To move to the next slide, just press

ENTER or RETURN

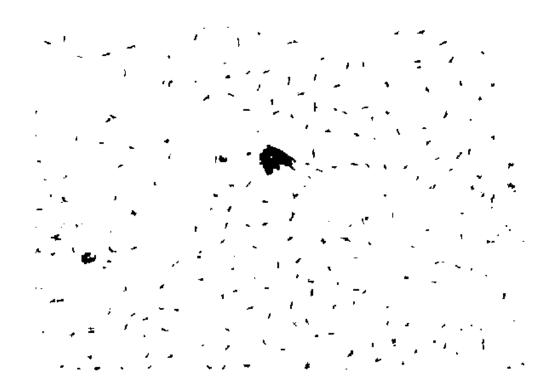
Modelling Spatial Urban and Economic Aggregation Bottum Up

Frank Schweitzer

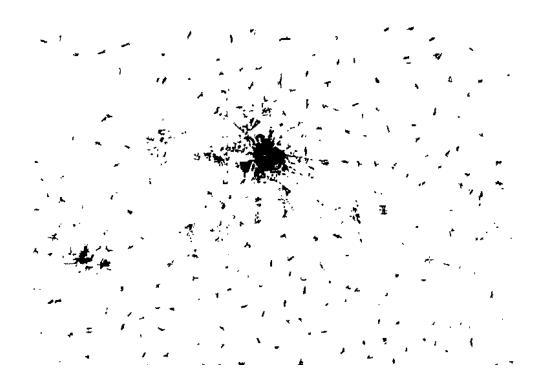
GMD Institute for Autonomous intelligent Systems (AiS)

schweitzer@gmd.de

http://ais.gmd.de/~frank/


Schedule

- 1. Modelling Urban Cluster Distribution
- 2. Spatial Information Field
- 3. Example: Aggregation by positive Feedback
- 4. Example: Urban Growth
- 5. Example: Economic Agglomeration
- 6. Conclusions


Urban Growth

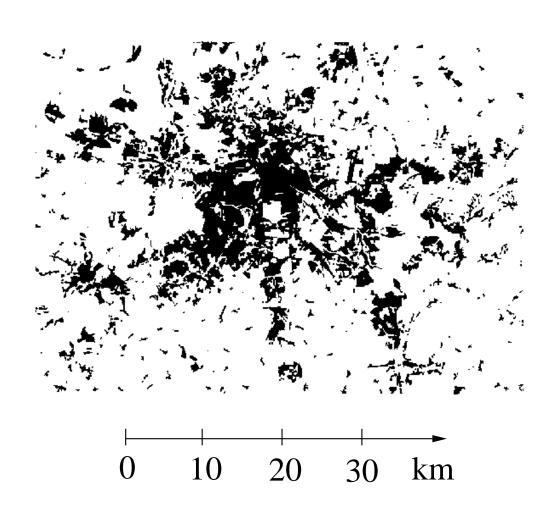
Example: Berlin 1800 - 1945

1800

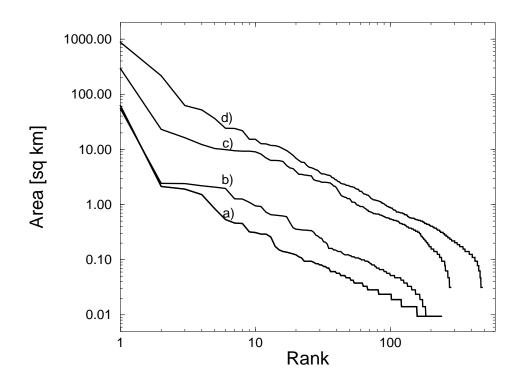



Frank Schweitzer

1910


Frank Schweitzer

Frank Schweitzer



Urban Growth: Common Features

- ➤ morphological transition: compact ⇒ fractal calculation of fractal dimension
- > urban aggregate composed of many sub-clusters calculation of rank-size distribution

Rank-Size Cluster Distribution

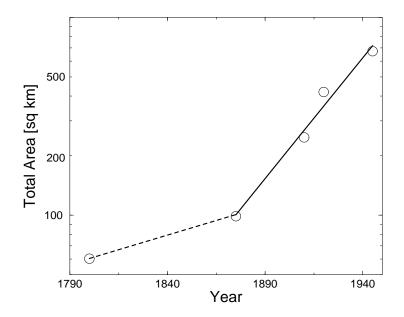
Modeling Spatial Urban and Economic Aggregation Bottom Up

(a) Daegu (1988), (b) Munich (1965) (c) Moscow (1980), (d) Philadelphia (1980)

Conclusion

- > evolution of urban aggregates towards PARETO distribution
 - ⇒ aggregate hierarchically composed of clusters of all sizes
- > deviations from PARETO distribution:
 - ⇒ structural resources for potential development

Master Equation Approach to Urban Growth


> distribution of clusters of different sizes:

$$n_1, n_2, ..., n_k, ..., n_A$$

 n_k : size (number of pixels) of cluster k (k=1,...,A)

$$\blacktriangleright$$
 total mass: $N_{tot}(t) = \sum_{k=1}^{A} n_k$

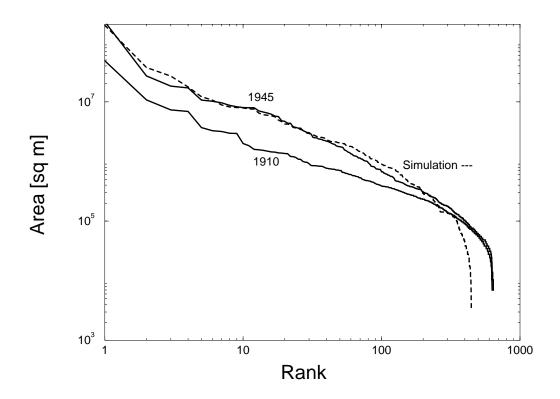
total growth: almost exponentially

Workshop Aix en Provence, 4-6 May 2000

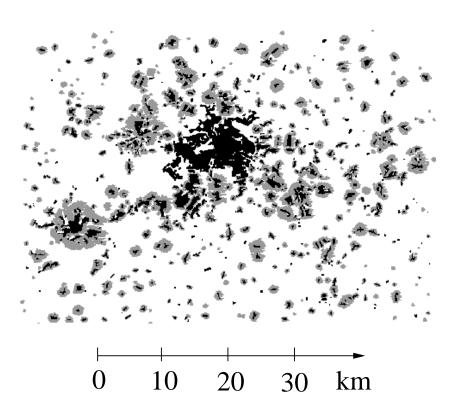
Two elementary processes:

Frank Schweitzer

1. Formation of new clusters


$$A \xrightarrow{w_1} A + 1$$

 $w_1 = w(A+1, t+1|A, t) = c(N_{tot})$
assumption: $c = const$.


2. Growth of existing clusters

$$w_k = w(n_k + 1, t + 1 | n_k, t) = \gamma \frac{n_k}{N_{tot}}$$
$$\gamma = 1 - c(N_{tot})$$

Results of Computer Simulations: Berlin 1910 - 1945

Modeling Spatial Urban and Economic Aggregation Bottom Up

Conclusion

- > sub-cluster of rank 1 grows only by *coagulation* reason: *shift of growth zones* towards outer regions
- ➤ existence of *spatial correlations*: attraction (local growth) ⇔ repulsion (stop of growth)

Workshop Aix en Provence, 4-6 May 2000

Conclusion

- > sub-cluster of rank 1 grows only by *coagulation* reason: *shift of growth zones* towards outer regions
- ➤ existence of *spatial correlations*: attraction (local growth) ⇔ repulsion (stop of growth)

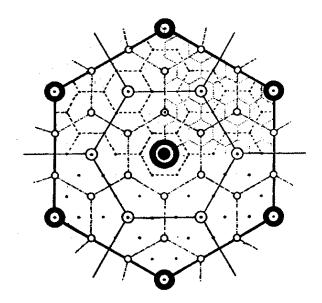
Problem:

How to include spatial correlations?

17

Workshop Aix en Provence, 4-6 May 2000

- > sub-cluster of rank 1 grows only by *coagulation* reason: *shift of growth zones* towards outer regions
- ➤ existence of *spatial correlations*: attraction (local growth) ⇔ repulsion (stop of growth)


Problem:

How to include spatial correlations?

Answer:

Distribution of spatial information!

Central Place Theory

Walter Christaller: Die zentralen Orte in Süddeutschland.

Eine ökonomisch-geographische Untersuchung über die Gesetzmäßigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen, Jena: Fischer, 1933 (Reprint: Darmstadt: Wissenschaftliche Buchgesellschaft, 1980)

English translation by C.W. Baskin:

Central Places in Southern Germany, London: Prentice Hall, 1966

Conclusion

- > number and size of locations:
 - ⇒ hierarchical structure
 - ⇒ PARETO-like rank-size distribution
- > spatial distribution of locations :
 - \Rightarrow depends on spatial correlations

Conclusion

- > number and size of locations:
 - ⇒ hierarchical structure
 - ⇒ PARETO-like rank-size distribution
- > spatial distribution of locations :
 - \Rightarrow depends on spatial correlations

Distribution of spatial information!

20

Spatial Information Field

$$\frac{\partial}{\partial t} h_{\theta}(r, t) = \sum_{i=1}^{N} q_{i}(\theta_{i}, t) \, \delta_{\theta, \theta_{i}} \, \delta(r - r_{i}) - k_{\theta} h_{\theta}(r, t) + D_{\theta} \Delta h_{\theta}(r, t)$$

multi-component spatio-temporal field:

- 1. production of information: permanent *local* individual contribution: $q_i(\theta_i, t)$
- 2. distribution of information: diffusion-like process, D_{θ} ⇒ determines how fast information is distributed
- 3. memory effects: information generated has a certain life time, $1/k_{\theta}$
- 4. different kind of information $\Rightarrow \theta$

Who is producing the information?

Agents (individuals, firms, existing urban aggregations, ...)

Workshop Aix en Provence, 4-6 May 2000

Who is producing the information?

Frank Schweitzer

Agents (individuals, firms, existing urban aggregations, ...)

Who is receiving the information?

Agents (individuals, firms, urban "growth units", ...)

Workshop Aix en Provence, 4-6 May 2000

Who is producing the information?

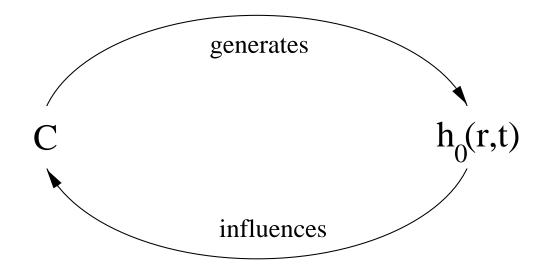
Agents (individuals, firms, existing urban aggregations, ...)

Who is receiving the information?

Agents (individuals, firms, urban "growth units", ...)

What is the response?

Frank Schweitzer

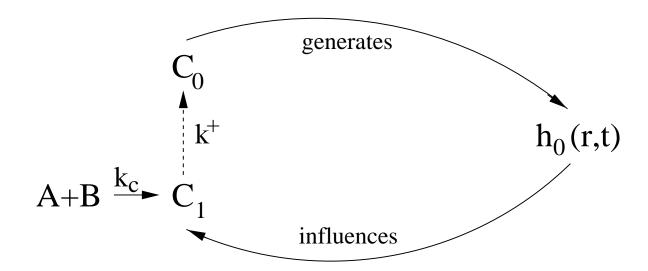

???

Example: Aggregation by Positive Feedback

migration of agents:

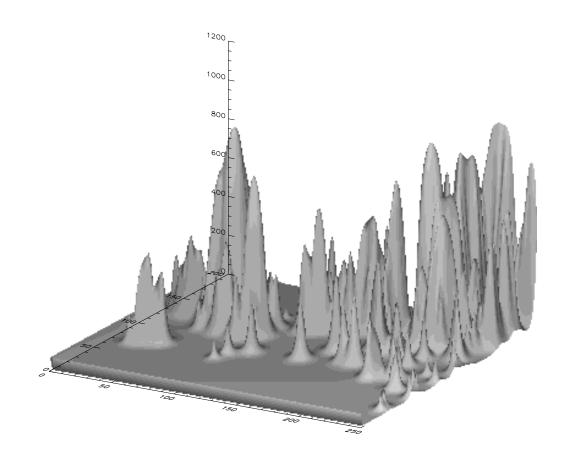
$$\frac{d\mathbf{r}_i}{dt} = \mathbf{f}(\mathbf{r}_i) + \sqrt{2D} \, \boldsymbol{\xi}_i(t) \; ; \quad \mathbf{f}(\mathbf{r}_i) = \left. \frac{\partial h_0(\mathbf{r}, t)}{\partial r} \right|_{r_i}$$

 $f(r_i)$: guiding force, local influence

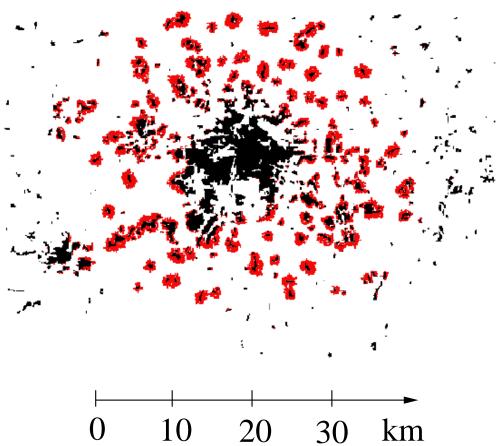

Conclusion:

- \triangleright positive feedback *only* \Rightarrow occurrence of multiple centers
- > competition between centers: *ONE* big lump
- ➤ What about coexistence between aggregates ?

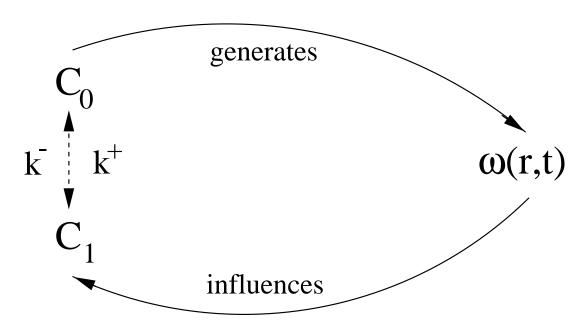
Solution: Inclusion of counteractive forces!


Example: Urban Growth

- \triangleright non-linear feedback between existing aggregation (C_0) and its further growth
- $ightharpoonup C_0$: generates spatial information "attraction potential" $\Rightarrow h_0(\boldsymbol{r}, t)$
- \triangleright "growth units" (C_1) respond to attraction potential
- \triangleright demand for further growth (B) has to match existing free space (A)


Urban attraction field (Berlin/Potsdam area 1910)

Modeling Spatial Urban and Economic Aggregation Bottom Up


Result of Computer Simulations (Berlin 1910 - 1920)

> shift of growth zones towards outer regions prevents urban collapse

Example: Economic Agglomeration

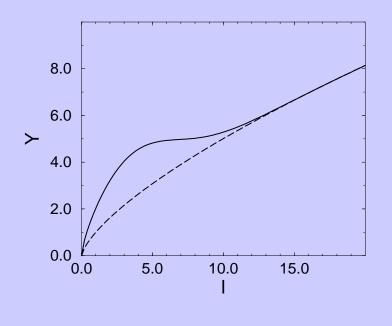
Example: Economic Agglomeration

- \triangleright migration due to spatial wage differences: $\omega(r)$
- \triangleright "hiring" and "firing": k^+ , k^-

Economic Assumptions

Frank Schweitzer

wage: marginal product of labor:


$$w\{l(\boldsymbol{r},t)\} = \frac{\delta Y\{l(\boldsymbol{r},t)\}}{\delta l}$$

Cobb-Douglas production function

$$Y\{l(r,t)\} = A l^{\beta}(r,t), \quad \beta < 1$$

 \blacktriangleright A: represents level of productivity considers *cooperative effects* resulting from interactions among the workers \Rightarrow non-linear function

$$Y(l) = \frac{\bar{A}}{2} \left[1 + \exp \left(a_1 l + a_2 l^2 \right) \right] l^{\beta}$$

 $ightharpoonup a_2 < 0$: saturation effects \Rightarrow advantages of cooperative effects compensated by disadvantages of crowding

"hiring" and "firing" rates:

 ω^* : minimum wage

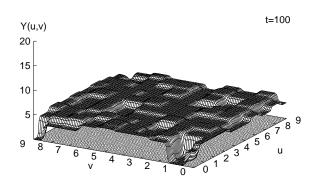
hiring rate k^+ : firms hire workers as long as $\frac{\delta Y}{\delta I} > \omega^*$ (maximum profit condition)

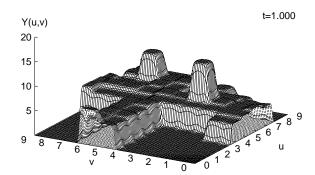
$$k^{+} = k^{+} \{ l(\boldsymbol{r}, t) \} = \eta \exp \left\{ \frac{\delta Y \{ l(\boldsymbol{r}, t) \}}{\delta l} - \omega^{\star} \right\}$$

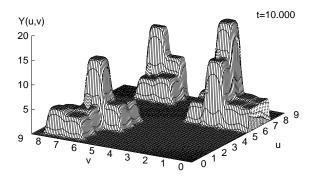
"hiring" and "firing" rates:

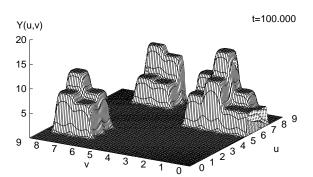
 ω^* : minimum wage

hiring rate k^+ : firms hire workers as long as $\frac{\delta Y}{\delta l} > \omega^*$ (maximum profit condition)


$$k^{+} = k^{+} \{ l(\boldsymbol{r}, t) \} = \eta \exp \left\{ \frac{\delta Y \{ l(\boldsymbol{r}, t) \}}{\delta l} - \omega^{\star} \right\}$$


firing rate k^- : external and internal reasons


- (i) workers are fired if $\frac{\delta Y}{\delta l} < \omega^*$
- (ii) workers can quit their job for better opportunities


$$k^{-} = k^{-} \{ l(\boldsymbol{r}, t) \} = \eta \exp \left\{ - \left[\frac{\delta Y \left\{ l(\boldsymbol{r}, t) \right\}}{\delta l} - \omega^{\star} \right] + c \frac{\partial \omega(\boldsymbol{r})}{\partial r} \right\}$$

Spatial distribution of production

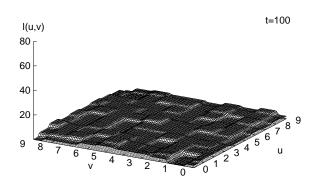
Workshop Aix en Provence, 4-6 May 2000

Results of Computer Simulations

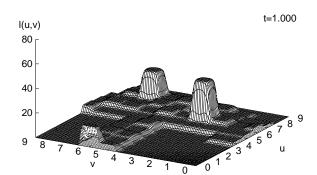
t = 0: random initial distribution

t=100.000: distinct extended major economic regions

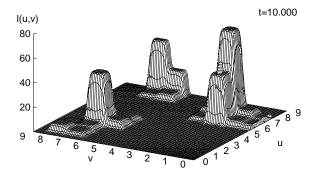
- (i) t < 1.000:
- > coexistence of numerous small economic centers basis: cooperative effects, mutual stimulations
- (ii) t > 1.000:
- > some small centers overcome economic bottleneck ⇒ increase of marginal output
- > competition: *local* attraction of labor force at the expense of the former small economic centers

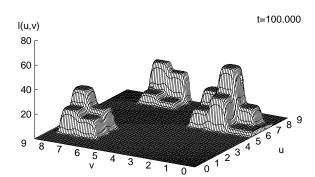

Final stage: distinct extended economic regions

- (i) *stable coexistence* of the major economic regions reason: *critical distance*
- > each economic center has its own attraction/supply area
 - \Rightarrow prediction of the *central place theory*

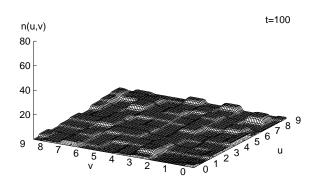

Workshop Aix en Provence, 4-6 May 2000

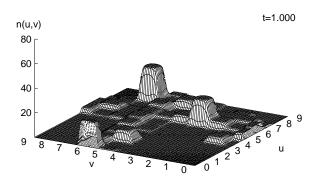
- (i) *stable coexistence* of the major economic regions reason: *critical distance*
- ➤ each economic center has its own attraction/supply area
 ⇒ prediction of the *central place theory*
- (ii) quasi-stationary non-equilibrium within the major economic regions
 - each economic region consists of some subregions centers do not have same number of employed agents
 - ⇒ still follow a *stochastic eigendynamics*

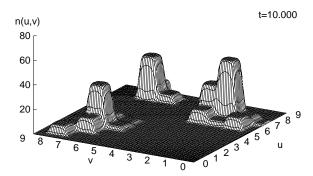

Spatial density of employed agents

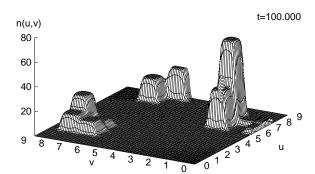


Frank Schweitzer

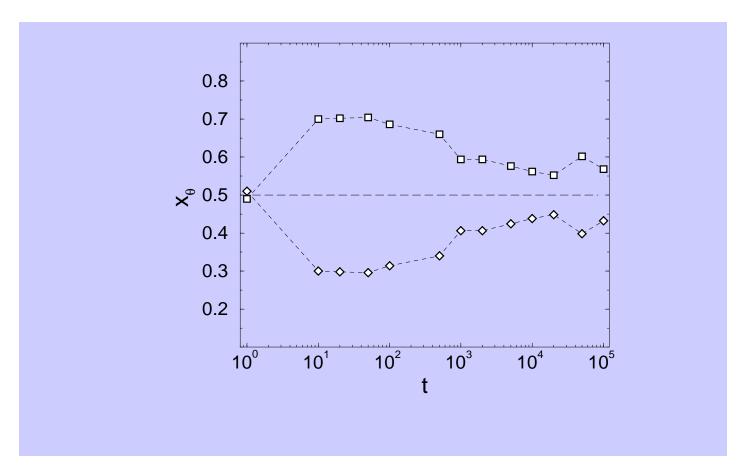



Workshop Aix en Provence, 4-6 May 2000





Spatial density of unemployed agents



Total share $x_{\theta} = N_{\theta}/N$

employed agents: (\Box) unemployed agents (\Diamond)

Spatio-Temporal Evolution of Unemployment

- (i) small scale production
- \triangleright significant higher share of employed agents (\sim 70 percent) broadly distributed
- (ii) large scale production
- \triangleright increase of wage \Rightarrow affects migration of unemployed agents concentrate in the productive regions
- important for the further growth: agents to hire

Spatio-Temporal Evolution of Unemployment

Modeling Spatial Urban and Economic Aggregation Bottom Up

(i) small scale production

 \triangleright significant higher share of employed agents (\sim 70 percent) broadly distributed

(ii) large scale production

- \triangleright increase of wage \Rightarrow affects migration of unemployed agents concentrate in the productive regions
- important for the further growth: agents to hire
- > concentration of employed and unemployed agents in the same regions
- > new (larger) centers employ 60 percent of the agents \Rightarrow increase of unemployment

Conclusions

- > Agents (individuals, firms, urban "growth units", ...)
- communicating via a spatial information field local production, distribution of information, memory effects

Workshop Aix en Provence, 4-6 May 2000

Conclusions

Frank Schweitzer

- > Agents (individuals, firms, urban "growth units", ...)
- > communicating via a spatial information field local production, distribution of information, memory effects
- > minimalistic multi-agent system:
 - agents: simplex not complex
 - producing / receiving "information" $h(\mathbf{r}, t)$
 - action: local concentration / aggregation
 - path dependence further action is "enslaved" by previous history

System's level:

- > emergence of complexity
 - \Rightarrow complex spatial patterns
 - ⇒ local competition, global coexistence

Modeling Spatial Urban and Economic Aggregation Bottom Up

> adaption to changes in the environment (resources)

Reason: Self-Organization solutions result from the non-linear interaction boundary conditions (semi-structured environment)

Characteristics of the approach:

> non-deterministic random events (fluctuations) play a considerable role

- > non-finalistic final (global) solutions cannot be predicted from local interactions \Rightarrow solutions emerge \Rightarrow path dependent
- \triangleright bottom-up approach: create a solution \Rightarrow self-organization top-down approach: design a solution \Rightarrow planning

Self-Organization

Self-Organization is the process by which individual subunits achieve, through their cooperative interactions, states characterized by new, emergent properties transcending the properties of their constitutive parts.

Biebricher, C. K.; Nicolis, G.; Schuster, P.: Self-Organization in the Physico-Chemical and Life Sciences, EU Report 16546 (1995)

Frank Schweitzer

Self-organization is defined as spontaneous formation, evolution and differentiation of complex order structures forming in non-linear dynamic systems by way of feedback mechanisms involving the elements of the systems, when these systems have passed a critical distance from the statical equilibrium as a result of the influx of unspecific energy, matter or information.

SFB 230 "Natural Constructions", Stuttgart, 1984 - 1995