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Simulation of cluster growth in pores with diffusion interaction 
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We consider local effects of cluster growth in pores which are connected by diffusion interaction. Nucleation is mainly governed 
by the conditions (supersaturation) inside the cavity, whereas the growth of clusters results from the diffusion of free particles 
between the pores. 

A multivariate master equation of the problem is formulated, deterministic equations (reaction-diffusion equations) for the 
space- and time dependent cluster distribution are derived and solved by means of computer simulations. 

1. Introduction 

In systems where diffusion processes proceed 
much faster than the process of cluster formation 
and growth (e.g. in gases, simple liquids), finite 
size effects due to the conservation of the total 
particle number result only in a global depletion 
of free particles during the phase transition. This 
effect leads to a three-step scenario of the phase 
transition, consisting of (1) nucleation, (2) simul- 
taneous growth of clusters, (3) Ostwald ripening, 
which has been discussed previously (see, e.g. ref. 
[1], and references therein). 

A rather different situation is given in systems 
where cluster growth does not follow the border- 
line cases of reaction or diffusion limited growth. 
This situation is realized, e.g. in gels or in ceo- 
lithes, being a network of cavities, communicating 
through slightly smaller orifices [2]. 

The diameter of such cells ranges between 5 
and 80 nm" 102 to 10 4 particles are included in 
one cell [3]. The tunnels between the cavities 
allow diffusion of free particles [2], but caused by 
the small diffusion coefficients long range order 
relaxations are mostly impossible, resulting in a 
spatially inhomogeneous system. Here local ef- 
fects, say the local supersaturation, play the im- 
portant role [11]. 

The first stage of the phase transition, nucle- 
ation, in such small cavities is mainly governed by 
the conditions (supersaturation) in the cell [4-6], 
whereas the further growth of clusters results 
from the diffusion of free particles from neigh- 
boring cavities [7]. 

The box model, introduced in the next section 
gives us a quite simple model to include the space 
dependence of the phase transition. 

2. Model of interacting boxes 

We discuss a system which is divided into z 
small subvolumes V* characterizing the box vol- 
ume. The boxes are distinguished by an index 
i =  1, 2 , . . . , z .  

In the system a phase transition occurs via 
nucleation and cluster growth, leading to a clus- 
ter distribution n(t) and a distribution of free 
particles N(t) which both depend on time and 
space; therefore we introduce the state vectors: 

n( t )  = {n t ( t ) ,  n2(t) , . . . ,n i( t ) , . . . ,nz(t)  }, 

N(t) = {Nl(t ), N2(t), . . . ,N,(t), . . . ,N:(t)}.  
(1) 
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We use further  the abbreviations: 

a(nj)=an2/3/V*;  di j=Dij /V* (9) 

and for d o not explicitely depending on space, 
also dij = d. It depends on the ratio of the two 
kinetic prefactors a(nj) and d U whether the reac- 
tion or the diffusion processes will govern the 
kinetics of cluster formation (reaction or diffu- 
sion limited cluster growth) and thereby the clus- 
ter distribution. 

4. Deterministic description of the distributions 

Rcr(r), both depend on the space coordinate. 
That means, we have no global value of Rcr, 
which acts as a selection parameter for all clus- 
ters - but only a local selectiop Since, via the 
local density of free particles, R¢r(r, t) depends 
on both the time scales of reaction and of diffu- 
sion, (expressed by a and d), it is governed by the 
local conditions if R(r) is larger or smaller than 
the critical radius R¢r(r) at the same point, if the 
cluster can grown further or not. According to 
whether a or d dominates, we expect a quite 
different behaviour of the critical radius. 

The deterministic equations for the vectors (1) 
can be derived from P(N, n, t) by calculating the 
mean values. Using the usual formalism [8] we 
obtain 

(1Qj) -- --(it.i> q- Z d j m ( N m  - N j ) ,  (10)  
m 

= N,.)  - N,.)> 

= (a(nj){Ny-No(nj)}) .  (11) 

Eqs. (10) and (11) mean a coupled system of 
reaction-diffusion equations for j = 1 , . . . ,  z. The 
stationary solutions for conserved and non-con- 
served particle numbers are discussed in ref. [7]. 

Turning to a continuous description of space, 
that means (n i) = n(r) and (Nj)  = N(r),  and in- 
troducing the radius of the assumed spherical 
cluster by R3(r)=n(r)/(47rc,J3), we get from 
eqs. (10) and (11) finaqy (cf. ref. [7]) 

Ceq(T)do 
/~(r, t )  =ce 

( 47rc~/3) t/3 

I 1 1 )  
× Rcr(r,  t) R(r,  t )  ' (12) 

where Rc~ is the critical radius, introduced by 

R¢~(r, t ) = d d l n { N ( r ,  t)/c¢qV*}, (13) 

d o = 2¢r/c,,knT being the capillary length, o- the 
surface tension and c, the density of the cluster, 

Eq. (13) formally agrees with the known deter- 
ministic kinetics of gaseous systems [9]. But now 
the cluster size, R(r), and the critical radius, 

6. Numerical simulations and discussion 

In order to evaluate the time- and space-de- 
pendent cluster distribution of the box system 
numerically, we discuss a linear system of boxes 
forming a ring; that means the total number of 
particles is conserved. The simulation was carried 
out for a ring of 50 boxes, each with 100 particles 
initially. The box volume is chosen to be 1.63 × 
10 -23 m 3, that means a sphere diameter of 30 
.lm. 

We assume now, that during the first time step 
a random nucleation process occurs, which is 
governed only by the conditions (supersaturation, 
defined by Y0 = Nj/c~qV*) inside the box. In our 
simulation the initial supersaturation was equal 
to 5. Choosing, e.g., the .hermodynamic l~roper- 
ties of ethanol for 290 K, an initial critical cluster 
size of 15 particles (critical radius Rcr = 0.697 
nm) is estimated from eq. (13). 

The nucleation process results in an initial 
cluster distribution around the initial critical clus- 
ter size, where the clusters are randomly dis- 
tributed in the boxes (see fig. 1, obtained from 
the stochastic ~dmulation of nucleations. 

For times t > 1 d/a (where d characterizes 
• k . ~  ,.: . . . . .  I t .  f ~h.-~ A;¢-¢,,,-;~-,,.., .-,~,.-1 t h t . ,  t ~ r v , ~  
L I I ~ . ,  L I l I I ~ . . ,  , .~. ,Otl~, ,  O tll1~.., IK.I[ I I Ik , I~ '~)IUII  ~lllt~k3t a t l l t ~ ,  L l l l l t ~ -  

scale of the reaction) ~ coupling via diffusion 
exists between the boxes; that means the further 
growth of clusters can occur also at the expense 
of the neighbouring boxes. We hrve now to solve 
numerically the whole system of coupled reac- 
tion-diffusion eqs. (10) and (11). 
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F i g .  1. Cluster radius R(j) (dots) and critical radius R c r ( J )  

(l ine) versus box number  j after the nucleat ion period (no 
diffusion between  the boxes).  
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F i g .  5.  The same as f i g .  2 a f t e r  t = 3 0 0 0  t ime steps.  
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F i g .  2.  Cluster radius R(j) (dots) and critical radius Rcr ( j )  

( l i n e )  versus box number  j after t = 5  time steps ( d / a )  

(including diffusion interaction between  the boxes).  
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F ig .  3. The same as f ig .  2 a f t e r  t - -  1 0 0  t ime steps. 
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F ig .  4. T h e  s a m e  a s  f ig .  2 a f t e r  t = 1000 time s t e p s .  

Figs. 2-5  present different time steps of the 
evolution of the space- and time dependent clus- 
ter size distribution in terms of the cluster radius 
and the critical radius of the different boxes. 
Although the simulation was carried out only for 
an one-dimensional chain of boxes, the results fit 
qualitatively the behavior of growing crystals in 
gels [11] in the middle time stages. 

The computer simulations lead to the follow- 
ing conclusions: 
(i) Slightly subcritical clusters are able to grow to 
a supercritical size, if the diffusion from the 
neighbouring boxes is large enough. 
(ii) The growth of clusters over large time inter- 
vals d~.r~end,, strongly on the cluster distribution 
in 'he surrounding (local competition effect). A 
consideration of the space dependence shows, 
that in general the initially largest duster will not 
surely be superior to the others. 
(iii) In the late stage of cluster growth the radii of 
all grooving clusters have the values of their local 
critical radius. 
(iv) Because of R(r )  = Rot(r),  we have practically 
a competition between the different critical radii. 
But the winner is not always determined by the 
largest Rot(r), it depends on the width and the 
gradient of the diffusion zone around the largest 
clusters. If such diffusio:l zones overlap, the in- 
cluded cluster shrinks rather fast. 
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