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Abstract— In this paper we propose a discrete time binary
model, based on the homophily social mechanism, that dy-
namically reduces the cognitive dissonance among the agents
in a social network. We show that the binary homophily
model can drive an initially structurally unbalanced network
towards a socially balanced one. In order to characterise non-
structurally balanced equilibrium points, we introduce a (V,Σ)-
factorization that finds an interesting interpretation in terms
of structurally balanced classes, and can be used to investigate
the case of 3 classes and to provide a complete analysis of the
convergence to the equilibrium for small-size networks.

I. INTRODUCTION

Social networks are examples of networked systems where
the combinations of local interactions generate complex
social behaviours. A global property of interest when dealing
with social networks is structural balance [5]. Structurally
balanced configurations [8] play a major role in the study
of opinion dynamics because they correspond to stable
relationships in real life social networks (indeed, structural
balance is also referred to as social balance [12]), both
when dealing with small-size [7] and large-size [5] groups of
agents. The study of opinion dynamics, and in particular the
understanding of what conditions lead an initially unbalanced
configuration towards a stable and balanced one, has been
attracting the interest of experts from various fields, ranging
from mathematics [6] and economics [9] to sociology [14],
[15], for a long time. However, a realistic model aimed at em-
ulating the evolution of opinion dynamics in social networks
and its convergence to a bounded, globally stable, socially
meaningful equilibrium point is still an attractive research
topic. Such models are of significant importance since they
allow to make predictions on the opinions evolution and to
design control algorithms that drive the system towards social
balance.

Moved by these needs and by the vast amount of recent
literature available, also related to the control theory field
[12], [4], [11], we propose a novel discrete time model
whose state variables update according to the homophily
mechanism, see [12] and the seminal work by Lazard and
Merton [10]. This paper has been inspired by the work of Mei
et al. [12], in which the homophily mechanism is presented
as a more realistic explanation for the convergence of opinion
dynamics to social balance with respect to the influence
mechanism, and by the work of Cisneros-Velarde and Bullo
[4], in which the concept of influence dynamics is introduced
and a game theoretic approach to the update of the mutual
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35131 Padova, Italy, e-mail: giulia.depasquale@phd.unipd.it,
meme@dei.unipd.it.

opinions of a pair of agents is adopted. We have also taken
inspiration from the pioneering work of Heider [8] and the
one of Cartwright and Harary [3], in which the concept of
social balance has been mathematically formalized in terms
of (signed) graph theory for the first time.
In this paper we introduce a binary model for the study of
opinion dynamics in social networks and its convergence to
structural balance. In the proposed model the state variables,
namely the entries of the social network adjacency matrix,
represent the mutual opinions of two agents. They are
binary variables that take either a positive or a negative
value, depending on whether the agents have a positive or
a negative opinion of each other, and they update based on
the number of (remaining) agents on which the two agents
agree/disagree. This amounts to minimising the number
of unbalanced triads every pair of agents belongs to, and
consequently the cognitive dissonance in the social network.
Compared with [12], we have chosen to restrict the values
of the mutual opinions of the agents to the binary set
{−1, 1} in order to study the social dynamics of networks in
which the dynamical evolution only depends on whether the
relationship between two agents is friendly or antagonistic,
while its “intensity” is not relevant for the evolution of the
social network, as it happens in politics, sports, games . . .

The idea of adjusting mutual relationships between agents
based on the number of unbalanced triads has been widely
exploited in the past [1], [2], [4]. In the works of Antel
et al. [1], [2] the concepts of local triad dynamics (LTD)
and constrained triad dynamics (CTD) have been exploited
in order to reflect the human propensity to minimize the
unbalanced triads in the network they are involved in and to
define the update rule for the mutual relationships between
agents. In the work of Facchetti et al. [5] an algorithm for the
computation of the global level of balance of social networks
in a very large scale setting is studied. It is shown that a high
degree of skewness of the sign distributions on the nodes of
the graph translates in a just apparent disorder, which in fact
leads to a high degree of balance.

In this paper we provide necessary and sufficient con-
ditions for a configuration to be an equilibrium point of
the binary homophily model. We show that the state-update
law can make a structurally unbalanced network converge
to a structurally balanced one. We introduce a (V,Σ)-
factorization for the special class of symmetric matrices with
entries in {−1, 1} and unitary diagonal entries, and we make
use of it to provide a characterization of non-structurally
balanced equilibrium points. This allows to correlate an equi-
librium configuration with the structurally balanced maximal
classes in the associated graph.
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The paper is organized as follows: in section II a math-
ematical formalization of the binary homophily model is
provided. In section III a characterization of the equilibrium
points is proposed with a special focus on the structurally
balanced ones. In section IV the (V,Σ)-factorization is
introduced, and the convergence to equilibrium for networks
of N = 4 agents is completely characterised. In section V a
characterization of the non-structurally balanced equilibrium
points, based on the (V,Σ)-factorization, is given. Section
VI concludes the paper.

Notation. Given k, n ∈ Z, with k < n, the symbol [k, n]
denotes the integer set {k, k + 1, . . . , n}. In the sequel, the
(i, j)-th entry of a matrix M is denoted either by mij or by
[M]ij , while the i-th entry of a vector v by [v]i.

Given a square matrix M, the notation diag(M) denotes
the diagonal matrix whose diagonal entries are the diagonal
entries of M. The notation M = M1 ⊕ M2 · · · ⊕ Mn

indicates a block diagonal matrix whose diagonal blocks are
M1,M2, . . . ,Mn.

We let ei denote the i-th vector of the canonical basis of
Rn, where the dimension n will be clear from the context. By
signed canonical vectors we will mean all canonical vectors
and their opposite, i.e. the set {±ei, i ∈ [1, n]}. The function
sign(·) : Rn×m → {−1, 0, 1}n×m is the function that maps
a real matrix into a matrix taking values in {−1, 0, 1} in
accordance with the sign of its entries.

An undirected, signed and unweighted graph is a
triple [13] G = (V, E ,A), where V = {1, . . . , N} = [1, N ]
is the set of vertices, E ⊆ V×V is the set of arcs (edges), and
A ∈ {−1, 0, 1}N×N is the adjacency matrix of the weighted
graph G. An arc (j, i) belongs to E if and only if Aij 6= 0
and when so it may have either weight 1 or weight −1. As
the graph is undirected, (i, j) belongs to E if and only if
(j, i) ∈ E , and they have the same weight (equivalently A
is a symmetric matrix). Since the adjacency matrix uniquely
identifies the graph, in the following G(A) will denote the
graph having A as adjacency matrix.

The graph G is complete if, for every pair of nodes (i, j),
i, j ∈ V , there is an edge connecting them, namely (i, j) ∈ E .
If so, E = V × V and A ∈ {−1, 1}N×N . This will be our
steady assumption in the paper. Two vertices i and j are
friends (enemies) if the edge connecting them has positive
(negative) weight. Given 3 distinct vertices i, j and k ∈ V ,
the triad (i, j, k) is called balanced [4] if [A]ij [A]jk[A]ki =
1 and unbalanced if [A]ij [A]jk[A]ki = −1.

A graph G is said structurally balanced if it polarizes in
two factions of nodes such that nodes in the same faction are
friends and nodes from different factions are enemies. The
following result easily follows from Lemma 2.2 in [12].

Proposition 1. Given a matrix X ∈ {−1, 1}N×N , with
unitary diagonal entries, the following facts are equivalent:

i) X = xx>, for some vector x ∈ {−1, 1}N ;
ii) rank(X) = 1;

iii) the graph G(X) is structurally balanced;
iv) all triads of distinct vertices in G(X) are balanced.

In the following we will say that X is structurally balanced
if G(X) is structurally balanced.

II. THE BINARY HOMOPHILY MODEL

Given a group of N ≥ 3 agents, we let xij(t) denote the
opinion that agent i has of agent j at the time instant t. We
assume that for every i, j ∈ [1, N ], xij(t) ∈ {−1, 1}, where

xij(t) =

{
1, if i has a good opinion of j;
−1, if i has a bad opinion of j.

We also assume that xji(t) = xij(t). For every pair
(i, j), i 6= j, we introduce the sets

Aij(t) := {k ∈ [1, N ], k 6= i, j : xik(t)xjk(t) = 1},
Dij(t) := {k ∈ [1, N ], k 6= i, j : xik(t)xjk(t) = −1},

representing the sets of agents, distinct from i and j, on
which i and j agree or disagree, respectively, at time t. We
assume that the relations between pairs of agents are updated
according to the following binary homophily model, that is:

xij(t+ 1) =


1, if |Aij(t)| > |Dij(t)|;
−1, if |Aij(t)| < |Dij(t)|;
xij(t), otherwise.

(1)

This amounts to assuming that i and j at time t + 1 will
have a good opinion of each other if at time t they agree
in their evaluations of most of the other agents. They will
have a bad opinion of each other if, on the contrary, they
disagree on most of the other elements of the group. If,
finally, their opinions coincide on exactly half of the other
agents (something that is possible only if the overall number
of agents, N , is even) they will keep their mutual evaluations
unchanged. The binary homophily model can be equivalently
described as:
xij(t+ 1) ={

sign
(∑

k 6=i,j xik(t)xjk(t)
)
, if

∑
k 6=i,j xik(t)xjk(t) 6= 0;

xij(t), if
∑

k 6=i,j xik(t)xjk(t) = 0.
(2)

So, if X(t) denotes the N × N symmetric matrix with
entries in {-1,1} whose (i, j)-th entry is xij(t), the binary
homophily model can be expressed in matrix form as

X(t+ 1)

=sign
[(

X(t)− diag(X(t))
)(

X(t)− diag(X(t))
)>

+ αX(t)
]

(3)
with α arbitrary in (0, 1). The entries αxij(t)
of the term αX(t) are irrelevant when [(X(t) −
diag(X(t)))(X(t) − diag(X(t)))>]ij is nonzero, while for
[(X(t) − diag(X(t)))(X(t) − diag(X(t)))>]ij = 0 they
ensure that xij(t+ 1) = xij(t).

Remark 2. It is worth noticing that, after the first iteration
of the binary homophily model, the matrix X(t) is not
only symmetric but also with unitary diagonal elements, i.e.
X(1) = X(1)> and xii(1) = 1, ∀i ∈ [1, N ]. So, if we define

SN
1 := {M = M> ∈ {−1, 1}N×N: [M]ii = 1,∀i ∈ [1, N ]},
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then ∀ X(0) = X(0)> ∈ {−1, 1}N×N , X(t) ∈ SN
1 ,

∀t ≥ 1.

If we assume X(0) ∈ SN
1 then, ∀t ≥ 0, diag(X(t)) = IN

and [X(t)−diag(X(t))]> = X(t)−IN . Therefore, under this
assumption, the binary homophily model can be equivalently
rewritten as

X(t+ 1) = sign
(

(X(t)− IN )2 + αX(t)
)

= sign
(

(X(t))2 + βX(t) + IN

)
,

where β := −2 + α is any real number in (−2,−1).
Moreover, by noticing that [X(t)2 + βX(t) + IN ]ii = N +
β + 1, ∀t ≥ 0, and N ≥ 3, it directly follows that[
sign

(
(X(t))2+βX(t)+IN

)]
ii
=
[
sign

(
(X(t))2+βX(t)

)]
ii
.

Since the identity matrix does not play any role in the
calculation of the off-diagonal entries of the matrix X(t),
the binary homophily model (under the assumption that
X(0) ∈ SN

1 ) can be rewritten as:

X(t+ 1) = sign
(

(X(t))2 + βX(t)
)
, (4)

−2 < β < −1.
In the rest of the paper we will steadily assume X(0) ∈ SN

1

and hence we will make use, equivalently, of the update
equations (2) and (4).

III. EQUILIBRIUM POINTS CHARACTERIZATION AND
STRUCTURALLY BALANCED EQUILIBRIUM POINTS

A matrix X∗ ∈ SN
1 is an equilibrium point for the binary

homophily model if

X(0) = X∗ ⇒ X(t) = X∗, ∀t ≥ 0.

From (2) we deduce that X∗ ∈ SN
1 is an equilibrium point

if and only if the following condition holds.

Proposition 3. A matrix X∗ ∈ SN
1 is an equilibrium point

if and only if X∗ = sign((X∗)2 −X∗).

Proof: We preliminarily notice that, as a result of (2)
and of the previous remark, X∗ is an equilibrium point for
the binary homophily model if and only if ∀i, j ∈ [1, N ],
one has:

i 6= j and
∑
k 6=i,j

x∗ikx
∗
jk 6= 0 ⇒ x∗ij = sign

(∑
k 6=i,j

x∗ikx
∗
jk

)
,

i = j ⇒ x∗ii = 1. (5)

On the other hand, for every X∗ ∈ SN
1 condition

X∗ = sign((X∗)2 − X∗) can be equivalently expressed,
for every i, j, i 6= j, as

[(X∗)2 −X∗]ij =
∑
k

x∗ikx
∗
jk − x∗ij

= x∗iix
∗
ij + x∗ijx

∗
jj +

∑
k 6=i,j

x∗ikx
∗
jk − x∗ij = x∗ij +

∑
k 6=i,j

x∗ikx
∗
jk.

By making use of these preliminary remarks we can prove
the result.

Necessity: Let us assume that X∗ is an equilibrium point
for the binary homophily model. Then, by making use of
the characterization (5), we get [(X∗)2 − X∗]ii = N − 1,
therefore sign([(X∗)2 −X∗]ii) = 1 = x∗ii. For the off-
diagonal entries we distinguish the following two cases:

a)
∑
k 6=i,j

x∗ikx
∗
jk 6= 0 b)

∑
k 6=i,j

x∗ikx
∗
jk = 0.

a) If
∑

k 6=i,j x
∗
ikx
∗
jk > 0 then x∗ij = 1. On the other hand,

[(X∗)2 −X∗]ij = x∗ij +
∑
k 6=i,j

x∗ikx
∗
jk > 0

from which it follows that [sign((X∗)2 − X∗)]ij = 1 =
x∗ij . Analogous calculations can be done to verify the case∑

k 6=i,j x
∗
ikx
∗
jk < 0.

b) If
∑

k 6=i,j x
∗
ikx
∗
jk = 0 then

[(X∗)2 −X∗]ij = x∗ij +
∑
k 6=i,j

x∗ikx
∗
jk = x∗ij .

Thus, [sign((X∗)2 −X∗)]ij = x∗ij .
Therefore, if X∗ is an equilibrium point, then X∗ =
sign((X∗)2 −X∗).

Sufficiency: Let us suppose that the matrix X∗ ∈ SN
1

satisfies X∗ = sign((X∗)2−X∗). We will show that X∗ is an
equilibrium point for the binary homophily model, namely its
entries satisfy the characterization (5). Consider the identity

[(X∗)2 −X∗]ij = x∗ij +
∑
k 6=i,j

x∗ikx
∗
jk.

We distinguish the following cases:
- If

∑
k 6=i,j x

∗
ikx
∗
jk ≤ −2, since

x∗ij = sign
(
x∗ij +

∑
k 6=i,j

x∗ikx
∗
jk

)
(6)

we get x∗ij = −1.
- If

∑
k 6=i,j x

∗
ikx
∗
jk ≥ 2 from (6), we get x∗ij = 1.

- If
∑

k 6=i,j x
∗
ikx
∗
jk = −1, it could not happen that x∗ij = 1,

otherwise one would get x∗ij +
∑

k 6=i,j x
∗
ikx
∗
jk = 0, and

so (6) could not hold, against the hypothesis. Therefore
it must be x∗ij = −1. An analogous reasoning applies to∑

k 6=i,j x
∗
ikx
∗
jk = 1, in which case x∗ij = 1 is obtained.

So, every time
∑

k 6=i,j x
∗
ikx
∗
jk 6= 0 we have x∗ij =

sign
(∑

k 6=i,j x
∗
ikx
∗
jk

)
, and this proves that X∗ is an equi-

librium point. �

Remark 4. If X∗ ∈ SN
1 is such that G(X∗) is structurally

balanced, i.e. (see Proposition 1) there exists x ∈ {−1, 1}N
such that X∗ = xx>, then the condition expressed in
Proposition 3 is trivially satisfied.

For certain values of N , we can show that networks of N
agents admit only structurally balanced equilibrium points.

Proposition 5. Given a network of N agents, with N ∈
{3, 4, 5, 7}, if X∗ is an equilibrium point for the binary
homophily model, then G(X∗) is structurally balanced.
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Proof: We will prove this statement for N = 3, 5, 7,
i.e., N = 2p+ 1 and p ∈ [1, 3], by contrapositive. The proof
of the case N = 4 is similar and hence omitted. If G(X∗)
is not structurally balanced then (see Proposition 1) there
exists at least an unbalanced triad in G(X∗). Without loss of
generality we will assume that (1, 2, 3) is such a triad. Two
cases may occur as Fig. 1 illustrates:

Fig. 1. Unbalanced triads. On the left: a triad with a single negative arc
(case a)). On the right: a triad with three negative arcs (case b)).

a) There is only one negative edge in (1, 2, 3). Without loss
of generality we will suppose that x∗12 = −1, x∗13 = 1, x∗23 =
1. Since x∗12 = −1, it must hold that

∑
k 6=1,2 x

∗
1kx
∗
2k ≤ 0.

Moreover, as x∗13x
∗
23 = 1, it must hold that

∑
k≥4 x

∗
1kx
∗
2k ≤

−1. Let us define D12, the set of agents on which agents 1
and 2 disagree, namely:

D12 := {k 6= 1, 2 : x∗1kx
∗
2k = −1}.

It holds that D12 ⊆ [4, N ] = [4, 2p + 1] and |D12| ≥
d 2p−12 e = p, where dxe denotes the smallest integer greater
than or equal to x. On the other hand, since x∗13 = 1, x∗23 = 1
and x∗12 = −1 (and so x∗23x

∗
12 = −1), then the set of agents

on which agents 1 and 3 agree, namely

A13 := {k 6= 1, 3 : x∗1kx
∗
3k = 1},

is such that A13 ⊆ [4, 2p + 1] and |A13| ≥ p. Keeping in
mind that D12 ⊆ [4, 2p + 1],A13 ⊆ [4, 2p + 1], |D12| ≥
p, |A13| ≥ p and that |[4, 2p + 1]| = 2p − 2, it holds that
|D12 ∩ A13| ≥ 2. Moreover, ∀k ∈ D12 ∩ A13 we have that
x∗1kx

∗
2k = −1, x∗1kx

∗
3k = 1, from which it follows that ∀k ∈

D12 ∩ A13, x∗2kx
∗
3k = −1.

Finally, since x∗23 = 1, the set of the agents on which agents
2 and 3 share the same opinion, A23, is such that A23 ⊆
[4, N ] \ (D12 ∩A13) and |A23| ≥ p, but |[4, 2p+ 1] \ (D12 ∩
A13)| ≤ (2p − 2) − 2 = 2p − 4 and for p ∈ [1, 3], the
condition p ≤ |A23| ≤ 2p−4 is impossible. This contradicts
the fact that x∗23 = 1 satisfies the equilibrium condition.

b) All the edges in the triad (1, 2, 3) are negative. Fol-
lowing a reasoning analogous to the one in a), we can show
that D12 ⊆ [4, 2p+ 1] and |D12| ≥ p. Similarly, the set D13

of the agents about which agents 1 and 3 disagree must be
such that D13 ⊆ [4, 2p + 1] and |D13| ≥ p. But this leads
to conclude that the set D23 of the agents on which agents
2 and 3 disagree satisfies the condition p ≤ |D23| ≤ 2p− 4
that cannot be true for p ∈ [1, 3], thus contradicting the fact
that X∗ is an equilibrium point. �

IV. (V,Σ)-FACTORIZATION

In this section we propose an equivalent representation
for the matrices in SN

1 that allows us to derive additional
conditions for the analysis of the equilibrium points of the
binary homophily model.

Lemma 6. Given X ∈ SN
1 , there exist a permutation

matrix P ∈ {0, 1}N×N , positive integers k and ni, vectors
vi ∈ {−1, 1}ni , i ∈ [1, k], with

∑k
i=1 ni = N , and Σ ∈ Sk

1 ,
such that

P>XP = VΣV>, where V := v1 ⊕ · · · ⊕ vk. (7)

Proof: We preliminarily notice that, given X ∈ SN
1 , it

is always possible to select distinct rows of X such that
all the other rows are either identical to or the opposite
of one of them. This means that ∀ X ∈ SN

1 ,∃k ≤ N ,
B ∈ {−1, 1}k×N , whose rows are pairwise linearly inde-
pendent, and a matrix A ∈ {−1, 0, 1}N×k, of rank k, whose
rows are signed canonical vectors, such that X = AB.

Without loss of generality we can choose a permutation
matrix P such that

P>XP = [v1 ⊕ · · · ⊕ vk]

 b>1
. . .
b>k

 , (8)

where vi ∈ {−1, 1}ni , i ∈ [1, k], ni ≥ 1,
∑k

i=1 ni = N ,
and bi ∈ {−1, 1}N , i ∈ [1, k]. Partitioning the vectors bi in
blocks, according to the block partitioning of the matrix on
the left in the above factorisation, we get b>1

. . .
b>k

 =

 v>11 v>12 . . . v>1k
. . . . . . . . . . . .
v>k1 v>k2 . . . v>kk

 , (9)

with vij ∈ {−1, 1}nj . We notice that, since X ∈ SN
1 ,

P>XP ∈ SN
1 as well. Therefore the diagonal blocks of

dimension ni, i ∈ [1, k], of the matrix P>XP belong to Sni
1 ,

and this implies vi = vii for every i ∈ [1, k]. Putting together
(8) and (9) and making use of the symmetry of P>XP, we
also obtain viv

>
ij = (vjv

>
ji)
>,∀i, j ∈ [1, k], i 6= j, and due

to the fact that the vector components are either 1 or −1,
it must be that either (a) vji = vi and vij = vj or (b)
vji = −vi and vij = −vj . In light of these considerations
we assume vij = σijvj , with σij ∈ {−1, 1} and it must
be σij = σji. Therefore we have P>XP = VΣVT , where
V := v1 ⊕ · · · ⊕ vk ∈ {−1, 0, 1}N×k and

Σ =


1 σ12 . . . σ1k
σ21 1 . . . σ2k

...
...

. . .
...

σk1 σk2
... 1

 ∈ Sk
1 .

�
In the following, we will refer to the factorization (7) as

a (V,Σ)-factorization. As shown in Lemma 6, every matrix
X ∈ SN

1 admits a (V,Σ)-factorization, modulo a suitable
permutation of its rows and columns, and we will provide
characterisations of the matrices X∗ ∈ SN

1 that represent
equilibrium points of the binary homophily model in terms of
the matrix Σ and of the sizes ni of the vectors vi appearing
in V involved in any such factorisation. On the contrary, the
specific entries of the vectors vi will play no role.
Finally, note that the permutation matrix P such that
P>X∗P = VΣV> is not relevant when providing such
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a characterisation, since X∗ is an equilibrium point if and
only if P>X∗P is an equilibrium point. Therefore in the
following we will assume, for the sake of simplicity, X∗ =
VΣV>.

We now propose a graph interpretation of a (V,Σ)-
factorization. To this aim it is worth noticing that the identity
X∗ = VΣV> can be equivalently expressed as

X∗ =


v1v

>
1 σ12v1v

>
2 . . . σ1kv1v

>
k

σ12v2v
>
1 v2v

>
2 . . . σ2kv2v

>
k

...
...

. . .
...

σ1kvkv>1 σ2kvkv>2 . . . vkv>k

 . (10)

From this expression one deduces that the product viv
>
i , i ∈

[1, k], corresponds to a structurally balanced subclass, let us
call it Ci, of cardinality ni = dim(vi), in the graph G(X∗).
Based on the sign of the entries of vi, the class Ci splits into
two adverse factions, CiA and CiB , each of them consisting
of agents that are friends. On the other hand, σij can be
interpreted as the relation between agents in class Ci and
agents in class Cj . Specifically, all agents in a faction CiA are
friends [enemies] of all agents of CjA and enemies [friends]
of all agents of CjB provided that σij is positive [negative],
and the same statement holds true if the suffixes A and
B are swapped. As a result, in the partition of G(Σ) thus
obtained, ∀i, j ∈ [1, k], G(Ci ∪ Cj) is structurally balanced,
in turn. Figure 2 is a graphical representation of what has
just been stated above. As the graph G(X∗) is complete
and unweighted we will draw only the positive edges within
the vertices of each class Ci, while negative edges will be
omitted. Self-loops will always have weight 1 and will be
omitted, in turn. Arcs between two distinct classes Ci and
Cj will be represented by means of the parameter σij , as a
result of the previous interpretation.

Fig. 2. Graphic representation of G(VΣV>).

We now introduce a technical lemma that will be used in
the following.

Lemma 7. Let vi ∈ {−1, 1}ni , i ∈ [1, k], and set V =
v1 ⊕ · · · ⊗ vk. Then for every Φ ∈ Sk

1 and every matrix
Ψ ∈ Rk×k, VΦV> = sign(VΨV>) ⇐⇒ Φ = sign(Ψ).

Proof: For every i, j ∈ [1, N ] we have e>i VΦV>ej =
sign(e>i VΨV>ej) if and only if ∀`, s ∈ [1, k],
∀r ∈ [1, n`], p ∈ [1, ns] condition [v`]re

>
` Φes[vs]p =

sign([v`]re
>
` Ψes[vs]p) holds, which means that ∀`, s ∈

[1, k] we have e>` Φes = sign(e>` Ψes). �

The following proposition provides a condition on a ma-
trix X0 ∈ SN

1 that guarantees that the binary homophily

model starting from X0 converges to a structurally balanced
equilibrium point in one step. Such a condition relies on the
matrix Σ involved in a (V,Σ)-factorization of X0.

Proposition 8. Consider a matrix X0 ∈ SN
1 and a (V,Σ)-

factorization of X0, i.e., X0 = VΣV>, where V := v1 ⊕
v2 · · · ⊕ vk, vi ∈ {−1, 1}ni , i ∈ [1, k],

∑k
i=1 ni = N , and

Σ ∈ Sk
1 . Set

N := V>V = n1 ⊕ n2 ⊕ · · · ⊕ nk. (11)

If Σ satisfies

sign

(
ΣNΣ− 3

2
Σ

)
= ww> (12)

for some w ∈ {−1, 1}k, then sign
(
X2

0 − 3
2X0

)
=

Vww>V>. Therefore the binary homophily model starting
from X(0) = X0 converges in one step to the structurally
balanced equilibrium point X∗ = vv>, where v := Vw. In
particular, if all entries of ΣNΣ− 3

2Σ are positive then the
equilibrium point is X∗ = vv>, where v := V1k.

Proof: By Lemma 7, if identity (12) holds then

Vww>V> = sign
(
VΣNΣV> − 3

2
VΣV>

)
= sign

(
VΣV>VΣV> − 3

2
VΣV>

)
= sign

(
X2

0 −
3

2
X0

)
.

On the other hand, the binary homophily model (4) for
β = −3/2 leads to saying that X(1) = sign

(
X(0)2 −

3
2X(0)

)
. Therefore if X(0) = X0 then X(1) = (Vw)

(Vw)>, and this concludes the proof. �

The following proposition states that when dealing with
binary homophily models of size N = 4, every X0 ∈ S4

1

is either a (structurally balanced) equilibrium point or it
converges in one step to a structurally balanced equilibrium
point (see Proposition 5).

Proposition 9. For every X0 ∈ S4
1 , the matrix X∗ :=

sign
(
X2

0 − 3
2X0

)
is an equilibrium point for the binary

homophily model, and hence it is structurally balanced.

Proof: If X0 is structurally balanced, then X0 is already
an equilibrium point, and hence if we assume X(0) = X0

then, by adopting model (4) with β = −3/2, we get X0 =
X(1) = sign

(
X(0)2 − 3

2X(0)
)
.

Suppose, now, that X0 is not structurally balanced, and hence
it admits a (V,Σ)-factorization X0 = VΣV>, with Σ ∈
Sk
1 for some k ∈ {2, 3, 4} not structurally balanced. We

first note that all matrices in S2
1 are structurally balanced,

and hence we have to rule out the case k = 2 because it
would correspond to a structurally balanced Σ and hence to
a structurally balanced X0. For k = 3 assume w.l.o.g. that

N =

1
1

2

 .
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It is straightforward to prove that if Σ ∈ S3
1 is not structurally

balanced, then

sign

(
ΣNΣ− 3

2
Σ

)
=

 1 −σ12 σ13
−σ12 1 σ23
σ13 σ23 1


and this is a structurally balanced matrix. Therefore
sign

(
ΣNΣ− 3

2Σ
)

= ww> for some w ∈ {−1, 1}3. So,
by applying Proposition 8 we obtain the result.
Finally, if k = 4 (and hence N = I4), it can be proved that if
Σ is not structurally balanced then there exists w ∈ {−1, 1}4
such that Σ = 2I4 −ww>. But then

sign

(
Σ2 − 3

2
Σ

)
= sign[(2I4 −ww>)2 − 3

2
(2I4 −ww>)]

= sign(I4 +
3

2
ww>) = ww>.

Therefore, by applying again Proposition 8, we obtain the
result. �

V. NOT STRUCTURALLY BALANCED EQUILIBRIA

For N ≥ 6 there exist equilibrium points X∗ ∈ SN
1

associated to a not structurally balanced graph G(X∗). In the
following we provide an example for the binary homophily
model of dimension N = 6.

Example 1. It is easy to verify that

X∗ =


1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 1 −1 −1
1 −1 1 1 −1 1
−1 1 −1 −1 1 −1
−1 −1 −1 1 −1 1

 ∈ S6
1

satisfies the condition given in Proposition 3, and therefore it
is an equilibrium point. It is worth noticing that rank(X∗) =
3 (and hence X∗ is not structurally balanced, see Proposition
1) and P>X∗P = VΣV>, where V := v1⊕v2⊕v3, with

v1 =

[
1
1

]
, v2 = v3 =

[
1
−1

]
, Σ =

1 1 1
1 1 −1
1 −1 1

 .
Proposition 10 below states a necessary and sufficient condi-
tion for X∗ to be an equilibrium point in terms of any matrix
Σ involved in a (V,Σ)-factorization of X∗.

Proposition 10. A matrix X∗ ∈ SN
1 is an equilibrium point

for the binary homophily model if and only if

Σ = sign(ΣNΣ−Σ), (13)

where Σ ∈ Sk
1 is the matrix Σ involved in a (V,Σ)-

factorization of X∗, N is defined as in (11) and n1, . . . , nk

are the sizes of the vectors vi appearing in V.

Proof: By Proposition 3, X∗ is an equilibrium point
if and only if X∗ = sign((X∗)2 −X∗). From the identity
X∗ = VΣV>, the previous equilibrium condition can
be equivalently written as VΣV> = sign(V(ΣV>VΣ −
Σ)V>). By Lemma 7, this identity is true if and only if (13)

holds. Therefore X∗ is an equilibrium point if and only if
(13) holds. �

As a consequence of Proposition 10, we can show that
if Σ ∈ S3

1 satisfies (13), it is always possible to find an
equilibrium network X∗ and a matrix V such that X∗ =
VΣV>. The proof is omitted due to page constraints.

Proposition 11. If Σ ∈ S3
1 , then one can always find positive

integers n1, n2, n3 such that

Σ = sign(ΣNΣ−Σ), (14)

where N := n1 ⊕ n2 ⊕ n3.

VI. CONCLUSIONS

In this paper a binary discrete time homphily model for
the opinion dynamics in social networks has been proposed.
Necessary and sufficient conditions for a configuration to be
an equilibrium point have been provided and we have shown
that all structurally balanced configurations are equilibrium
points. However there can be also structurally unbalanced
equilibrium points. Upon introducing the (V,Σ)-factorization
for the class of symmetric matrices with entries in {−1, 1}
and unitary diagonal entries, we have provided a new charac-
terization of all the equilibrium points. This has also allowed
us to show that social networks of sufficiently large size N
always exhibit equilibrium points whose graph splits into
three structurally balanced classes.
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