On the other hand, this could also result in
the loss of appropriate minima which have to be found again. Hence, the proper adjustage of the
temperature of the searchers is a major problem in optimization.

In the model of active Brownian particles, this dilemma could be solved using an individual search
temperature for every particle. Particles which already found a minimum, should be very sensitive
during the search, expressed in a very low ¢;, wheras particles which are far away from the minima,
should increase their mobility to search around further. The idea of an adjustable sensitivity has
been successfully applied to active random walkers simulating ants, which search for unknown food
sources (Schweitzer et. al (1996)). Here, we may suggest &; o« U(r;), where U(r;) is the current
value of the potential at the location of the particle .

Moreover, an additional coupling between the particles can be assumed, which, in terms of com-
munication, means an instant information of all particles about the best minimum found so far.
In this case, only the searcher with the best minimum will stay in rest, wheras the other particles
are forced to search further on. Using the global coupling, the Langevin equation for the active
Brownian searchers can be modified to:

) . oU(r,t
% =v;; % = —yv; + —(rg,:—) .+ \/2 (Ei(Ui) —6mm)’)’£(t).

i

Emin(t) = const. min{U;(t)} (17)
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Here ep,in(t) is defined by the minimum of all potential values at the current positions of the
particles. Noteworthy, every searcher counts on two informations: (i) a local information, provided
by the local value of the potential and its gradient, (ii) a global information, provided by &,in(t),
which means an additional coupling between all particles.

Another possibility for a global coupling between the searchers is adopted in evolutionary searching
strategies. In the so called Darwin strategy (Boseniuk et. al (1987)), the ensemble of N searchers
is divided into different subpopulations, z; = N;/N, each characterized by a fitness E;. As for
biological species, replication and mutation of the members of the subpopulations are allowed. In
the average, only subpopulations with a fitness above the mean fitness, E; > (E), grow; therefore
the replication rate is assumed proportional to the fitness. For the search problem considered, the
fitness F; of the subspecies ¢ can be chosen to be the negative of the potential U; indicating that
the subspecies which has found the better minimum in the potential landscape, also has the higher
replication rate. Then the average replication rate (E) is given by

1 N N
(B) = —~(0) = 5 L Usilt), N =3 alt) (18)

Due to the mean value (U), there exist a global coupling between the different subpopulations.

The second element of the Darwin strategy, mutation, means that the searchers by chance can be

transferred into a state with a better or worse fitness. The mutation rates A;; are usually assumed

to be symmetric, since there are no directed mutations. However, in the so called mixed Boltzmann-

Darwin strategies (Asselmeyer and Ebeling (1996)), the transition probabilities of the Metropolis

algorithm are used instead:

0 1 }f U; <Uj (19)
exp (~(Us = Up)/T(®)) it U; > Uj

The prefactor A?j is symmetrical (A?j = A?i), it defines a set of possible states 7 which can be
reached from state 7. Usually, only small steps for the change of the current state are allowed. The
temperature 7'(t) may decrease during the search by a certain rule, e.g. by a power law. Noteworthy,
the temperature is assumed here as a global parameter, valid for all particles, whereas for the active
Brownian searchers discussed above an individual temperature is assumed.

To conclude the dynamics of the subpopulations, the basic equation for the mixed Boltzmann-
Darwin strategy reads as follows:

dz;

dt = Ii‘,(<U> - UZ) T; + Z[A” Zj— A]’i :L‘z] (20)

JFi

with the transition matrices 4;; obtained from eq. (19). By changing the parameters x and 7' in
the range 0 < kK < 1, 0 < T < 00, we may interpolate between the two limit cases (i) Boltzmann
strategy (k =0, T > 0) and (ii) Darwin strategy (k =1, T — 00).
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6 Active Brownian Particles with an Internal Energy Depot

In addition to the replication, discussed in the previous section, metabolism is generally considered
a characteristic feature of biological entities. Active Brownian particles do not need metabolism,
moreover, they can take for granted the energy to move, since it is provided by the thermal noise
in the system. However, on the way from the basically physical model of active Brownian particles
towards the more detailed description of artificial agents, it might be useful also to consider the
restrictions for individuals which result from a limited supply of energy.

Whereas in the previous sections always a passive (Brownian) motion of the particles has been
assumed, here the case of active motion is considered Ebeling et. al (1996). Active motion occurs
under energy consumption and requires metabolic activity and a supply of energy. If the distribution
of energy is inhomogeneous, the individuals have to move and to search for energy sources. During
these search periods, the supply of energy from internal sources is crucial. This implies that the
individual is able (i) to store energy in internal depots, (ii) to convert energy from internal energy
depots into energy of motion.

The model of active Brownian particles is now extended by considering an internal energy depot,
ei(t), for every particle, which may be altered due to three different processes:

(i) take-up of energy from external sources (food) with an influx b;(r),

(ii) loss of energy (metabolic processes) which is assumed to be proportional to the internal
energy, ¢; being the rate of energy loss,

(iii) conversion of internal into kinetic energy, proportional to the depot energy, d;(v) being the
conversion rate, which may depend on the velocity.

The resulting balance equation for the energy depot is then given by

D i(t) = bi(r) — ¢ es(t) — ds(v) ex(2) (21)

A simple non-linear ansatz for the conversion rate, d;(v) which also satisfies the condition d(v =
0) = 0 reads d(v) = dav?; d2 > 0. If it is assumed that the active Brownian particles move in a
potential U(r) which is not affected by them, the equation of motion is now given by the Langevin
equation:

v +yvi + VU(r) = daei(t) v + v/2ei7 £(2) (22)
Here, the first right-hand side term of eq. (22) reflects the acceleration of motion due to the
conversion of internal energy into kinetic energy as an additional driving force.

In order to give an example for the motion of the active Brownian particles on a two dimensional
surface, we assume that the potential should represent a home: U(z1,z3) = a(z? + £3)/2, which
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provides a certain attraction to the particles. The funcion for the energy influx b(r) is zero every-
where, except at a specific area, which stands for the “food source”, modeled as a circle on the
surface. The individuals are not attracted by the food source due to long-range attraction forces.
Fig. 5 provides an example for the stochastic motion of an individual. The gain of energy inside the
circle determines how far the particle can reach out from the “home” again. After an initial period
of stabilization, we see a quasi-stationary movement between the “food” and the “home”.

-4.0 -2.0 0.0 2.0 4.0

Figure 5: Trajectories in the 1, z2 space for the stochastic motion of the active Brownian particle.
The circle indicates the area of energy supply.

In the example given, no additional coupling between the active Brownian particles exist. This
could be provided based on the energy consumption of the particles. In this case the source, which
provides energy (or food) to the particles, should be identified as the field h(r,t) which mediates
the communication between the particles. The take-up of energy leads to a local depletion of the
field, on the other hand, we assume that the food also grows again with a certain rate g(r,t), but
it may not diffuse. Thus, the resulting equation for the field reads:

N

D hrt) = glrst) = Y b(r) alr — ri(t). (23)

=1

It should be realistic that the active Brownian particles which need the supply of energy for
metabolism and movement, are attracted by the maxima of the source field. In this case the
Langevin egs. (22) and (4) have to be combined, and the equation of motion reads finally:

dr; dv;
d—q; :W;d_qjt = —yv; + %{aih(rat) —U(r,t)}| +dae(t)v; ++/2e7E(). (24)

Ti

In a generalized manner, the term {o; h(r,t) — U(r,t)} represent an environmental potential for the
community of the active Brownian particles, which considers both environmental changes originated
by the individuals and changes which may result from external influences. For the latter one,
different possibilities can be discussed, ranging from “simple” periodic changes (such as “day and
night” cycles) to complex couplings to neighboring communities.
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