

Fraunhofer Institut Autonome Intelligente Systeme

Adaptation of Strategies in a Spatial IPD

Frank Schweitzer^{1,2} Robert Mach^{1,3} Heinz Mühlenbein¹

¹ Fraunhofer Institut für Autonome Intelligente Systeme
 ² Institut für Physik, Humboldt-Universität zu Berlin
 ³ Institut für Theoretische Physik, Universität Köln
 schweitzer@ais.fhg.de
 http://www.ais.fhg.de/~frank/

Schedule

- 1. Basic interaction: Prisoner's Dilemma
- 2. Spatial interaction and agent dynamics
- 3. Spatial games with 3 strategies
- 4. Spatial games with 8 strategies
- 5. Conclusions

Basic Interaction: Prisoner's Dilemma (PD)

- > ultimate goal of agent *i*: utility maximization depends on action of opponent $j \Rightarrow$ different strategies
- > PD game: paradigmatic example for interaction of 2 agents
 - choice between: C: to cooperate, D: "to defect"
 choose C or D without knowing opponent's move

payoff matrix: $\begin{array}{ccc} \mathbf{C} & \mathbf{D} \\ \mathbf{C} & R = 3 & S = 0 \\ \mathbf{D} & T = 5 & P = 1 \end{array}$

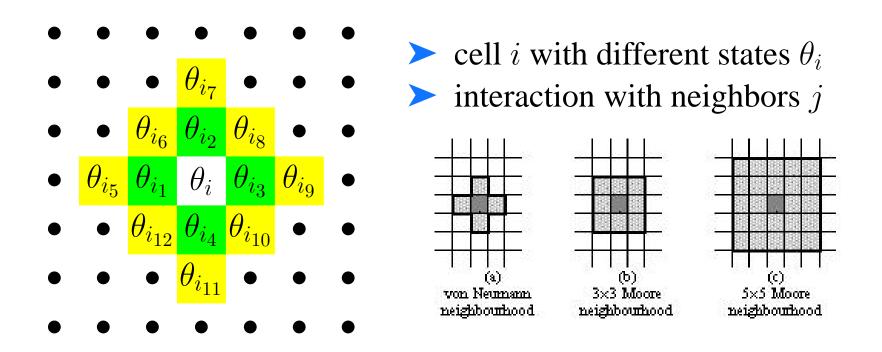
➤ dilemma: $T > R > P > S \iff 2R > T + S$ it pays more to defect against cooperators, but global utility is maximized for cooperators

Important: number of encounters n_q

- > $n_g = 1$: one-shot 2-person PD: \mathcal{D} is ESS
- > $n_g \ge 2$: *iterated PD* differences only if memory of $n_m \ge 1$ steps

• results in s = 8 different strategies

S	Strategy	Acronym	Bit String
0	suspicious defect	sD	000
1	suspicious anti-Tit-For-Tat	sATFT	001
2	suspicious Tit-For-Tat	sTFT	010
3	suspicious cooperate	sC	011
4	generous defect	gD	100
5	generous anti-Tit-For-Tat	gATFT	101
6	generous Tit-For-Tat	gTFT	110
7	generous cooperate	gC	111


suspicious strategies (s=0,1,2,3): initial defection generous strategies (s=4,5,6,7): initial cooperation rigid strategies (s=0,3,4,7): agents always behave the same

- > known result for 2-person IPD: (g)TFT most successful strategy ($n_g \ge 4$)
- Now: N agents with heterogeneous strategies and local interaction

Questions:

- meaning of "lunatic" strategies?
- > imitation behavior and $n_g \leq 4$: which strategies survive?
- ➤ role of spatial hererogeneity ⇒ local interaction? spatial domains of prevailing strategies?
- non-stationary dynamics?

Spatial Interaction of Agents

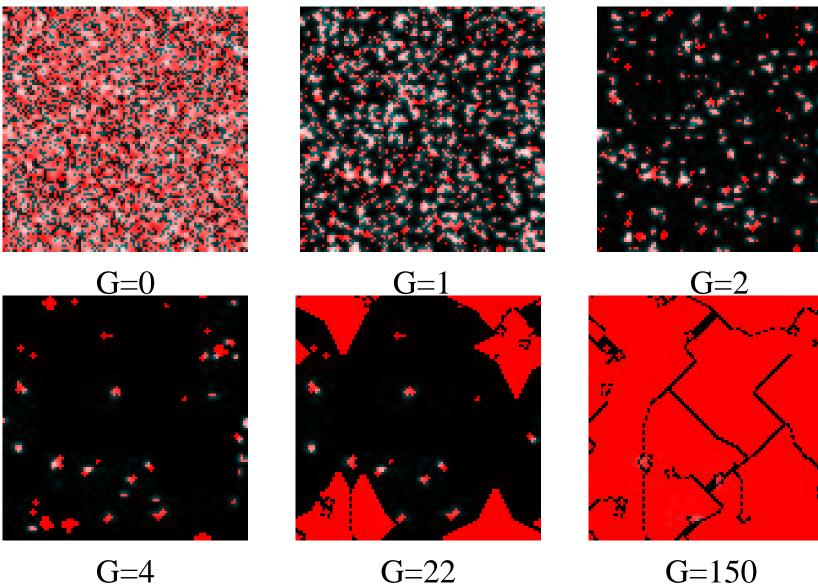
History: v. Neumann, Ulam (1940s), Conway (1970), Wolfram (1984), ... *Socio/Economy:* Sakoda (1949/1971), Schelling (1969), Albin (1975), ...

Agent Dynamics

- > microscopic description: agent i (position: r_i)
 - internal degree of freedom $\theta_i \in \{0, 1, ..., 7\} \Rightarrow$ strategy
- \succ *local* interaction of agent *i* with its 4 nearest neighbors
 - decompositon of 5-person game into 4 independent, simultaneous 2-person games, interaction: 2-person IPD
- > dynamics: adopt strategy of most successful agent $j^* = \arg \max_{j=0,...,m} a_{i_j}$ in neighborhood m $\theta_i(G+1) = \theta_{i_{j^*}}(G)$
 - deterministic game, time step in generations G

 \succ total payoff of agent *i*

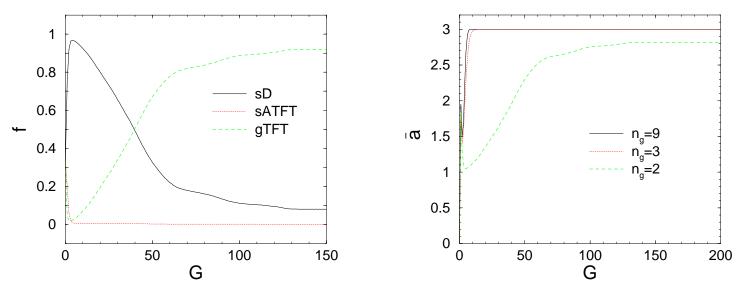
$$a_i(\theta_i) = \sum_{j=1}^{n-1} a_{\theta_i \theta_{i_j}} = \sum_s a_{\theta_i s}(n_g) \cdot k_i^s ; \quad k_i^s = \sum_{j=1}^{n-1} \delta_{s \theta_{i_j}}$$


• $a_{\theta_i s}(n_g) \Rightarrow 8 \times 8$ payoff matrix dependent on n_g

- assumption: strategy can be observed/deduced
- > global variables
 - frequencies of strategies: $f_s(G) = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_i s}$
 - average payoff per agent \bar{a} :

$$\bar{a} = \frac{1}{N} \sum_{i=1}^{N} a_i(\theta_i) = \sum_s f_s(G) \cdot \bar{a}_s ; \quad \bar{a}_s = \frac{\sum_i a_i(\theta_i) \delta_{\theta_i s}}{\sum_i \delta_{\theta_i s}}$$

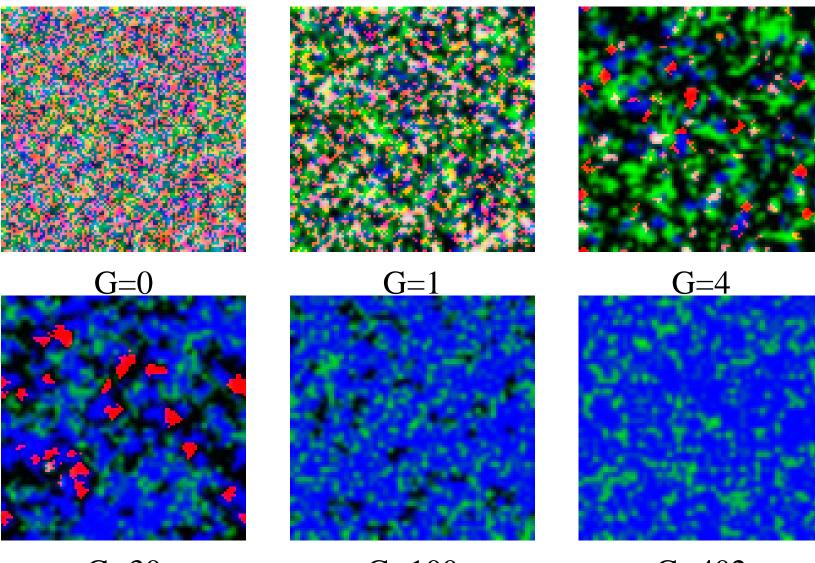
Example: Spatial Game with Three Strategies


- [110]: TFT ("tit for tat") \Rightarrow cooperative as long as opponent is cooperative
- [000]: always defective
- [001]: anti-TFT \Rightarrow defective to cooperators, cooperative to defectors
- > random initial distribution, $f^s(0) = 1/3$, $N = 100 \times 100$
- > results of computer simulations: $n_g = 2$ $n_g = 3$

G=150

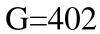
Results:

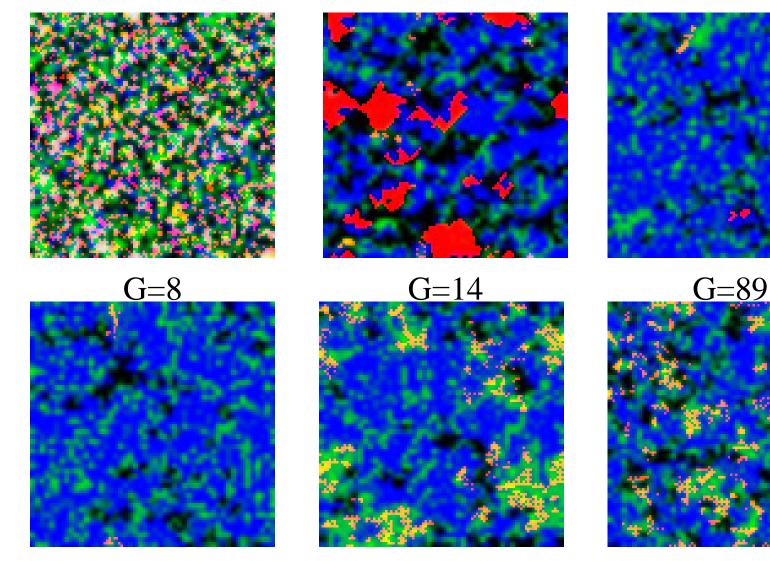
- ► *early stage:* steep decline of (partially) cooperative agents $([110], [001]) \Rightarrow$ survive in small clusters
- > *late stage:* overwhelming rollback of cooperation \Rightarrow TFT takes over, majority


• reason: defectors have "killed" anti-TFT

Evolution of More Diverse Strategy Patterns

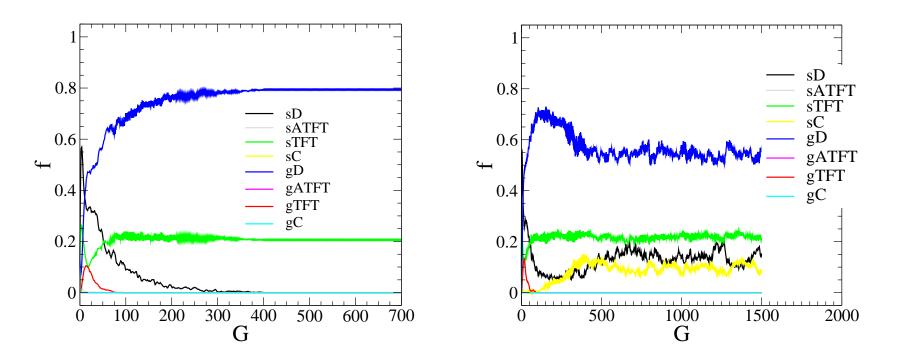
> random initial distribution of strategies, $n_g = 2$


Questions


- Will (g)TFT prevail again?
- Is a stationary distribution of strategies reached?
- results of computer simulations: run 1 run 2

G=30

G=100



G=1500

G=300

Results (for the "same" setup and $n_g = 2$)

- *early stage*: steep decline of all generous strategies (except gD)
- *late stage:* gD global winner (different from gTFT)
- two different attractors for the global dynamics:
 - *stationary* coexistence of *two* strategies:
 gD, sTFT (small clusters) i.e. sD, sC both *dissappear*
 - *non-stationary* coexistence of *four* strategies: gD, sTFT, sD, sC – i.e. sD, sC both *survive* (attractor less often reached)

- > conclusion (valid for $n_g = 2$): increase of heterogeneity in agents' strategies and local interaction \Rightarrow complex (sometimes non-stationary) IPD dynamics
- *to do:* detailed analysis of attractor size and stability

Conclusions

- > *heterogeneous* agents: play different strategies dependent on (i) past experience $(n_m = 1)$, (ii) local neighborhood
- > spatial multi-agent system, *local* interaction: 2-person IPD \Rightarrow agents: C or D with $n_m = 1 \Rightarrow 8$ strategies
 - \Rightarrow investigate spatio-temporal evolution of heterogeneity
- > outcome (for $n_g = 2$) depends on initial strategy mix:
 - spatial coexistence of different strategies (large domains, small clusters, ...)
 - (g)TFT may prevail only under special conditions
 - different (stationary and non-stationary) "defective" attractors dominated by gD

- > global transition into cooperation becomes possible, IF
 - appropriate payoff structure ⇒ T, S, R, P
 F.S., L. Behera, H. Mühlenbein, *Advances in Complex Systems* 5 (2002) 269-299
 - repeated interaction \Rightarrow critical $n_g > 2$

L. Behera, F.S., H. Mühlenbein, forthcoming

- > relation to *social dynamics*: role of locality and heterogeneity \Rightarrow non-trivial results
- relation to *evolutionary optimization*: maximization of private (local) utility vs. overall (global) utility
 frustration