To move to the next slide, just press

ENTER or RETURN

Modelling Socio-Economic Processes with Minimalistic Agents

Frank Schweitzer

GMD Institute for Autonomous intelligent Systems (AiS) schweitzer@gmd.de http://ais.gmd.de/~frank/

Schedule

- 1. Complex vs. Minimalistic Agents
- 2. Communication Field
- 3. Model of Economic Aggregation
- 4. Computer Simulations
- 5. Conclusions

Complex System

"By complex system, it is meant a system comprised of a (usually large) number of (usually strongly) interacting entities, processes, or agents, the understanding of which requires the development, or the use of, new scientific tools, nonlinear models, out-of equilibrium descriptions and computer simulations."

Journal "Advances in Complex Systems"

Multi-Agent Systems (MAS)

agent:

- subunit with "intermediate" complexity
- ⇒ may represent local processes, individuals, species, agglomerates, components, ...

multi-agent system:

- Iarge number / different types of agents
- ♦ interactions between agents:
 - on different spatial and temporal scales
 - local / direct interaction
 - global / indirect interactions (coupling via resources)

Complex Agent

- autonomous; knowledge based / behavior based rules
- ♦ performs complex actions: BDI, rational choices, ...
- ♦ specialization, learning, genetic evolution, ...

- 1. Problem: information flow
- "rational agent" (economics):
 - complete knowledge of all possible actions and their outcomes (or known probability distribution over outcomes)
 - common knowledge assumtion
- 2. *Problem:* combinatoric explosion of the state space
 - ♦ 1000 Agents with 10 rules $\Rightarrow 10^{13}$ possibilities
 - *♦ Solution:*
 - restrict interactions \Rightarrow control of information flow personally addressed interaction instead of "broadcasting"
 - ♦ *freedom:* define rules *and* interactions \Rightarrow *pitfall*

Minimalistic Agent

 ◊ possible simplest set of rules ⇒ "sufficient" complexity (depends on the system considered)

functional information:
 simple algorithm, which is steadily repeated

structural information: external information (*data*) received by the agent

 \diamond *pragmatic information:* \Rightarrow effective information

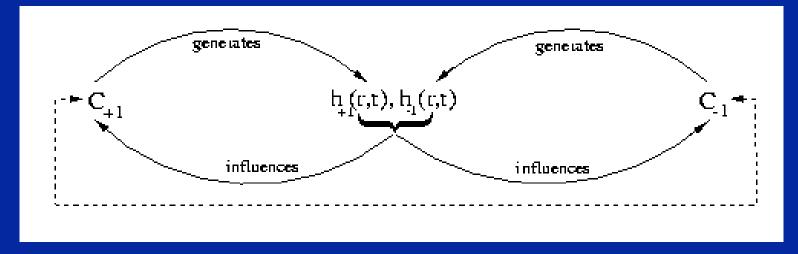
- emerges from the processing of the data by the algorithm
- specific for each agent \Rightarrow enables actions, decisions

Characteristics:

- ♦ *internal degree of freedom:* $θ_i$ (e.g. -1, +1)
 ⇒ enables different actions
- mobility (active walker, active Brownian particle)
- ♦ deterministic and stochastic influences (Langevin equation):

$$\frac{dr_i}{dt} = \alpha_i \left. \frac{\partial h^e(r,t)}{\partial r} \right|_{r_i} + \sqrt{2 \,\varepsilon_i} \,\xi(t)$$

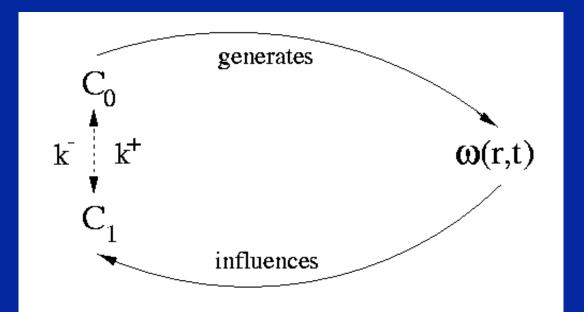
- local response of agent *i* to *structural information*
- α_i : weights the importance of the information received
- ε_i : individual sensitivity
- $h_e(r, t)$: effective communication field \Rightarrow components: $\nabla_i h^e(r, t) = \nabla_i h^e(..., h_\theta(r, t), h_\theta(r, t), ...)$


Communication Field

$$\frac{\partial}{\partial t}h_{\theta}(r,t) = \sum_{i=1}^{N} q_i(\theta_i,t) \,\delta_{\theta,\theta_i} \,\delta(r-r_i) - k_{\theta}h_{\theta}(r,t) + D_{\theta}\Delta h_{\theta}(r,t)$$

multi-component spatio-temporal field:

- \diamond reflects *spatial* distances between agents (r_i)
- ♦ permanent *local* individual contribution: $q_i(\theta_i, t)$
- ♦ information generated has a certain life time, $1/k_{\theta}$ ⇒ considers memory effects
- ♦ information can spread throughout the system, D_{θ} ⇒ determines how fast information is distributed


Example: Social Interaction

- ♦ agents with two different opinions: $\theta_i \in \{+1, -1\}$
- ♦ two types of strategies:
- (1) migration: $h^e(r, t) \Rightarrow$ different types of response
- (2) change of opinion

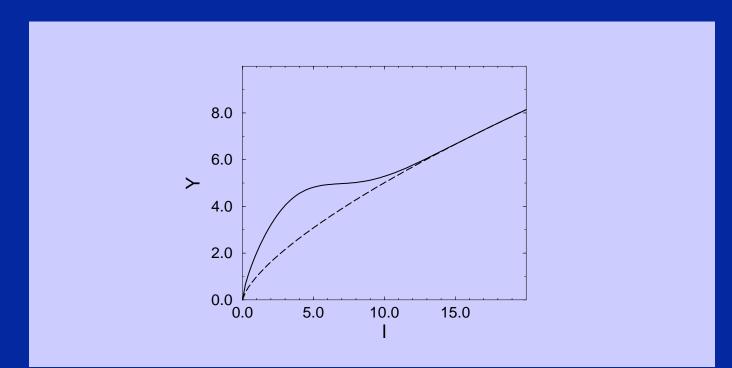
$$w(\theta_i|\theta_i) = \eta \exp\{[h_\theta(r_i, t) - h_\theta(r_i, t)]/\varepsilon_i\}$$

Example: Economic Agglomeration

◊ θ = 0: employed agents, C₀ (immobile) ⇒ l(r, t)
θ = 1: unemployed agents, C₁ (mobile) ⇒ n(r, t)
◊ migration due to spatial wage differences: ω(r)
◊ "hiring" and "firing": k⁺, k⁻

Economic Assumptions

♦ wage: marginal product of labor:


$$w\{l(\boldsymbol{r},t)\} = \frac{\delta Y\{l(\boldsymbol{r},t)\}}{\delta l}$$

Cobb-Douglas production function

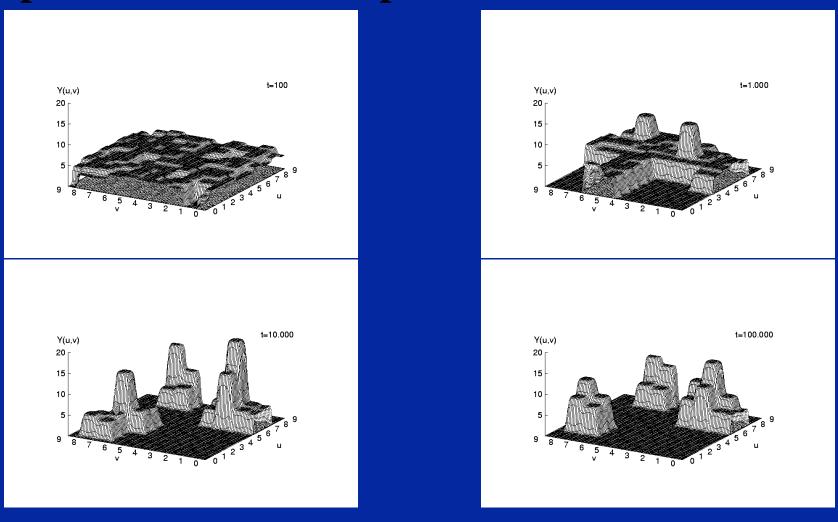
$$Y\{l(r,t)\} = A \ l^{\beta}(r,t), \quad \beta < 1$$

 ♦ A: represents level of productivity considers *cooperative effects* resulting from interactions among the workers ⇒ non-linear function

$$Y(l) = \frac{A}{2} \left[1 + \exp\left(a_1 \, l + a_2 \, l^2\right) \right] \, l^{\beta}$$

♦ $a_2 < 0$: saturation effects \Rightarrow advantages of cooperative effects compensated by disadvantages of crowding

"hiring" and "firing" rates: ω^* : minimum wage


hiring rate k^+ : firms hire workers as long as $\frac{\delta Y}{\delta l} > \omega^*$ (maximum profit condition)

$$k^{+} = k^{+} \{ l(\boldsymbol{r}, t) \} = \eta \exp \left\{ \frac{\delta Y \{ l(\boldsymbol{r}, t) \}}{\delta l} - \omega^{\star} \right\}$$

firing rate k^- : external and internal reasons (i) workers are fired if $\frac{\delta Y}{\delta l} < \omega^*$ (ii) workers can quit their job for better opportunities

$$k^{-} = k^{-} \{ l(\boldsymbol{r}, t) \} = \eta \exp \left\{ - \left[\frac{\delta Y \{ l(\boldsymbol{r}, t) \}}{\delta l} - \omega^{\star} \right] + c \frac{\partial \omega(\boldsymbol{r})}{\partial r} \right\}$$

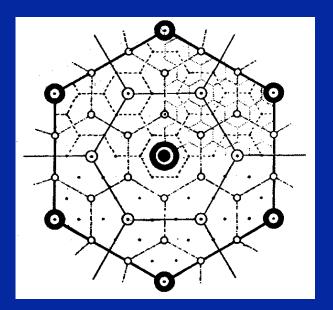
Spatial distribution of production

Results of Computer Simulations

- t = 0: random initial distribution
- t = 100.000: distinct extended major economic regions

(i) t < 1.000:

 coexistence of numerous small economic centers basis: cooperative effects, mutual stimulations

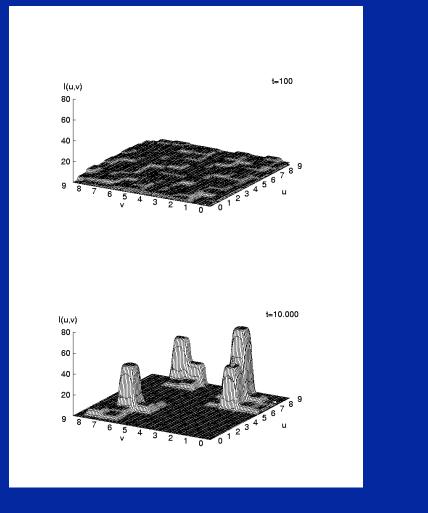

(ii) t > 1.000 :

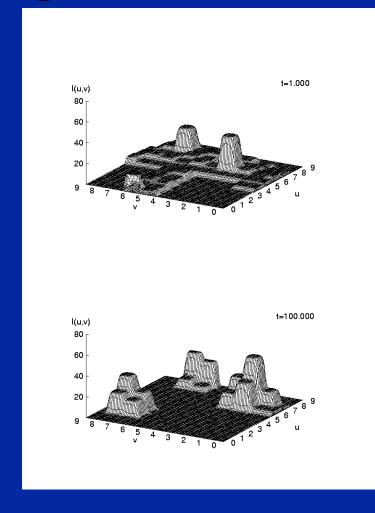
- ♦ some small centers overcome economic bottleneck
 ⇒ increase of marginal output
- competition: *local* attraction of labor force at the expense of the former small economic centers

Final stage: distinct extended economic regions

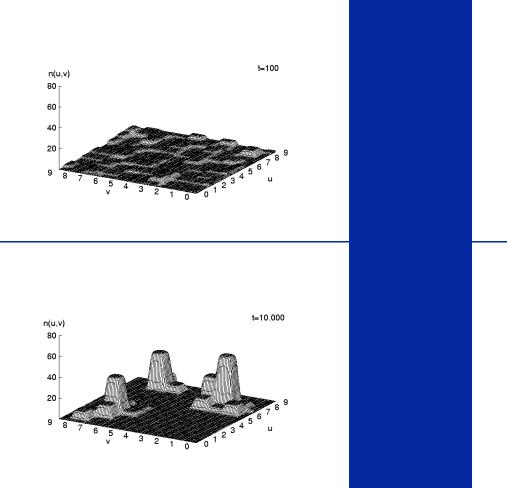
- (i) *stable coexistence* of the major economic regions reason: *critical distance*
 - ♦ each economic center has its own attraction/supply area
 ⇒ prediction of the *central place theory*
- (ii) *quasi-stationary non-equilibrium* within the major economic regions
 - ♦ each economic region consists of some *subregions* centers do not have same number of employed agents
 ⇒ still follow a stochastic eigendynamics

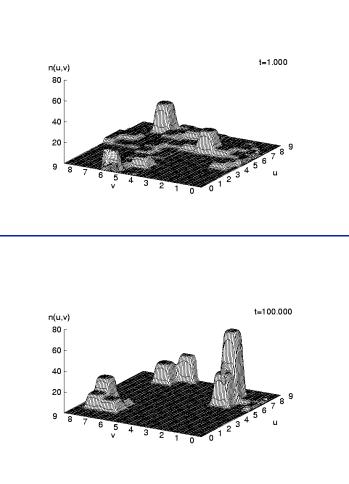
Central Place Theory

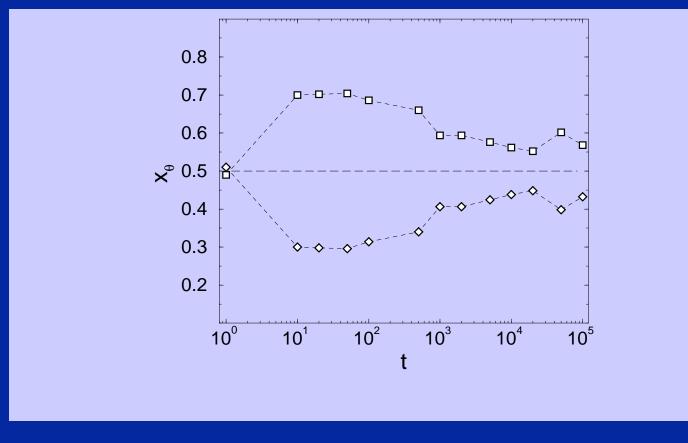

Walter Christaller: Die zentralen Orte in Süddeutschland.


Eine ökonomisch-geographische Untersuchung über die Gesetzmäßigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen, Jena: Fischer, 1933 (Reprint: Darmstadt: Wissenschaftliche Buchgesellschaft, 1980)

English translation by C.W. Baskin:


Central Places in Southern Germany, London: Prentice Hall, 1966


Spatial density of employed agents



Spatial density of unemployed agents

Total share $x_{\theta} = N_{\theta}/N$

employed agents: (\Box) unemployed agents (\Diamond)

Spatio-Temporal Evolution of Unemployment

(i) small scale production

 ♦ significant higher share of employed agents (~ 70 percent) broadly distributed

(ii) large scale production

- ♦ increase of wage ⇒ affects migration of unemployed agents concentrate in the productive regions
- ♦ important for the further growth: agents to hire
- concentration of employed *and* unemployed agents in the *same* regions
- ♦ new (larger) centers employ 60 percent of the agents $\Rightarrow increase of unemployment$

Conclusions

Minimalistic multi-agent system: two levels of description

Agent's level:

- \diamond simplex not complex \Rightarrow "intermediate" complexity
- ♦ local response/changes of the environment
- \diamond internal degrees of freedom \Rightarrow variety of responses
- ♦ parallel *independent* actions *coupled* by information flow

System's level:

- emergence of complexity
- adaption to changes in the environment
- failure tolerant (single agents, external pertubations)
- \Rightarrow Reason: *Self-Organization*

solutions result from the non-linear interaction boundary conditions (semi-structured environment)

Characteristics of the approach:

- *non-deterministic* random events (fluctuations) play a considerable role
- ◇ non-finalistic
 final (global) solutions cannot be predicted from local
 interactions ⇒ solutions emerge ⇒ path dependent
- ♦ bottom-up approach: create a solution ⇒ self-organization top-down approach: design a solution ⇒ planning

Self-Organization

Self-Organization is the process by which individual subunits achieve, through their cooperative interactions, states characterized by new, emergent properties transcending the properties of their constitutive parts.

Biebricher, C. K.; Nicolis, G.; Schuster, P.: Self-Organization in the Physico-Chemical and Life Sciences, EU Report 16546 (1995) Self-organization is defined as spontaneous formation, evolution and differentiation of complex order structures forming in non-linear dynamic systems by way of feedback mechanisms involving the elements of the systems, when these systems have passed a critical distance from the statical equilibrium as a result of the influx of unspecific energy, matter or information.

SFB 230 "Natural Constructions", Stuttgart, 1984 - 1995