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Complex Motion of Brownian Particles with Energy Depots
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We investigate the motion of Brownian particles which have the ability to take up energy from the
environment, to store it in an internal depot, and to convert internal energy into kinetic energy. The
resulting Langevin equation includes an additional acceleration term. The motion of the Brownian par-
ticles in a parabolic potential is discussed for two different cases: (i) continuous take-up of energy and
(ii) take-up of energy at localized sources. If the take-up of energy is above a critical value, we found
a limit-cycle motion of the particles, which, in case (ii), can be interrupted by stochastic influences.
Including reflecting obstacles, we found for the deterministic case a chaotic motion of the particle.
[S0031-9007(98)06328-5]
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Active motion is based on energy consumption. Fomot, ¢, of an active particle is given by
biological systems, an external supply of energy is crucial, d .
e.g.,gto ma)i/ntain metabolism andprt)oy performg}:novement dt e(t) = qr) = c e(t) = d(v) e(t). 3)
[1]. For a spatially inhomogeneous supply of energy,;(r) is the space-dependent take-up of energy amtb-
the organism needs to store energy internally, in ordegcribes the internal dissipation assumed to be proportional
to overcome periods of starvation, e.g., during the search the depot energyd(v) is the rate of conversion of in-
for new sources. But even provided the homogeneougrnal into kinetic energy which should be a function of
supply of energy, the organism needs to convert thene actual velocity of the particle. A simple ansatz for

energy taken up from the environment into kinetic energy(y) reads:d(v) = d>v*; d» > 0. The total energy of
Dependent on the level of biological organization, thethe active particle at timeis given by

take-up, storage, and conversion of energy is a rather
complex process.

In the following, we consider the motion of micro- m
scopic biological objects, such as cells or bacteria, which Eo(1) = oY +U(r). (4)
can be §uﬁ|§:|ently .descrlbe_d by a Langevin dynamlcsEO(t) is the mechanical energy of the active particle
Stochastic differential equations have long been used t oving in the potential/(r), which can be (i) increased

describe the motion of organisms [2,3]. In order to deriv . : Y .
a simplified model of active biological motion, we studyegy the conversion of depot energy into kinetic energy, (il

B . ticl ith int I deoot. Th ecreased by the friction of the moving particle resulting
rownian particles with an internai energy depot. & dissipation of energy. Hence, the balance equation for

motion of simple Brownian particles in a space-depende e mechanical energy reads

potential, U(r) can be described by the Langevin equa-

tion: 4 Eo(t) = (dre(t) — yo) v2. 5)

. . _ dt
revsomy yov = VU@) + F(@0), (1) Combining Egs. (4) and (5), we can rewrite Eq. (5) in a

where vy, is the friction coefficient of the particle at more explicit form:

positionr, moving with velocityv. F(¢) is a stochastic el _ _ .y

force with strengtts and as-correlated time dependence mi¥ + FVU(r) = [dae(r) = yol7". 6)

_n. N o Based on Eg. (6), we postulate a stochastic equation

(F@)=0; (FOFE) =258 =1). (2) of motion for the active Brownian particles which is

Recently, Brownian motion models attracted much atteneonsistent with the Langevin equation (1):

tion for describing nonequilibrium transport on the mi- . _

croscale [4]. In addition to the dynamics described above, mv + yov + VU@r) = ey + F(1). (7

the Brownian particles discussed here are active particlesSompared to previous investigations [6] the first term of

[5] to the effect that they have the ability to take up en-the right-hand side of Eq. (7) is the essential new element

ergy from the environment and to store it in an internalin this paper, reflecting the influence of the internal

depot, which is considered a new element of the modeknergy depot to the motion of Brownian particles. It

Further, the particles are able to convert internal energgescribes the acceleration in the direction of movement,

into kinetic energy. Considering also internal dissipatione, = v/v, due to the conversion of internal into kinetic

the resulting balance equation for the internal energy deenergy. Using the fluctuation-dissipation theorem, we

E(t) = Eo(t) + e(1),
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assume that the loss of energy resulting from friction, anamoving on a stochastic limit cycle, if some critical
the gain of energy resulting from the stochastic force, areonditions are satisfied.

compensated in the average, aficcan be expressed as In order to derive these critical parameters, we consider
S = kgTvyy. The balance equation for the mechanicalthe active Brownian particle as a micromotor. Molecular
energy, Eqg. (5), has then for the stochastic case to bmotors based on Brownian motion have been recently

modified to introduced [7]. For the Brownian particle with energy
A1 ., " depot, the efficiency ratio is defined as
I [E mr + U(r)i| = dye(t)r-. (8) o dE.,./d1 w0
In the following, we discuss the motion of a Brownian dE;,/dt
particle with an internal energy depot in a simple tWo-The input of energy per time intervalE;, /d, is given
dimensional parabolic potential: by the take-upgo, while the outputdEo/dt, is defined
a 5 as the amount of mechanical energy available from
Ulxy,x2) = 5(361 +x3). (9 the micromotor, Eq. (8). The termndse(r)v? can be

This potential originates a force directed to the minimumapproxmated using the_followmg assumptions:
(i) Compared to the time scale of motion, the internal

of the potential, however, the random force in Eq. (7) S S
keeps the particle moving, even without the take-uﬁ?r:git?io%t 55:%235 fast a quasistationary equilibrium.

of energy (Fig. 1, top). Going over from the simple
Brownian motion to the active Brownian motion, in a q0

first assumption the take-up of energyr) is considered €T o x dov?’ (11)

as constant in space(x1,xz) = go. Figure 1 (bottom) ii) The velocity, v, can be approximated by the stationary

demonstrates that the take-up of energy and its conversi . . : A

) L ; velocity, vy obtained in the deterministic limit [8]:

into kinetic energy allows the particle to reach out farther,
C

2 (2 42 =10 €
vy = (vi + v3) vo dy (12)
20| With these assumptions;, Eq. (10), can be expressed as
' follows:
1.0 t
o=1-22 (13)
00 | * d> qo
The efficiency ratio, which is equal tbonly in the ideal
101 case, is decreased by dissipative processes, like friction
20 L (y0) and internal dissipationcf. Moreover,o is larger
than zero only if the take-up of energy is above the critical
: : : : : value:
-20 -10 00 10 20
Xl a0 > gt = 1. 14
2
Provided a supercritical supply of energy, the particle
20 I ] periodically moves on the stochastic limit cycle shown in
' Fig. 1 (bottom).
1.0 | In a second example, we discuss the case that the energy
sources are localized in space. Then, the internal depot
x' 00 of the active Brownian particles can be refilled only in a
10 | restricted area. This is reflected in a space dependence of
the energy influx(r), for example:
-20 t .
_ Jqo. i [ — b1)* + (2 — by)*] = R?,
‘ ‘ ‘ ‘ ‘ q(x1, x2) = {g else.
-20 -1.0 00 10 20 (15)
X

_ _ ) _ ~_ Here, the energy source is modeled as a circle, the
FIG. 1'b lStoch?st|§ {nogon(é))f ?n SC“V(? B)rownlaé)n (partlclle N center being different from the minimum of the potential.
a parabolic potential, E=Q. a(= 2). op) g = simple . . .
Brownian motion); (bottomy, = 1.0. Other parametersz, = Noteworthy, the active particle isot attragted by the
02d, = 1.0, ¢ = 0.1, S = 0.01. Initial conditions:(x;,x,) =  €nergy source due to long-range attraction forces. In

(0,0), (vi,v2) = (0,0), e(0) = 0. the beginning, the internal energy depot is empty and
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Brownian particle, until a new cycle starts. This way
30t ] the particle motion is of intermittent type [9]. We found
20 | that the trajectories eventually cover the whole area inside

certain boundaries; however, during an oscillation period
1.0 | L )

the direction is most likely kept.

x' 00 Every new cycle starts with a burst of energy in the
-1.0 | depot, which can be understood on the basis of Eq. (3).
20 | At the start of each cyclee¢ is small andde/d: is

very large, thus a burst follows, which is used for the

8o acceleration of the particle. However, an increase in

30 20 -10 00 10 20 30 drv’e makes th_e last term_in Eq. (3) more n.egative and
X the growth ofe is more rapidly cut off. This is, for the
beginning of the first cycle in Fig. 3, shown in more detail
FIG. 2. Trajectories in thex;,x, space for the stochastic in Fig. 4, which also clearly indicates the oscillations.
motion of an active Brownian particle in a parabolic potential, The transition time into the oscillation regime, as well as
Eq. (9). (a =2) The circle [coordinates (1,1), radi'® = 1]~ he quration of the oscillatory cycle depend remarkably
indicates the area of energy supply, Eq. (15). Parameters: h . he b f
go = 100, y0 =02 d> = 0.1, ¢ = 0.01, S = 0.01. Initial  On the conversion parameted;. The bottom part o
conditions:(xy, x,) = (0,0), (v1,v2) = (0,0), e(0) = 0). Fig. 4, to be compared with the part above, indicates that
an increase ind, reduces the amount of the bursts and
abridges the cycle. For a largés, more depot energy is

active motion is not possible. So, the particle may hit the?Onverted into kinetic energy. Hence, with less energy in
supply area because of the action of the stochastic forc&t0ck the particle’s motion is more susceptible to become
But once the energy depot is filled up, it increases thédrownian motion again, if stochastic influences prevent
particle’s motility, as presented in Fig. 2. Most likely, the particle from returning to the source in time.

the motion into the energy area becomes accelerated, R€al biological motion occurs in complicated land-

therefore an oscillating movement between the energ§c@Pes which typically not only contain localized areas

source and the potential minimum occurs after an initiaPf €nergy supply, but also obstacles. This may lead to
period of stabilization. a rather complex active motion. In our simple model,

Interestingly, the oscillating motion breaks down after athe existence an of obstacle can be implemented in the
certain time, as shown in Fig. 3. Then the active particle,
with an empty internal depot, moves again like a simple
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FIG. 4. Velocity v, and internal energy depet vs time for
FIG. 3. Velocities in thex;,x, space and internal energy two different values ofd,: (top) d» = 0.1 (enlarged part of
depot vs time for the stochastic motion, shown in Fig. 2. Fig. 3), (bottom)d, = 1.0. (Other parameters, see Fig. 2.)
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evolves in the course of time&,> ;. The motion be-
20 | comes asymptotically unstable,if> 0. Using standard
methods described, e.g., in [12], we found, for the pa-
1.0 | rameters used in Fig. 5, the largest Lyapunov exponent as
A = 0.17. This indicates a chaotic motion of the active
x' 00 particle in the phase spate= {x|, x,, v1, v, e}. Hence,
10 we conclude that for the motion of Brownian particles
' with energy depots reflecting obstacles have an effect
20 similar to stochastic influences (external noise), both pro-
ducing interesting forms of complex motion. The ex-

amples discussed above can be generalized by considering
X different obstacles, or different localized energy sources,
which also allows one to draw analogies to the search for
FIG. 5. Trajectories in the,x, space for thedeterministic ~ food in biological systems.

motion of an active Brownian particle in a parabolic potential,

Eq. (16), (a = 2) where the circle [coordinates (1,1), radius

R = 1] indicates the reflecting obstacle. Parametgss= 1.0,

vo = 0.2 dy = 1.0, ¢ =0.1. Initial conditions: (x{,x;) =

(0,0), (v1,v2) = (1.0,0.33), e(0) = 0. *Email address: frank@summa.physik.hu-berlin.de
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