To move to the next slide, just press

ENTER or RETURN

Communication and Self-Organization in Complex Systems: A Basic Approach

Frank Schweitzer

GMD Institute for Autonomous intelligent Systems (AiS) schweitzer@gmd.de http://ais.gmd.de/~frank/

in collaboration with:

Janusz Hołyst (Warsaw), Jörg Zimmermann (St. Augustin)

Schedule

- 1. Multi-Agent Systems
- 2. Model of Communicating Agents
- 3. Spatial Coordination of Decisions
- 4. Conclusions

Complex System

"By complex system, it is meant a system comprised of a (usually large) number of (usually strongly) interacting entities, processes, or agents, the understanding of which requires the development, or the use of, new scientific tools, nonlinear models, out-of equilibrium descriptions and computer simulations."

Journal "Advances in Complex Systems"

Multi-Agent Systems (MAS)

Multi-Agent Systems (MAS)

agent:

- subunit with "intermediate" complexity
- ⇒ may represent local processes, individuals, species, agglomerates, components, ...

Multi-Agent Systems (MAS)

agent:

- subunit with "intermediate" complexity
- ⇒ may represent local processes, individuals, species, agglomerates, components, ...

multi-agent system:

- Iarge number / different types of agents
- interactions between agents:
 - on different spatial and temporal scales
 - local / direct interaction
 - global / indirect interactions (coupling via resources)

 "bottom-up approach": no universal equations ⇒ self-organization, *emergence* of system properties

 external influences (boundary conditions, in/outflux)
 coevolution, circular causality

Complex Agent

Complex Agent

- autonomous; knowledge based / behavior based rules
- > performs complex actions: BDI, rational choices, ...
- > specialization, learning, genetic evolution, ...

1. Problem: information flow

"rational agent" (economics):

- complete knowledge of all possible actions and their outcomes (or known probability distribution over outcomes)
- common knowledge assumtion

- 1. Problem: information flow
- "rational agent" (economics):
- complete knowledge of all possible actions and their outcomes (or known probability distribution over outcomes)
- common knowledge assumtion
- 2. *Problem:* combinatoric explosion of the state space
- > 1000 Agents with 10 rules $\Rightarrow 10^{13}$ possibilities
- > Solution:
 - restrict interactions \Rightarrow control of information flow personally addressed interaction instead of "broadcasting"
- > *freedom:* define rules *and* interactions \Rightarrow *pitfall*

Minimalistic Agent

Minimalistic Agent

 ▶ possible simplest set of rules ⇒ "sufficient" complexity (depends on the system considered)

functional information: simple *algorithm*, which is steadily repeated

structural information: external information (*data*) received by the agent

Minimalistic Agent

- ▶ possible simplest set of rules ⇒ "sufficient" complexity (depends on the system considered)
- *functional information:* simple *algorithm*, which is steadily repeated
- structural information: external information (*data*) received by the agent
- \blacktriangleright pragmatic information: \Rightarrow effective information
 - emerges from the processing of the data by the algorithm
 - specific for each agent \Rightarrow enables actions, decisions

Model of Communicating Agents

- \succ community of N agents, spatially distributed
- \succ agent *i*:
 - (continuous) position: r_i (2 dim)
 - (discrete) "opinion": θ_i (internal degree of freedom)

Model of Communicating Agents

 \succ community of N agents, spatially distributed

 \succ agent *i*:

- (continuous) position: r_i (2 dim)
- (discrete) "opinion": θ_i (internal degree of freedom)
- > *example*: recycling campaign: "take part" ($\theta_i = +1$) \iff "drop out" ($\theta_i = -1$)
- > two (opposite) opinions \Rightarrow *binary choice problem*

Decisions

"classical" economic approach: utility function

 \succ agent *i* tries to maximize her private utility

> interference with other agents maximizing their utility

Decisions

- "classical" economic approach: utility function
- \blacktriangleright agent *i* tries to maximize her private utility
- > interference with other agents maximizing their utility
- "common knowledge assumption"
- > *problems:* equilibrium ??? communication ???

Our Approach:

 decisions depend on information: incomplete, spatially distributed (*non-uniform*)

➤ influences of random events, delays,

Our Approach:

- decisions depend on information: incomplete, spatially distributed (*non-uniform*)
- ➤ influences of random events, delays,
- \blacktriangleright assumption: agent *i* more likely does what others do
- problem of communication, neighbourhood
 mean-field approach: neglects local effects (non-uniformity)
 nearest-neighbour interactions: neglects non-local effects

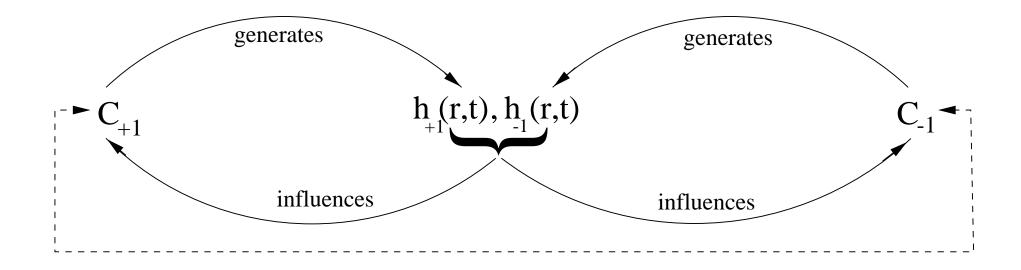
Spatio-temporal communication field

$$\frac{\partial}{\partial t}h_{\theta}(\boldsymbol{r},t) = \sum_{i=1}^{N} s_i \,\delta_{\theta,\theta_i} \,\delta(\boldsymbol{r}-\boldsymbol{r}_i) \,-\, k_{\theta}h_{\theta}(\boldsymbol{r},t) \,+\, D_{\theta}\Delta h_{\theta}(\boldsymbol{r},t)$$

- multi-component scalar field
- reflects spatial distances between agents
- > permanent *local* individual contribution: s_i
- > information generated has a certain life time, $1/k_{\theta}$
- \succ information can spread throughout the system, D_{θ}
- ► different information \Rightarrow different $s_i, k_{\theta}, D_{\theta}$

Communication field reflects:

 existence of memory (past experience)
 exchange of information with finite velocity
 influence of spatial distances between agents *weighted* influence (space, time)

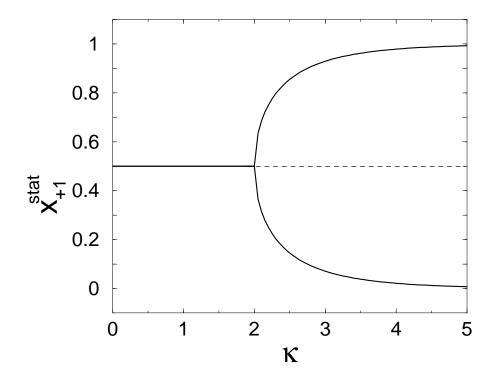

Decision of Agent *i*:

- \succ binary choice: to change or to keep "opinion" θ_i
- > depends on information about decisions of other agents

$$w(\theta_i'|\theta_i) = \eta \exp\left\{-\frac{h_{\theta}(\boldsymbol{r}_i, t) - h_{\theta'}(\boldsymbol{r}_i, t)}{T}\right\}$$

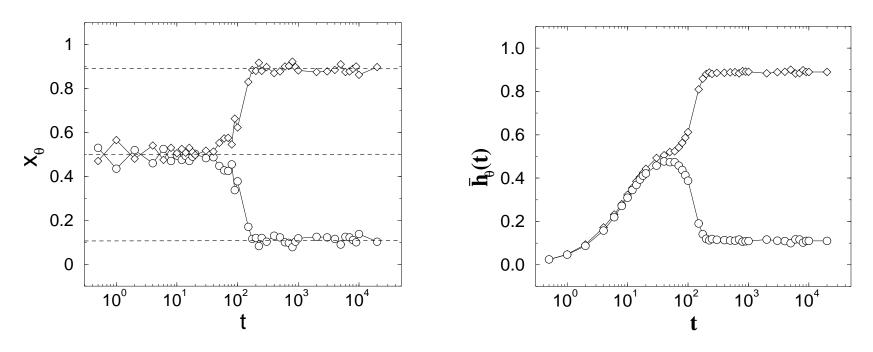
- > η : defines time scale
- > T: "social temperature" measures *randomness* of social interaction $T \rightarrow 0$: deterministic behavior
- > probabilistic approach: master equation for $P(\underline{\theta}, \underline{r}, t) = P(\theta_1, \mathbf{r}_1, ..., \theta_N, \mathbf{r}_N, t)$

non-linear feedback:


Mean-Field Approach

- > fast information exchange \Rightarrow no spatial inhomogeneities
- > mean communication field: $(s_i \to s_\theta)$ $\frac{\partial \bar{h}_{\theta}(t)}{\partial t} = -k_{\theta}\bar{h}_{\theta}(t) + s_{\theta}\bar{n}_{\theta}$
- > subpopulations:

$$\bar{n}_{\theta}(t) = \frac{N_{\theta}}{A}; \quad x_{\theta}(t) = \frac{N_{\theta}(t)}{N}$$


Stationary states: $\dot{x}_{\theta} = 0$, $\dot{h}_{\theta} = 0$ with $s_{+1} = s_{-1} \equiv s$, $k_{+1} = k_{-1} \equiv k$ $(1 - x_{+1}) \exp [\kappa x_{+1}] = x_{+1} \exp [\kappa (1 - x_{+1})]$ bifurcation parameter: $\kappa = \frac{2s N}{A k T}$

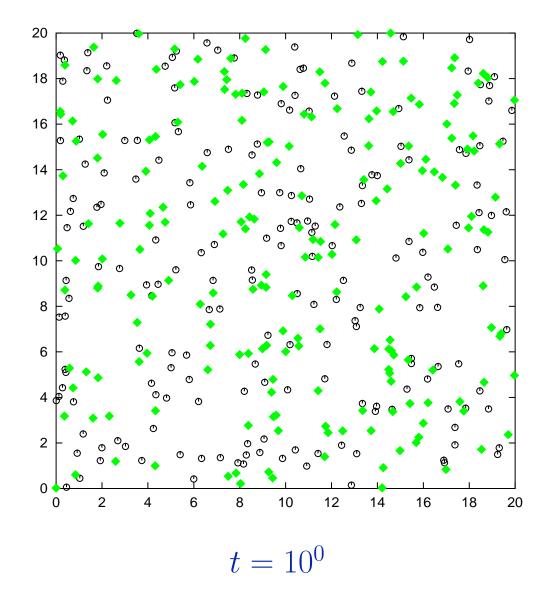
Bifurcation diagram:

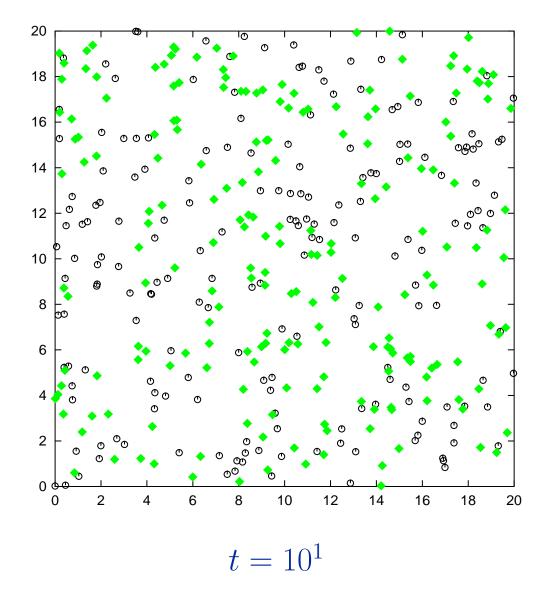
 $\kappa = \frac{2s N}{A k T} = 2 \Rightarrow \text{critical population size: } N^c = \frac{k A T}{s}$ Emergence of minority and majority

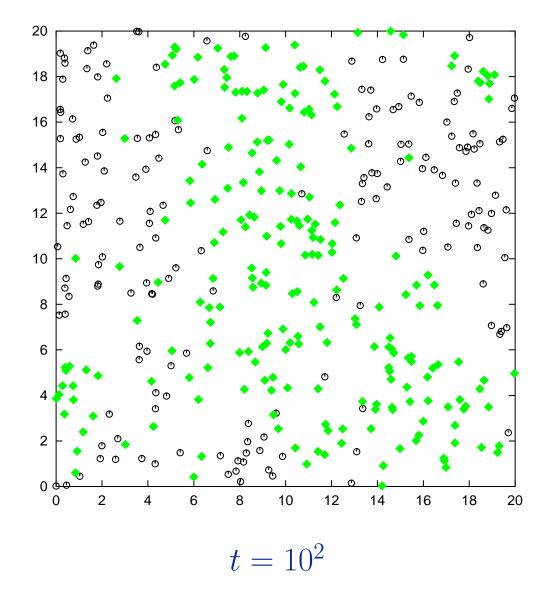
Results of Computer Simulations

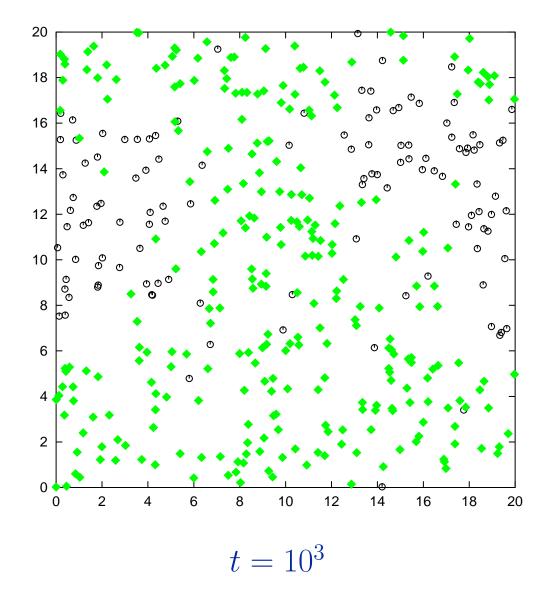
Computer simulation of the relative subpopulation sizes x_{+1} (\circ) and x_{-1} (\diamond) vs. time t for a community of N = 400 agents. Initially, each agent has been randomly assigned opinion +1 or -1.

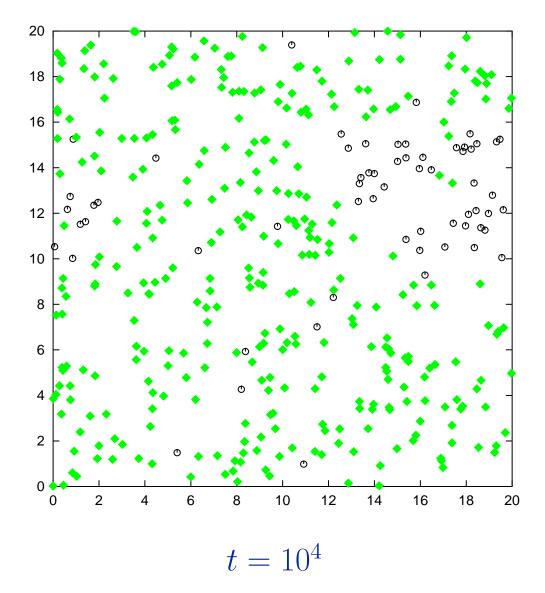
Parameters: A = 400, s = 0.1, k = 0.1, T = 0.75, i.e. $\kappa = 2.66$.

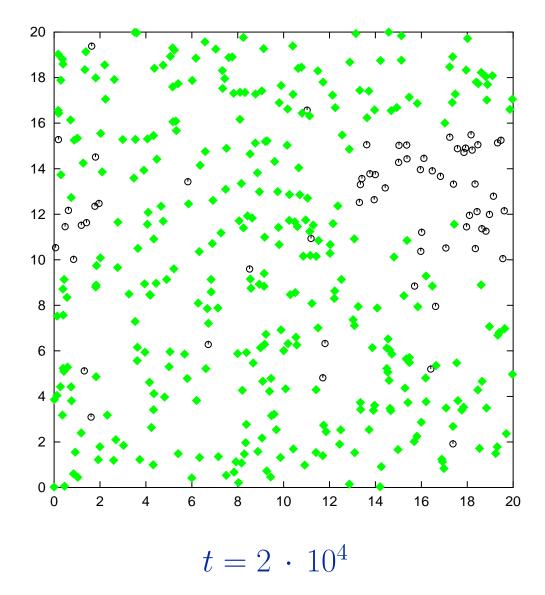

The dashed lines indicate the equilibrium distribution ($x_{\theta} = 0.5$) and the minority and majority sizes ($x_{\theta} = \{0.115; 0.885\}$).

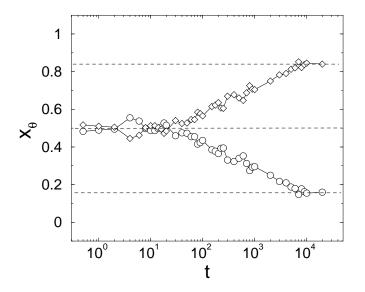

Spatial Coordination of Decisions


1. Case:


$$s_{+1} = s_{-1} \equiv s, k_{+1} = k_{-1} \equiv k, D_{+1} = D_{-1} \equiv D$$

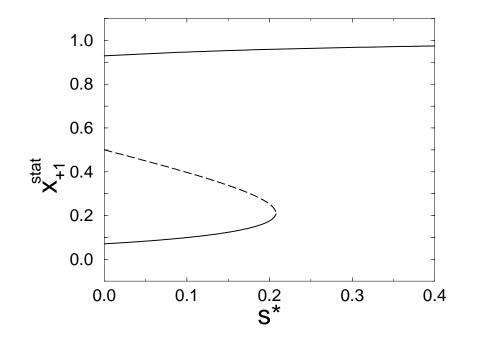

⇒ Snapshots of Computer Simulations





Results:

1. emergence of minority and majority

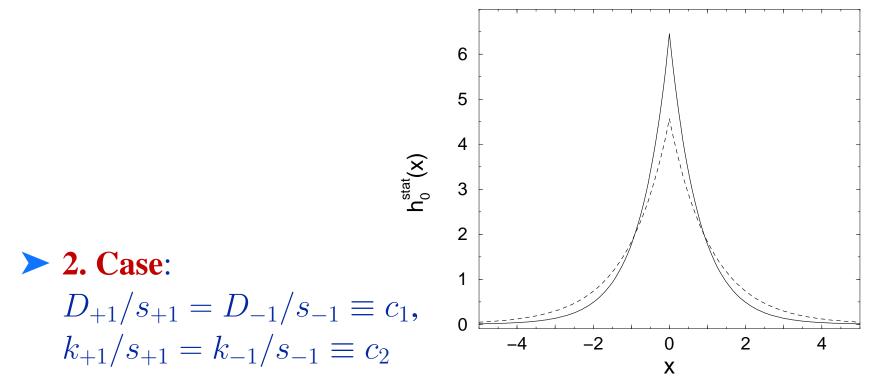


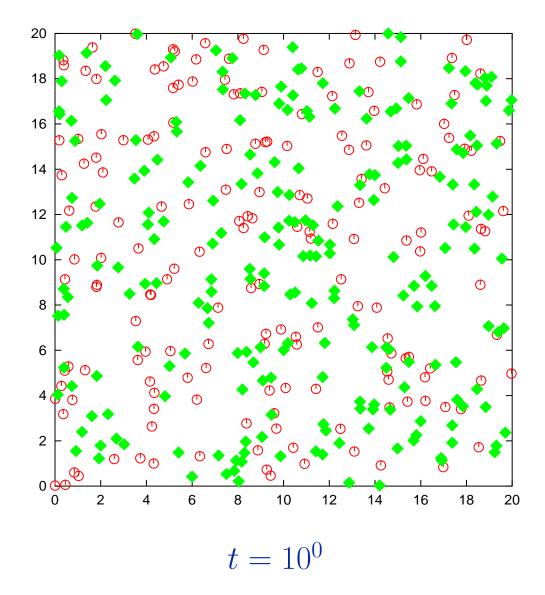
- 2. *spatial* coordination of decisions:
 - \Rightarrow concentration of agents with the same opinion
- 3. random events decide about minority/majority status of e.g. $\theta = +1$

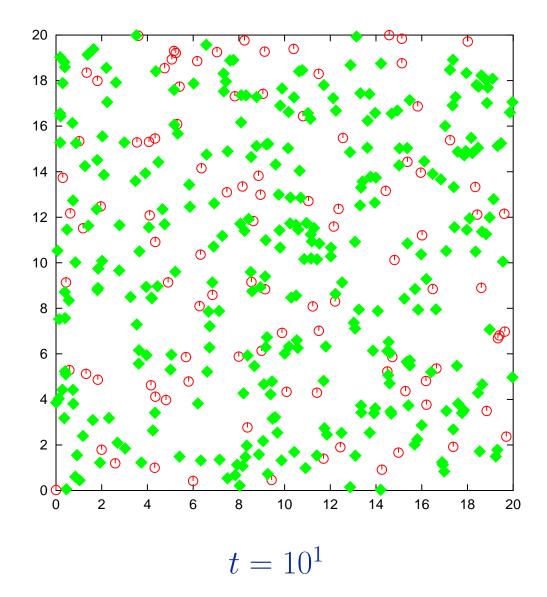
How to break the symmetry?

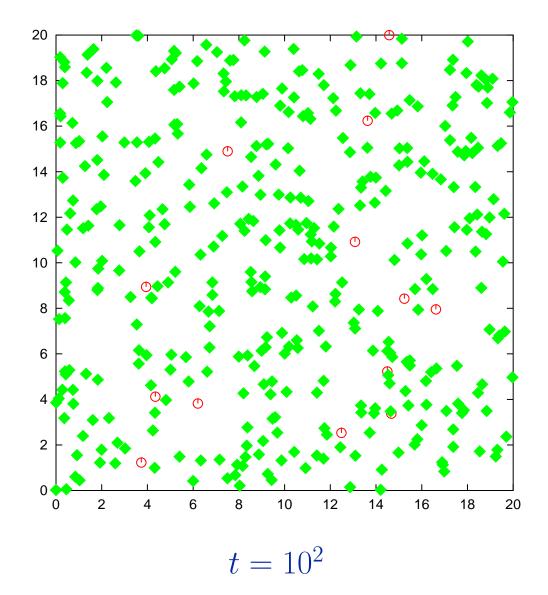
1. Influence of external support

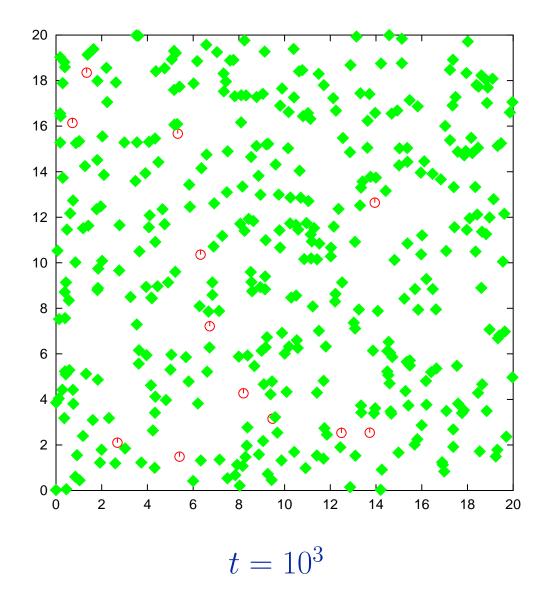
> examples: strong leader, influence of government policy, mass media, ... \Rightarrow additional contribution: s^*

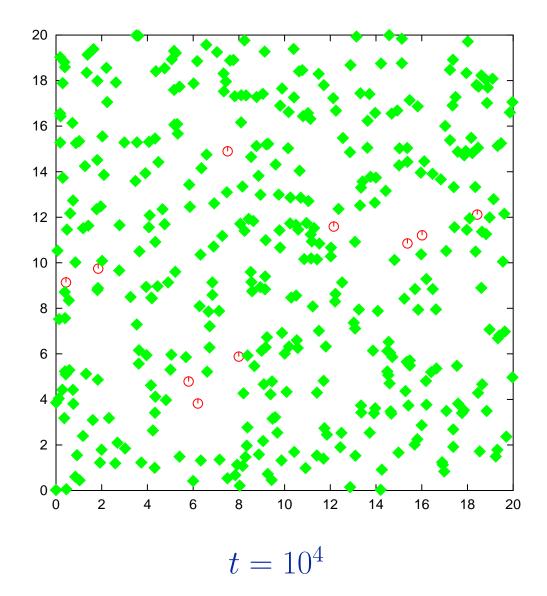


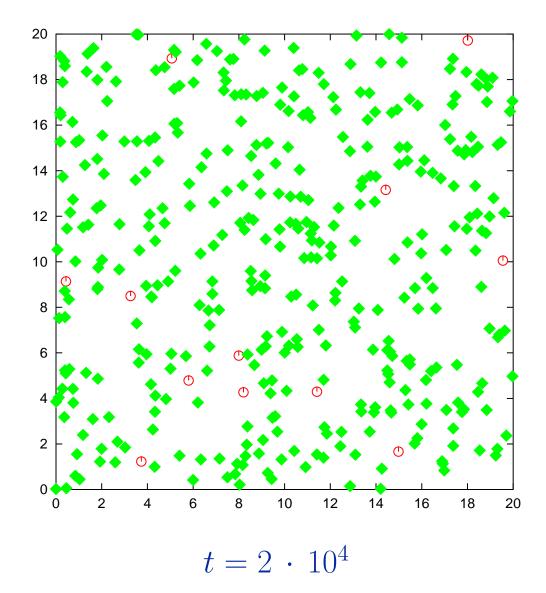

result:

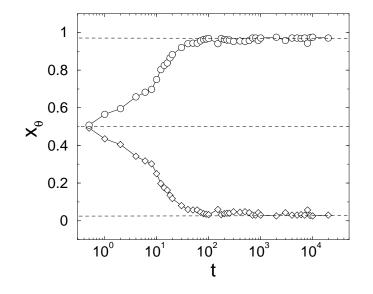

- possibility of minority status vanishes
- > no chance for the opposition
- "fundamentalistic dictatorships", "banana republics"


How to break the symmetry?


- 2. Influence of information exchange
- > speed up information exchange $\Rightarrow D_{+1} > D_{-1}$
- > problem: adjustment of parameters







Results:

1. emergence of minority and majority

- 2. no spatial coordination of the minority
- 3. subpopulation with the more efficient communication becomes "always" the majority

Migration

- ► additional possibility to act
- > movement depends on:
 - \Rightarrow erratic circumstances
 - \Rightarrow influence of information from supporters and opponents

Migration

- ► additional possibility to act
- movement depends on:
 - \Rightarrow erratic circumstances
 - \Rightarrow influence of information from supporters and opponents
- > stochastic approach:

$$\frac{d\boldsymbol{r}_i}{dt} = \alpha_i \left. \frac{\partial h^e(\boldsymbol{r}, t)}{\partial \boldsymbol{r}} \right|_{\boldsymbol{r}_i} + \sqrt{2 D_n} \, \xi_i(t)$$

> $h^e(\mathbf{r}, t)$: *effective* communication field $\iff h_\theta(\mathbf{r}, t)$ α_i : individual response parameter

 D_n : spatial diffusion coefficient of the agents

Different Possibilities:

> migration towards supportive locations: $\nabla_i h^e(r,t) \rightarrow \nabla_i h_\theta(r,t), \ \alpha_i > 0$

Different Possibilities:

 > migration towards supportive locations: ∇_ih^e(r,t) → ∇_ih_θ(r,t), α_i > 0

 > migration away from locations of opponents: ∇_ih^e(r,t) → ∇_ih_{θ'}(r,t), α_i < 0

Different Possibilities:

> migration towards supportive locations: ∇_ih^e(r,t) → ∇_ih_θ(r,t), α_i > 0
> migration away from locations of opponents: ∇_ih^e(r,t) → ∇_ih_{θ'}(r,t), α_i < 0
> migration depenent on dominance: ∇_ih^e(r,t) → ∇_i [h_θ(r,t) - h_{θ'}(r,t)], α_i > 0

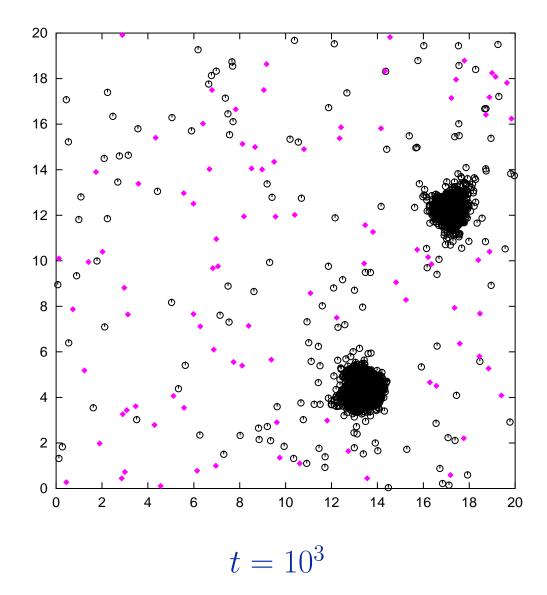
Different Possibilities:

> migration towards supportive locations: $\nabla_i h^e(r,t) \to \nabla_i h_\theta(r,t), \ \alpha_i > 0$ > migration away from locations of opponents: $\nabla_i h^e(r,t) \rightarrow \nabla_i h_{\theta'}(r,t), \ \alpha_i < 0$ > migration dependent on dominance: $\nabla_i h^e(r,t) \to \nabla_i \left[h_\theta(r,t) - h_{\theta'}(r,t) \right], \ \alpha_i > 0$ \blacktriangleright migration only above a certain threshold h_0 : $\alpha_i = \Theta[h^e(r,t) - h_0], \ \Theta[y] = 1 \text{ only if } y > 0$

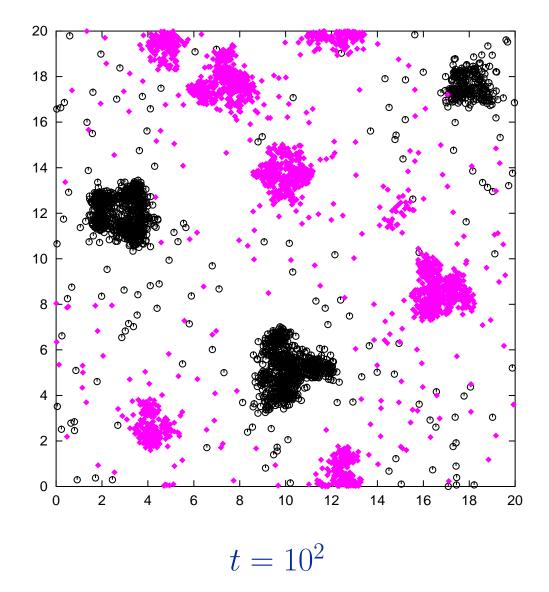
Migration and **Opinion** Change:

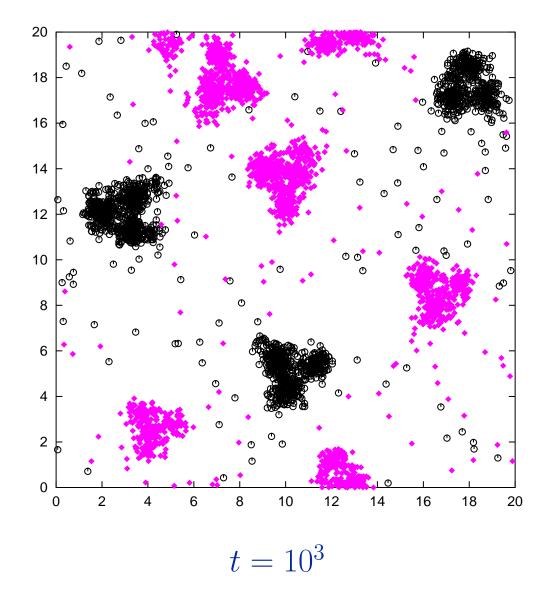
response to information of like-minded ∇_ih^e(r,t) → ∇_ih_θ(r,t), α_i > 0
D_θ = 0: information exchange due to migrating agents
variable of interest: *social temperature* T T₁^c = ^{s n̄}/_k; T₂^c = ^α/_{2μ} ^{s n̄}/_k = ^α/_{2μ} T₁^c

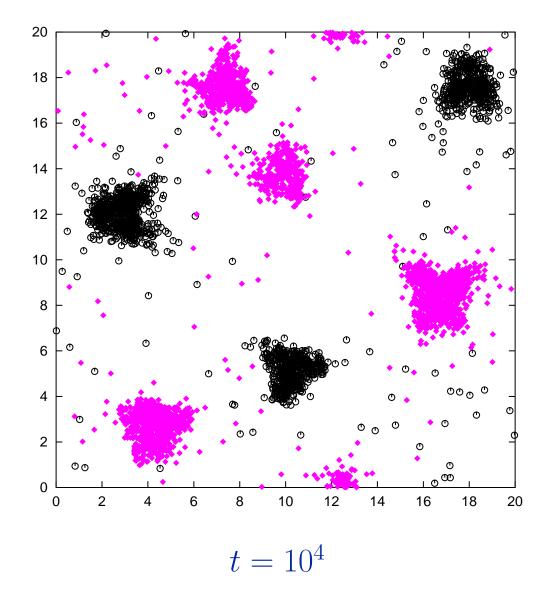
Migration and **Opinion** Change:


response to information of like-minded ∇_ih^e(r,t) → ∇_ih_θ(r,t), α_i > 0
D_θ = 0: information exchange due to migrating agents
variable of interest: social temperature T T₁^c = ^{s n̄}/_k; T₂^c = ^α/_{2μ} ^{s n̄}/_k = ^α/_{2μ} T₁^c

Results of Computer Simulations:


- 1. $T_2 < T < T_1$: "phase transition"
 - \Rightarrow emergence of minority and majority, spatial aggregation
- 2. $T < T_2$: "phase separation"


 \Rightarrow segregation and spatial aggregation



Conclusions

- > simple model of interacting agents: r_i , θ_i
- communicate via multi-component communication field
 - reflects spatial distances, memory effects, information exchange with finite velocity
 - spatio-temporal inhomogeneities

Conclusions

- > simple model of interacting agents: r_i , θ_i
- communicate via multi-component communication field
 - reflects spatial distances, memory effects, information exchange with finite velocity
 - spatio-temporal inhomogeneities
- decisions dependent on local information: change of opinion, migration
- > no "common knowledge assumption", no "utility function"

Spatial coordination of individual decisions:

- emergence of minority and majority above critical population size
- \succ regions of coordinated decisions \Rightarrow self-organization

Spatial coordination of individual decisions:

- emergence of minority and majority above critical population size
- \succ regions of coordinated decisions \Rightarrow self-organization
- ➤ more effective communication ⇒ preference of one decision
- "tue Gutes und sprich darüber"