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Active walker model for the formation of human and animal trail systems
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Active walker models have recently proved their great value for describing the formation of clusters,
periodic patterns, and spiral waves as well as the development of rivers, dielectric breakdown patterns, and
many other structures. It is shown that they also allow one to simulate the formation of trail systems by
pedestrians and ants, yielding a better understanding of human and animal behavior. A comparison with
empirical material shows a good agreement between model and reality. Our trail formation model includes an
equation of motion, an equation for environmental changes, and an orientation relation. It contains some model
functions, which are specified according to the characteristics of the considered animals or pedestrians. Not
only the kind of environmental changes differs: Whereas pedestrians leave footprints on the ground, ants
produce chemical markings for their orientation. Nevertheless, it is more important that pedestrians steer
towards a certain destination, while ants usually find their food sources by chance, i.e., they reach their
destination in a stochastic way. As a consequence, the typical structure of the evolving trail systems depends
on the respective species. Some ant species produce a dendritic trail system, whereas pedestrians generate a
minimal detour system. The trail formation model can be used as a tool for the optimization of pedestrian
facilities: It allows urban planners to design convenient way systems which actually meet the route choice
habits of pedestrian$S1063-651X97)13308-9

PACS numbe(s): 05.40:+], 61.43—], 82.30.Nr, 89.50tr

I. INTRODUCTION or roundabout traffic at crossings.
In this paper, we draw attention to the specific collective

The emergence of complex behavior in a system consispphenomenon oftrail formation [33,34], which is widely
ing of simple, interacting elemenf&—3] is among the most spread in the world of animals and humans. Regarding their
fascinating phenomena of our world. Examples can be founghape, duration, and extension, trail systems of different ani-
in almost every field of today’s scientific interest, ranging mal species and humans differ, of course. However, more
from coherent pattern formation in physical and chemicalstriking is the question of whether there is a common under-
systemg4—6], to the motion of animal swarms in biology lying dynamics which allows for a generalized description of
[7,8], and the behavior of social groupa—11]. the formation and evolution of trail systems.

In life and social sciences, one is usually convinced that As our experience tells us, trails are adapted to the re-
the evolution of social systems is determined by numerousuirements of their users. In the course of time, frequently
factors, such as cultural, sociological, economic, political,used trails become more developed, making them more at-
ecological, etc. However, in recent years, the development dfactive, whereas rarely used trails vanish again. Trails with
the interdisciplinary field “science of complexity” has led to large detours become optimized by creating shortcuts. New
the insight that complex dynamic processes may also resuttestinations or entry points are connected to an existing trail
from simple interactions, and evencial structure formation system. These dynamical processes occur basically without
could be well described within a mathematical approachany common planning or direct communication among the
[10-14. Moreover, at a certain level of abstraction, one canusers. Instead, the adaptation process can be understood as a
find many common features between complex structures iself-organization phenomenon, resulting from the nonlinear
very different fields. feedback between users and trqB$].

A recent field of particular interest is the microsimulation In order to simulate this process, here we propose a
of self-organization phenomena occurring in traffic systemsparticle-based, multiagent approach to structure formation,
This includes the formation of jammed states in freeway omwhich belongs to the class afctive walker modelsLike
city traffic [15—28, as well as the various collective patterns random walkers, active walkers are subject to fluctuations
of motion developing in pedestrian crow8-37, like os- and influences of their environment. However, they are ad-
cillatory changes of the walking direction at narrow passageslitionally able tochangetheir environmentocally, e.g., by
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altering an environmental potential, which in turn influencesground potential would exponentially adapt to thatural
their further movement and their behavior. In particular,ground conditions ¢(r), if the production of markings were
changes produced by some walkers can influence other wallstopped. However, the creation of new markings by agent
ers. Hence the nonlinear feedback can be interpreted as @ described by the ter®,(r, ,t)5(r—r,), where Dirac’s
indirect interaction between the active walkers via environdelta functiond(r —r,) makes a contribution only at the ac-
mental changes, which may lead to the self-organization ofual positionr ,(t) of the walker. The quantitQ (r,,t) rep-
spatial structures. resents the strength of new markings and will be specified
Active walker models have proved their versatility in a |ater. In summary, we obtain the following equation for the

variety of applications, such as formation of complex struc-spatiotemporal evolution of the ground potential:
tures[36—42, pattern formation in physicochemical systems
[43—46, aggregation in biologicdl7,48 or urban[49] sys- dGy(r,t)

Oy —
tems, and generation of directed motifB0,51. The ap- dt  T(r) [Gk(r) Gk(r't)”; Qalla:t)
proach provides a quite stable and fast numerical algorithm
for simulating processes involving large density gradients, X 8(r—r,(1)). (1)

and it is also applicable in cases where only small particle . ) _ )
numbers govern the structure formation. In particular, the 1hemotionof the active walkeiw on a two-dimensional
active walker model is applicable to processes of pattern forsurface will be described by the following Langevin equa-
mation which are intrinsically determined by thestory of ~ tONS:

their creation, such as the formation of trail systems, dis- dr.(t)
cussed in this paper. =y (1), (2a)
In Sec. Il, the active walker model for trail formation is dt

formulated in terms of a Langevin equation for the move-
ment of the walkers, an equation for environmental changes,
and a relation describing the orientation of the walkers with

respect to existing trails. As one application of the model, . . L o
Sec. Il describes the formation of trunk trails in ant colo- EAuations(2) consider both deterministic and stochastic in-

nies, which are commonly used to exploit food sources. As duénces on the motion of the active walkey. denotes the
second application, in Sec. IV the evolution of pedestri;;\rfJ}Ctual vel_oqtyof v_valk.era. Yo fEpresents some kind friic-

trail systems is modeled. Both Secs. Ill and IV present &on coefficient It is given by therelaxation timer, of ve-
comparison of computational results with real trail systems!0City adaptation, specified latery,=1/7,. The last term
indicating a good agreement between model and empiricéjescrlbes random variations of the motion in accordance
facts. In Sec. IV A, the equations for pedestrian trail systemdvith the fluctuation-dissipation theorera, is the intensity

are scaled to dimensionless equations, in order to demoi@f the stochastic force,(t), which was assumed to be
strate that the evolving trail systems afapart from the Gaussian white noise:

boundary conditionsonly determined by two parameters.
In Sec. I>\// B, a ma@fosczpic formulationyof hungan trail for- (E,(1)=0, (&aui(D)égi(t"))=0,p8;0(t—t"). (3
mation is derived from the microscopic equations, allowinge , dependence o, takes into account that different

analytical investigations and an efficient calculation of theyyakers could behave more or less erratically, depending on
stationary solution by a self-consistent-field method. OUkpeir current situation.

conclusions and an outlook, which suggests an application of £inqly, the termt,, represents deterministic influences on
the model to the optimization of trail systems, are presenteghe motion, such as intentions to move into a certain direc-
in Sec. V. tion with a certain desired velocity, or to keep distance from
neighboring walkers. According to theocial force concept
[28,30Q, f, is specified as follows:

dv,(t
Vdi )=—’yaVa(t)+fa(t)+\/28a7a§a(t)- (2b)

II. ACTIVE WALKER MODEL OF TRAIL FORMATION

. ) . 0
In order to introduce our model, we first describe the pro-

va
cess of trail formation within a general stochastic framework. fa(D)= T_aea(ra V) +ﬁ(§a) fap(TaVailp.Vp). (4)
Hence in this section the active walkers are not specified as
pedestrians or animals. Rather, they are considered as artiiere v describes thedesired velocityande, the desired
trary moving agents, who continuously change their environdirection of the walker. The ternfi,; delineates the effect of
ment by leavingmarkingswhile moving. These markings pair interactions between walkessand 8 on the motion of
can, for example, be imagined as damaged vegetation on thealker « [28,30,33. Since we will focus on cases of rare
ground(as in the case of hoofed animals or pedestjiangs  direct interactionsf,; can be approximately neglected here.

chemical markinggas in the case of ants Thus Eq.(2b) becomes

The spatiotemporal distribution of the existing markings o
will be described by ayround potential G(r,t). Trails are AVo(t)  Va€lla Vo ) =Vo(t)  —
characterized by particularly large values @&f(r,t). The dat T FV2eava8a(1), (5)

a

subscriptk allows one to distinguish differekindsof mark-

ings. Due to weathering or chemical decay, the markingsvhere the first term reflects an adaptation of the actual walk-
have a certairifetime T,(r) which characterizes their local ing directionv,/|v,| to the desired walking directios, and
durability. Therefore, existing trails tend to fade, and thean acceleration toward the desired velocifywith a certain
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relaxation timer,. Assuming that the time,, is rather short
compared to the time scale of trail formatiomhich is char-
acterized by the durabilityf,), Eq. (5) can be adiabatically
eliminated. This leads to the followingguation of motion:

% =V,(I, ,t)~v2ea(ra Vo ) +v2e,1,E,(1).  (6)

To complete our trail formation model, we must finally
specify theorientation relation

ea(ra!va!t):ea({Gk(rvt) ,I’a,Va). (7)

which determines the desired walking direction in depending

on the ground potential&,(r,t). Since the concrete orien-

tation relation for pedestrians differs from that for ants, it

will be introduced later on, in the respective sections. How-

ever, it is clear that the presence of a trail will have an
attractive effect, i.e., it will induce an orientatiotoward it.

According to Eq.(6), this will cause a tendency to approach (@
and to use the trail.

Therefore, the mechanism of trail formation is based on
some kind ofagglomeration processwhich is delocalized
due to the directedness of the walkers’ maotion. Starting with
a plain, spatially homogeneous ground, the walkers will
move arbitrarily. However, by continuously leaving mark-
ings, they produce trails which have an attractive effect on
nearby walkers. Thus the agents begin to use already existing
trails after some time. By this, a kind @klection process
between trails occurécf. Ref. [43]): Frequently used trails
are reinforced, which makes them even more attractive,
whereas rarely used trails may vanish again. The trails begin
to bundle, especially where different trails meet or intersect.
Therefore, even walkers with different entry points and des-
tinations use and maintain common parts of the trail system.

Ill. TRUNK TRAIL FORMATION BY ANTS

As a first example, we want to model the formation of (b)
trunk trails, which is a widely observed phenomenon in ant
colonies, such as in th¥lyrmicinae, Dolichoderinaeand FIG. 1. (@) Dendritic trunk trail system of the ant species
Formicinaespecies, commonly foraging for food from a cen- Pheidole militicida(after Ref.[52]). (b) Simulation result of trunk
tral nest[51-53. The trails are used to connect the food trail formation by active walkers. The result is in good agreement
sources with the nest to allow for a collective exploitation ofwith the empirical findings.
the food. In the case of ants, the markings are chemical sign-
posts, so-callegpheromoneswhich also provide the basic are not necessary for trail formation. The active walkers in
orientation for foraging and homing of the animals. How- our model merely count on tHecal informationprovided by
ever, note that not all ants species form trails. There is #he chemical tralil, in order to guide themselves. They do not
variety of very complex foraging patterns in ants, such asave additional navigation or information processing capa-
swarm riding of army antée.g., in the species dcitonand  bilities, and are not subject to long-range attracting forces to
Dorylus) [54]. Therefore, here we restrict ourselves to caseshe food sources or to the nest. Hence the formation of trunk
in which trunk trail formation of group riding ants is re- trails in the following model is clearly a self-organizing pro-
ported. cess, based on the local interactions of the walk&i$

Before we present our model, we would like to mention  Trunk trails used for foraging are typically dendritic in
some differences between active walkers and ants. The lattéorm. Each one starts from the nest vicinity as a single thick
are rather complex biological creatures which are capable gfathway that splits first into branches and then into twigs to
using additional informatioite.g., landmark ugeor egocen- convey large numbers of ants rapidly into the foraging areas
tric navigation[55] for their food searching and homing. (see Fig. 1L
Moreover, they can store information in an individual In order to distinguish those trails which lead to a food
memory and communicate with nest mates in a very complesource, the antsfter discovering a food source, useother
manner 56]. pheromone to mark their trails, which stimulates the recruit-

We will neglect these abilities, in order to show that theyment of additional ants to follow that trail. In our active
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walker model, we count on that fact by using two different
chemical markings: Chemical 0 is used by the active walkers
as long as they have not reached a food source, i.e., on their
way from the nest to the food or during search periods.
Chemical 1 is only used by active walkers after they have
reached a food source, i.e., on their way back from food
sources to the nest. An internal parametgr={0,1} indi-
cates which of these markings is produced by the active
walker «. Hence the production term for the ground potential
in Eq. (1) is defined as follows:

Qa(ra !t):(l_ ka)QOGXF{_BO(t_tS)]
TKad1exp — B1(t—t7)]. (8 i

The first term is relevant fok,=0, i.e., when _Searchlng a FIG. 2. lllustration of the model quantities characterizing the
food source, Whereas the second term co_ntrlbutes only _foéntlike active walkera. The arrow represents the body of the ant
ko=1, i.e., after having found some food. Since the capacityang its orientationw, with respect to the axes andy of the
of producing chemical markings is limited, we have assume@o-ordinate system. It ends at the paiptwhich corresponds to the
that the quantity of chemical produced by a walker afterfront of the ant's head, where the antennae start. These have the
leaving the nest or the food source decreases exponentially jBngthAr and include an angleg of perception.
time, whereB, and 8, are the respective decay parameters.
0o andq, denote the initial production, art§ andt; are the it has been introduced to mimic the biological constitution of
times when the walkew has started from the nest or the food the ants and to keep close to biology.
source, respectively. The perception of already existing trails will have ai

Due to the two chemical markings, we have two differenttractive effectf,(r,,v,,t) to the active walkers. This has
ground potentialssy(r,t) and G4(r,t) here, which provide been defined by the gradients of the trail potentials,
orientation for the walkers. In the following, we need to
specify how they influence the motion of the agents, espe-  f&(r,v,t)=(1—k, ) VVi(r,v,t) + k, VV(r,v,t). (12
cially their desired directions,(r,,v,,t). At this point, we
take into account that the walkers will not directly be  The above formula takes into account that walkers which
affected in their behavior by the ground potenti@g(r,t) move out from the nest to reach a food sourkg=0) ori-
themselves, which reflect the puesistenceof markings of  entate by chemical 1, whereas walkers which move back
typek at placer. They will, rather, be influenced by theer- from the food k,=1) orientate by chemical 0. This implies
ceptionof their environment from their actual positiong,  that initially, in the absence of chemical 1, the walkers move

X

which will be described by thé&ail potentials as random walkers which discover a food source only by
chance.
Vﬁ(ra WV, ,t)=V't‘r({Gk(r,t)},ra Vo). 9 We complete our model of trunk trail formation by speci-

fying the orientation relation of the walkers. Assuming
For the detection of chemical markings, insects like ants, (r,v,t) =f(r,v,t)/||f5(r,v,t)||, the desired walking direc-
use specific receptors which are located at their so-calleflon e (r,v,t) points in the direction of the steepest increase
antennae. Their perception is mainly determined by the anglgf the relevant trail potentiaVX(r,v,t). However, this for-
2¢ of perception, which is given by the angle between themyia does not take into account the ants’ persistence to keep
antennadcf. Fig. 2). Therefore, we make the assumption  the previous direction of motiof68]. The latter reduces the
probability of changing to the opposite walking direction by

k
Vil Vo st) fluctuations, which would cause the ants to move backwards
Ar ‘e before reaching their goal. Therefore, we modify the above
=J dr’J de'r’ formula to
0 -9
. ’ [ * —
XGy(r +r'(codw,+¢'),sifw,+¢')),t), (10 ea(r,v,t):ftr(r'v’t)+e“(t At) (19

N (rv,t) ’
where the angle, is given by the current walking direction
where N, (r,v,t) =||fg(r,v,t) + €5 (t—At)| is a normaliza-
Vo(t) : 11 tion factor. That means, on a ground without markings, the
Vo (D] = (C0804(1) SN (1)). (1) walking direction tends to agree with the one at the previous
time t—At, but it can change by fluctuations.
According to Eq.(10), our active walkers integrate over the  Finally, it is known from ant species that they are able to
ground potential between the antennae of lenjth Note, leave a place where they do not find food and increase their
however, that the restriction to the angle of perception is notnobility to reach out for other areas. Since active walkers do
an indispensible assumption for the generation of tf&i. not reflect their situation, they stick on their local markings
Thus it could be neglected in a minimal model. Neverthelesseven if they did not find any food source. In order to increase

e ()=
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the mobility of the active walkers in those cases, we assume
that every walker has an individual noise intensity(t),
which is related to the walker’'s spatial diffusion coefficient
and should increase continuously, as long as the walker does
not find a food source:

ea()=(1—k)[eot+ T (t—tH) P+ kel (14)

tg is again the starting time of walker from the nestgg is

the initial noise level, and, its growth rate. If the noise
intensity e , has reached a critical upper value, the wal&er z
behaves more or less as a random walker which does not pay & =
attention to the trail potential. But if the walker found some =~ "

food, its individual noise intensity is set back to the initial  FiG. 3. Between the straight, paved ways on the university cam-

valueeg. pus in Stuttgart-Vaihingen a trail system has evolyeghter of the
Figure 1b) shows the result of computer simulations of picture. Two types of nodes are observed: Intersections of two

trunk trail formation. The related dendritic trail system of trails running in a straight line, and junctions of two trails which

Pheidole milicida a harvesting ant of the southwestern U.S.smoothly merge into one tr&iB4,28|.

deserts, is displayed in Fig(d. In our simulation, a nest is

assumed in the middle of a triangular lattice of sizeof motion, e.g., lanes of uniform walking directi¢80,33 or

100x 100 with periodic boundary conditions. Initially, there roundabout traffic at intersectiof31—-33.

are no chemical markings on the lattice. At time0, a In this section, however, we want to model the evolution

numberN, of walkers start from the nest with a random of human trail patterns. We will assume that the pedestrians

direction, leaving markings of chemical 0. If a walker dis- behave “reasonably” and, as before, we will restrict our

covers a food source by chance, it begins to produce cheminodel to the most important factors. It is obvious that pedes-

cal 1. Should such a walker find its way back to the nest, itrians are able to show a much more complicated behavior

activates an additional number of walkers, the recruits, tahan described here.

move out. The maximum number of walkers in the simula- Since the equation of motio(6) can be also applied to

tion is limited toN,,ax, Which denotes the population size. pedestrians, we now have to specify how moving pedestrians
For the food sources, an extended food distribution at thehange their environment by leaving footprints. This time,

top and bottom lines of the lattice is assuni&d]. These we do not have to distinguish different kinds of markings.

sources could be exhausted by the visiting walkers, but th&hus we will need only one ground potent@(r,t), and the

accidental discovery of new ones in the neighborhood resultsubscriptk can be omitted. The value @ is a measure of

in a branching of the main trails in the vicinity of the food the comfort of walking (Therefore, it can considerably de-

sources and eventually leads to the dendritic structures. Thgend on the weather conditions, which is not discussed here

trail system observed in Fig.() remains unchanged in its any further)

major parts, as has also been reported in the biological ob- For the strengthQ,(r,t) of the markings produced by

servations of trunk trail formation by antS2]. Nevertheless, footprints at place’, we assume

some minor trails in the vicinity of the food sources slightly

shift in the course of time due to fluctuations.

G(r,t)
Gma)é(r)

where I (r) is the location-dependent intensity of clearing

Trail formation by pedestrians has been investigated onlyegetation. The saturation tefri— G(r,t)/Ga{r)] results
very recently[60]. It can be interpreted as a complex inter- from the fact that the clarity of a trail is limited to a maxi-
play between pedestrian motion, human orientation, and emum valueG,,,,(r).
vironmental changes: On the one hand, pedestrians tend to On a plain, homogeneous ground without any trails, the
take the shortest way to their destination. On the other handiesired directiore, of a pedestriany at placer is given by
they avoid walking on bumpy ground, since this is uncom-the directione’, of the next destinatiod,, , i.e.,
fortable. Therefore, they prefer to use existing trails, but they
build a new shortcut, if the relative detour would be too . d,—r
large. In the latter case they generate a new trail, since foot- 1, v,) =€ (ds,r)= mzvua(r)- (16)
prints clear some vegetation. Examples of the resulting trail “
systems can be found in green areas, like public p&eks with the destination potential
Fig. 3.

Empirical studies have shown that pedestrian motion can Uu(r)=—|d,—r|. (17
be surprisingly well described by thsocial force model
sketched in Sec. [111,29. In particular, it has been demon- However, the perception of already existing trails will have
strated that this model allows a realistic simulation of variousanattractive effect,(r,t) on the walker, which will again be
observed self-organization phenomena in pedestrian crowdtefined by the gradient of the trail potenth(r,t), speci-
[28—33. This includes the emergence of collective patterndied later on:

Qur,y=1(r)|1- \ (15

IV. HUMAN TRAIL FORMATION
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ftr(r,t)ZVVtr(l‘,t). (18)

FIG. 4. When pedestrians leave footprints on
the ground, trails will develop, and only parts of
the ground are used for walkingn contrast to
paved aregs The similarity between the simula-
tion result(left) and the trail system on the uni-
versity campus of Brasilié&right, reproduction by
kind permission of Klaus Humperis obvious
[34,28.

whereo(r,) characterizes the sight, i.e., the range of visibil-
ity. In analogy to Eq(10), this formula could be easily gen-

Since the potentialu andvtr influence the pedestrian at the eralized to include conceivable effects of a pedestrian’S angle

same time, it seems reasonable to introduceo@@ntation
relation similar to Eq.(13), by taking the sum of both po-
tentials:

ftr(rit)+e2(da ,r)
e, (r,v,t)= N0

1
YTE) VU, (r)+Vy(r,t)]. (19

Here N(r,t)=||V[U (r)+V(r,1)]|| serves as the normal-
ization factor. By relation(19) we reach that the vector

e,(r,,t) points in a direction which is a compromise be-

tween theshortnesof the direct way to the destination and
the comfortof using an existing trail.
Finally, we need to specify the trail potent], for pe-

of sight. However, we will not do this here, since we would
then have to calculate different trail potentialg for all
walkersa. This would make the model much more compli-
cated.

The simulation results of the above-described trail forma-
tion model are in good agreement with empirical observa-
tions, as can be seen by comparison with photographs. Our
multiagent simulationsbegin with plain, homogeneous
ground. All pedestrians have their own destinations and entry
points (like shops, houses, underground stations, or parking
lots), from which they start at a randomly chosen time. In
Fig. 4 the entry points and destinations are distributed over
the small ends of the ground, while in Fig(Big. 7) pedes-
trians move between all possible pairs of thfémur) fixed
places.

At the beginning, pedestrians take ttieect waysto their
respective destinations. However, after some time pedestri-

destrians. Obviously a trail must be recognized by the walkyng pegin to use already existing trails, since this is more
ers and near enough in order to be used. Whereas the grouggmfortable than to clear new ways. The frequency of usage

potentialG(r,t) describes thexistenceof a trail segment at
positionr, thetrail potential V,(r, ,t) reflects theattractive-

nessof a trail from the actual position,(t) of the walker.

Since this will decrease with the distanje-r |, we have

applied the relation

Vt,(ra,t)=f d2r e~ Ir=rallotra gy p), (20)

decides which trails are reinforced and which ones vanish in
the course of time. If the attractiveness of the forming trails
is large, the final trail system israinimal way systertwhich

is the shortest way system that connects all entry points and
destinations However, because of the pedestrians’ dislike of
taking detours, the evolution of the trail system normally
stops before this state is reached. In other words, a so-called
minimal detour systerdevelops if the model parameters are
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(©)

FIG. 5. The structure of the emerging trail systéight grey) essentially depends on the attractiveness of the fiials on the parameter
x=I1T/o). If the trail attractiveness is small, a direct way system deve(lglp; if it is large, a minimal way system is formed; otherwise
a minimal detour system will resu{tmiddle), which looks similar to the trail system in the center of Fig. 3. The grey scale allows one to
reconstruct the temporal evolution of the trail system before its final state was rd@éhed

chosen realisticallycf. Fig. 5. The resulting trails can con- G'(x,7)=0G(oX,7T), (23
siderably differ from the direct ways which the pedestrians
would use if these were equally comfortable.

V{F(X’T):f dZX, e_HX,_X”G,(X,fT)i (24)

A. Scaling to dimensionless equations
The use of existing trails depends on the visibility, as ,

given by Eq.(20). Assuming that the sight parameteris Uo(x)=—|ds/o—x], (25
approximately space independent, an additional simplifica-
tion of the equations of trail formation can be reached byetc. Neglecting fluctuations in E6) for the moment, this

introducing dimensionless variables implies the following scaled equations:
r
x=—, (21) dx,(7) vaT(oX,)
g a - ~ a a /
dr - Va(xa ’ T) o ea(xa ’ T) (26)
t
7(X)= (22)

for pedestrian motion,
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VIUL(X) + V(X
e (x,7) = a0 * V(6] @n N[ oan= 3 [ o)
IVLUL00+ Vi) “al 34
for human orientation, and describes the number of pedestrians of subpopulatjomho
are walking on the ground at time It changes by pedestri-

dG'(_X'T):[G,(X)_G,(X Al+|1- G'(x.7) ans entering the system at the entry pgigtwith a rate
dr 0 ’ Gl X) R. (pa,7) and leaving it at the destinatiort;, with a rate
1(oX) T(0X) Ra(da,n). .
XD T S(x— X, (7)) (28) Due to the time dependence of the s&ts), we will need
p T the set
for environmental changes. Therefore, we find the surprising an(n)=a(r+A)Na(7) (35)

result that the dynamics of trail formation (apart from the
influence of the number and places of entering and departings pedestrians remaining in the system, the set
pedestriansalready determined by two local parametars
and A instead of four, namely. the products

a.(r)=a(r+ANan(7) (36)
I(oX)T(oX) . .
k(X)= ———— (29 of entering pedestrians, and the set
and a_(r)=a(m)\an(7) (37)
VOT (%) of leaving pedestrians, for which the following relations
ANX)= ——. (30  hold:
g
Herein, V° denotes the mean value of the desired velocities a(nna-(n=9J, (38)
0
U,-
an(mUa,(n)=a(r+A), (39
B. Macroscopic formulation of trail formation
an(nUa_(n)=a(n). (40

From the above “microscopic” model of trail formation
we will now derive the related “macroscopic” equations. .
For this purpose we need to distinguish different subpopulal Nerefore, Eq(31) implies
tions a of individuals @. By a(7) we denote the time-
dependent set of individuals who have started from the 9Pa(X7) . 1 { S sxex(r+A))
same entry poinp, with the same destinatiast, . Therefore, ks Ao A |aca+a)
the different setsa correspond to the possibl@lirected
combinations between existing entry points and destinations. _ 2 S(x—

Next, we define thelensityp,(x,7) of individuals of sub- (X=Xa(7))

aea(r)
populationa at placex by ¢
1
=lim D T [6(X—X(T+A))— SX—Xy(7)]
paX, )= D S(X—X,(7)). (31) A—0 acan(n A

aeca(r) I 1 2 N
Note that a spatial smoothing of the density is reached by +AITO A acai(r) SX=Xa(7H4))
a discretization of space, which is needed for a numerical
implementation of the model. For example, if the discrete )
placesx; represent quadratic domains _A“mo A QEE(T) O(X—X4( 7)) (41)

A(x) ={x:[[x=xi||l=<L}, 32 ing i
(xi)={x] ll } (32 Taking into account

with an ared.A|=L2, the corresponding density is L L
1 lim N S(X—X,(7+A)) = lim A S(X—x,(7))
pain = [ @ S sbex(n). (@9 40 40
|-A| A(x)

aeca(r) P
. , . T o= (X=X4(7)), (42
However, for reasons of simplicity we will treat the continu- aT
ous case.
The quantity which follows by Taylor expansion, we obtain
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Ipa(X,7) 1 dG’(x, G'(x,
——=lm X 8 X(7+A)) AT _ 6y -67 (x4 | 1 D
aT A—0 aca(r+A) dr Gl X)
o1
=S Xo(N]H+ M T D S(Xx—Xe(7)) X k(X)pa(X.t). (51)
A—0 A acay(n) a
1 . . . .
—im - 2 S(X— (7). 43 Finally, the orientation relation becomes
A-0 T s V[Ua(0) + V(% 7)]
. eu(x,7)= , , (52)
With ||V[Ua(x)+vtr(xy7')]||
1 with
lim A [S(X—X (TF+A))— 6(X—X,(7))]
a0 Ua(X)=—da/o=x]. (53)
= ﬁi S(X—X4(7))=—V 8(X—X,(T))- % Therefore, the average velocity is given by
T T
OT(O’X)
(44) V(X 7)~ ! Da X, 7) S(X— X
a( !T) pa(X,T) aea(r) %( ,T) ( a(T))
and the relations 0
V T(oXx)
L ~——— &) =A(Xe(x7), (54)
Ry (x,7)=lim + > S(x—xXy(7)), (45)
A—0 2 acay(n) whereV? is again the average desired pedestrian velocity. In
the case offrequentinteractions(avoidance maneuversf
_ o1 pedestriansy® must be replaced by suitable monotonically
Ry(xn=lim &+ X ) S(x—%4(7)) (46)  gecreasing functiong,({p.}) of the densitieg [28,61,62.

A—0 A aca_(7 X . X
Moreover, fluctuation effects will be stronger, leading to

Igreater diffusion function® ,,({p.}) and broader trails.
Summarizing our results, we found a macroscopic formu-

lation of trail formation which is given by Eqg$49)—(54)

with Eg. (24). Apart from possible analytical investigations,

for the rates of pedestrians joining and leaving subpopulatio
a, we finally arrive at

&Pa(xa T)

==V > VX, 7)S(X—X, (7)) + Ry (X,7) it allows us to determine implicit equations for the stationary
aT aca(n) solution, if the rateR_ (x,7) andR; (x,7) are time indepen-
Ry (X,7), (47) dent: Setting the temporal derivatives to zero, we find the
relations

whereR; (x,7) is zero away from the entry poipt,, and the

same holds foR; (x,7) away from the destinatiod, . Go(X)+ 2 k(X)pa(X)
Now, we define theverage velocity/, by G'(X)= a (55)
L 1+§ K(X) pa(X)/G o X)
Va(x,7)= D Vi(Xe T SX—Xe(7)). (48)
Pa(XaT) aea(7) and
This gives us the desiretbntinuity equation V- [pa()V4()]= R (X) = R: (x) (56)
‘LPa a —Ra —Ra :
dpa(X, . .
MJFV.[pa(X’T)Va(X, N1=R: (x,7)—R; (X, 7) Together with Eqs(24) and (52—(54), relations(55) and
aT (56) allow one to calculate the finally evolving trail system.

(49 Again, we see that the resulting state depends on the two
o ) _ ) parameters. and . In addition, it is determined by the re-
describing pedestrian motion. Fluctuation effects can b@pective boundary conditions, i.e., the configuration and fre-

taken into account by the additiondiffusion terms quency of usage of the entry point-destination pairs, which
are characterized by the concrete form of the entering rates
RS (x) and leaving rate® (x).
V-[D V(X 50 a a . . .
Eb: [Das({pch Voo, 7)] 50 The advantage of applying the macroscopic equations is

that the finally evolving trail system can be calculated much

on the right-hand side of Eq49) [61,28. This causes the more efficiently, since considerably less time is required for
trails to become somewhat broader. computing: The numerical solution can now be obtained by
Next, we rewrite Eq(28) for environmental changes in means of a simple iterative method which is comparable to
the form the self-consistent-field technique. Examples are shown in
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(©

FIG. 6. Stationary solution of the macroscopic trail formation model, obtained by an iterative self-consistent-field method. Since the
boundary conditions were chosen as in Fig. 5, the results depending on the para@etemost identical to those of the corresponding
microsimulationg 34].

Fig. 6 for different values ok. As expected, the results agree nomenon. However, the evolving patterns are not localized,
with the ones of the related microsimulations, which are desince the active walkers intend to reach certain destinations,

picted in Fig. 5. starting from their respective entry points.
The structure of the resulting trail system can consider-
V. SUMMARY AND OUTLOOK ably vary with the species. This depends decisively on the

main effect which counteracts the trail attraction. Whereas
We showed that the active walker concept is suitable folour model ants find their destinatiofhe food sourcesby

modeling and understanding trail formation by pedestrianghance, pedestrians can directly orient toward their destina-
and animals. Our model turned out to be in good agreemeritons, so that fluctuations are not a necessary model compo-
with observations. It included an equation of motion of thenent in this case. Thus for certain ant species a dendritic trail
walkers, an equation describing environmental changes bgystem is found, the detailed form of which depends on ran-
the markings which they leave and their decay, a relatiomdom events, i.e., the concrete history of its evolution. Pedes-
reflecting the attractiveness of already existing trails, and atrians, however, produce a minimal detour system, i.e., an
equation delineating their influence on orientation. Whereagptimal compromise between a direct way system and a
frequently used trails are reinforced, rarely chosen trails vanminimal way system.
ish in the course of time. This causes a tendency of trail As a consequence, we could derive a macroscopic model
bundling, which can be interpreted as an agglomeration phder the trail formation by pedestrians, but not for ants. This
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restrictions thati) no visual navigation and internal storage
of information is provided; andii) in the beginning, no
chemical signposts exist which lead the ants to the food
sources and afterwards back to the nest. Rather, the forma-
tion of trail systems can be described as a process of self-
organization. Based on the interactions of the active walkers
on a local or microscopic level, the emergence of a global or
macroscopic structure occurs. The basic interaction between
the active walkers can be considered as indirect communica-
tion mediated by an external storage medi48,63. This is

a collective process in which all active walkers are involved.
The information which an active walker produces in terms of
chemical markings affects the behaviors of the others. This
can be amplified during the evolution process or disappear
again, thus leading to a correlation between the information
generated and to the self-organization of the walkers on a

|
— spatial level.
FIG. 7. Comparison of different types of way systems between
four places: Thedirect way systenfwhich is represented by the B. Implications for urban planners: optimization
black lineg provides the shortest connections between all entry of way systems
points and destinations, but it covers much space. In real situations,
pedestrians will produce ariinimal detour systetmas the best Computer simulations of our pedestrian trail formation

compromise between a direct way system anmdiaimal way sys-  model will be a valuable tool for designing convenient way
tem(which is the shortest way system that connects all entry po'nt§ystem5(cf. Fig. 7). For planning purposes the model param-
and destinations[28]. The illustration shows a simulation result ters\ and « must be specified in a realistic way. Then one
which could serve as a planning guideline. Its asymmetry is causefloq s 1 simulate the expected flows of pedestrians that enter
by differences in the frequency of trail usagiote that the above ihe considered system at certain entry points with the inten-

figure, in contrast to Figs. 5 and 6, does not display the groun ion to reach certain destinations. Already existing ways can
potential, but the trail potential. The latter appears considerabl ’ y g way

: g .
broader, since it takes into account the range of visibility of the e taken into a(?count by the funCt'@b(.X)' A.Ct?or.dlng to
trails. Arrows represent the positions and walking directions of pe-OUr model, a trail system will evolve which minimizes over-

destrians. Therefore, they indicate the ways actually taken. all detours and thereby provides an optimal compromise be-
tween a direct and a minimal way system. It is expected that

the corresponding ways meet the pedestrian requirements
best: They will most likely be accepted and actually used,
implied a self-consistent-field method for a very efficient cal-since they take into account the route choice habits of pedes-
culation of the finally evolving trail system. This is deter- trians. For the simulation of realistic situations, the results
mined by the location of the entry points and destinationsan serve as planning guidelines for architects, landscape
(e.g., houses, shops, or parking Joasd the rates of choos- gardeners, and urban planners.
ing the possible connections between them. Apart from this
it depends on two parameters only, which was demonstrated
by scaling to dimensionless equations. These are related to C. Current research directions

the trail attractiveness and the average velocity of motion. ) . o
Besides possible applications, our present research fo-

cuses on two question$l) How must our trail formation
model be specified in order to be applicable to trail formation
In order to demonstrate that the evolution of trail systemspyy hoofed animals or micg64,657? (i) Can our model be
can be understood as a typical self-organization phenonyeneralized in a way that allows us to understdmanan
enon, our model has made a number of simplifying assumpdecision makingin particular processes of finding suitable
tions about the agents. In the example of trail formation bycompromises? |nteresting|y enough’ one says that someone
certain ant species, the major difference from biology is thatfollows in somebody’s footsteps” or that someone “treads
the active walkers used in the simulations have far less comhew paths.” Therefore, a related theory for a more abstract
plex capabilities than the biological creatures. They behavepace(which represents the set of behavioral alternafives
almost like physical particles which respond to local forcesmay describe the evolution of social norms and conventions
in a quite simple manner, without “implicit and explicit in- [11].
telligence” [56]. Compared to the complex “individual-
based” models in ecolog)8], the active walker model pro-

A. Trail formation as a self-organization phenomenon

posed here provides a very simple but efficient tool to ACKNOWLEDGMENTS
simulate a specific structure with only a few adjustable pa-
rameters. The authors would like to thank K. Humpert and B:IHo

With respect to the formation of trunk trails, our model dobler for providing some of their interestiighotggraphi-
indicates that these patterns can be obtained also under thal material.
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