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a b s t r a c t 

Recently a model for the interplay between homophily-based appraisal dynamics and influence-based 

opinion dynamics has been proposed. The model explores for the first time how the opinions of a group 

of agents on a certain number of issues/topics is influenced by the agents’ mutual appraisal and, con- 

versely, the agents’ mutual appraisal is updated based on the agents’ opinions on the various issues, 

according to a homophily model. In this paper we show that a simplified (and, in some situations, more 

feasible) version of the model, that accounts only for the signs of the agents’ appraisals rather than for 

their numerical values, provides an equally accurate and effective model of the opinion dynamics in small 

networks. The equilibria reached by this model correspond, almost surely, to situations in which the 

agents’ network is complete and structurally balanced. On the other hand, we ensure that such equlibria 

can always be reached in a finite number of steps, and, differently from the original model, we rule out 

other types of equilibria that correspond to disconnected social networks. 

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the last few decades, the modelling and analysis of so- 

iological phenomena have attracted the interests of researchers 

rom various fields, such as sociology, economics, and mathematics 

3,9,10,15] . In several cases, sociological models represent the pri- 

ary focus of the investigation, but there are numerous contexts, 

uch as product promotion, spread of diseases, resource allocation, 

tc., where social dynamics represents the context in which other 

henomena evolve. Consequently, understanding its behaviour rep- 

esents a preliminary but fundamental step in order to investigate 

nd understand the evolution of the process of interest [1,17] . As a 

esult, it becomes of great importance to build a reliable model for 

he social dynamics, that allows to forecast the network evolution 

nd thus to design strategies aimed at driving the network towards 

he desired configuration [22] . Dynamic social balance theory is 

oncerned with the study and analysis of the evolution of socially 

nbalanced networks towards socially balanced ones, namely net- 

orks in balanced configurations in which all the agents split in 

at most) two groups in such a way that all the agents in the 

ame group have friendly relationships, while agents from differ- 

nt groups have not [12,14] . 
∗ Corresponding author. 

E-mail addresses: giulia.depasquale@phd.unipd.it (G. De Pasquale), 

eme@dei.unipd.it (M.E. Valcher) . 
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Even if, from a modeling perspective, the study of social bal- 

nce has rather remote origins, as witnessed by the pioneering 

orks of Heider [14] , Cartwright and Harary [11,12] , DeGroot [7] , 

he dynamic social balance theory represents an active and timely 

esearch topic. In this regard we mention the recent works of Mei 

t al. [19] in which two dynamical models based on two differ- 

nt social mechanisms, the homophily mechanism and the influ- 

nce mechanism, are proposed. In the homophily mechanism, in- 

ividuals update their mutual appraisals based on their appraisals 

f the other group members. In the influence mechanism, instead, 

ach agent attributes an influence to the other network members, 

ased on the appraisal that the agent has about them. Reference 

19] shows that both mechanisms drive the network towards so- 

ial balance, but the homophily mechanism gives a more general 

xplanation for the emergence of the social balance with respect 

o the influence one. 

A relevant contribution to the dynamic social balance anal- 

sis is the one from Quattrocchi et al. [23] whose model 

akes into account the presence of media and gossip as sep- 

rate mechanisms. Another inspiring work in which a so- 

iological mathematical model, including two coexisting so- 

ial mechanisms, is studied, is the recent work from Liu 

t al. [16] . 

In [16] a novel model in which the interpersonal appraisals and 

he individual opinions evolve according to an intertwined dynam- 

cs has been proposed for the first time. In the proposed state 

pace model, the authors assume as state variables both the in- 
rved. 

https://doi.org/10.1016/j.ejcon.2022.100675
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2022.100675&domain=pdf
mailto:giulia.depasquale@phd.unipd.it
mailto:meme@dei.unipd.it
https://doi.org/10.1016/j.ejcon.2022.100675
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erpersonal appraisals and the agent’s opinions, namely the opin- 

ons of the agents on a specific selection of topics. Specifically, the 

odel relies on the assumption that the opinion that an agent 

as on a particular issue is the (signed) weighted average of the 

pinions that all the other agents have on that issue, where the 

eights are the appraisals that the agent has about each of them. 

t the same time, the interpersonal relationship of an agent pair 

epends on the comparison between the opinions that the two 

gents have about all the topics into play, thus following a ho- 

ophily mechanism. This model can be interpreted as a mathe- 

atical formalization of a form of cognitive bias known in psychol- 

gy as “bandwagon bias” [21] , by this meaning that our opinions 

n topics and issues are influenced by the opinions that other indi- 

iduals have on the same topics and by the relationships we have 

ith those individuals. Bandwagon bias results in an intertwined 

ynamics involving both a homophily mechanisms for the inter- 

ersonal relationships and an influence mechanism for the agents’ 

pinions. This is in line with the fact that, in real life, interpersonal 

ppraisals influence individual opinions and viceversa. Another dy- 

amical model that studies how cognitive bias drives the formation 

f social influences can be found in [4] . 

Inspired by [16] we propose here a mixed-binary and real- 

alued version of the aforementioned model, by this meaning that 

hile we assume that the agent’s opinions take (positive or nega- 

ive) real values, that represent their levels of appreciation or dis- 

ike of each specific issue, we do not quantify the level of mu- 

ual appraisal, but only take into account whether the mutual re- 

ationships between pairs of agents are friendly or hostile. This 

implified assumption has been adopted in our previous work [8] , 

s well as in the works of Cisneros-Velarde et al. [5] and of Mei

t al. [18] in which mutual appraisals are treated as binary vari- 

bles. In particular, in [18] the evolution of a signed unweighted 

on-all-to-all network towards the straightforward generalization 

f the concept of structural balance has been proposed, thus lead- 

ng to the graph-theoretical concept of “triad-wise structural bal- 

nce”, where each agent’s ego-networks satisfies the structural bal- 

nce property. This discrete-time “gossip-like” model enjoys the 

roperty of convergence towards a non-all-to-all structural bal- 

nce configuration, while the structure of the associated graph 

s time invariant, since only the signs of the weights change. In 

5] a network formation game, in which pairs of rational indi- 

iduals strategically change the signs of the edges in a complete 

etwork is proposed. The game is shown to strategically reduce 

he cognitive dissonance in the network along time, by driving 

he network towards clustering balance [6] . The motivation be- 

ind the study of the dynamical evolution of unweighted signed 

ocial networks, that units the aforementioned works, comes from 

he fact that there are many circumstances in which recognizing 

he type (friendly or hostile) of relationship between individuals 

s easy, while assessing its intensity is complicated and prone to 

odel errors. In fact, while individual evaluations of certain prod- 

cts or their opinions on certain topics can be easily obtained, 

ttributing numerical values to the mutual appraisals is more 

hallenging and oftentimes individuals prefer to not even reveal 

hem. 

We show that our simpler model retains all the good properties 

f the model proposed in [16] both in terms of transient behaviour 

nd convergence to structurally balanced equilibria, meanwhile 

trengthening some of the results derived for that model. In partic- 

lar, our model exhibit only two types of long term behavior: ei- 

her the social network converges in finite time towards a socially 

alanced all-to-all equilibrium or asymptotically converges to zero. 

ther equilibrium structures, that arise for the model in [16] and 

hat correspond to the case when the group of agents splits into 

isconnected structurally balanced subnetworks, are ruled out by 

ur model assumptions, which are designed for small networks. In 
2 
uch contexts, getting an all-to-all equilibrium network is realis- 

ic and, as it will be clear from simulations, the situation when a 

tructurally balanced equilibrium cannot be found and all individ- 

als eventually weaken their opinions and appraisal to avoid long 

erm conflicts (see [3] ) is a very rare occurrence. 

The paper is organized as follows: in Section 2 the model 

s introduced and its equilibrium conditions are studied, 

ection 3 deals with the finite time behaviour of the model, 

hile in Section 4 its asymptotic convergence properties are 

tudied. Section 6 concludes the paper. 

Notation . Given k, n ∈ Z , with k < n , the symbol [ k, n ] denotes

he integer set { k, k + 1 , . . . , n } . We let e i denote the i -th vector of

he canonical basis of R 

n , where the dimension n will be clear from 

he context. The vectors 1 n and 0 n denote the n -dimensional vec- 

ors whose entries are all 1 or 0, respectively. 

The function sgn : R 

n ×m → {−1 , 0 , 1 } n ×m is the function that

aps a real matrix into a matrix taking values in {−1 , 0 , 1 } , in ac-

ordance with the sign of its entries. 

In the sequel, the (i, j) -th entry of a matrix X is denoted either

y X i j or by [ X ] i j , while the i -th entry of a vector v either by v i or

y [ v ] i . The notation X = diag { x 1 , x 2 , . . . , x N } indicates the diagonal

atrix whose diagonal entries are x 1 , x 2 , . . . , x N . Given a matrix X ∈
 

N×N , the spectrum of X , σ (X ) , is the set of eigenvalues of X . 

An undirected and signed graph is a triple [20] G = (V, E, A ) ,

here V = { 1 , . . . , N} = [1 , N] is the set of vertices, E ⊆ V × V the

et of arcs (edges), and A ∈ {−1 , 0 , 1 } N×N the adjacency matrix of

he graph G. An arc ( j, i ) belongs to E if and only if A i j � = 0 and

hen so it may have either weight 1 or weight −1 . As the graph

s undirected, (i, j) belongs to E if and only if ( j, i ) ∈ E , and they

ave the same weight (equivalently A is a symmetric matrix). A 

equence j 1 ↔ j 2 ↔ j 3 ↔ · · · ↔ j k ↔ j k +1 is a path of length k con- 

ecting j 1 and j k +1 provided that ( j 1 , j 2 ) , ( j 2 , j 3 ) , . . . , ( j k , j k +1 ) ∈
. A closed path in which each node, except the start-end node, 

s distinct is called cycle , and a cycle of unitary length is also 

nown as self-loop . Since the adjacency matrix uniquely identifies 

he graph, in the following we will oftentimes use the notation 

(A ) to denote the graph having A ∈ {−1 , 0 , 1 } N×N as adjacency

atrix. 

The graph G is said to be complete if, for every pair of vertices 

i, j) , i, j ∈ V , there is an edge connecting them, namely (i, j) ∈ E . If

o, E = V × V and A ∈ {−1 , 1 } N×N . Given three distinct vertices i, j

nd k ∈ V , the triad (i, j, k ) is said to be balanced [5] if A i j A jk A ki =
 and unbalanced if A i j A jk A ki = −1 . 

In this work we consider undirected and signed graphs with 

nitary self loops. Therefore the adjacency matrix of the graph be- 

ongs to the set [8] 

 

N 
1 := { M ∈ {−1 , 0 , 1 } N×N : M = M 

� , M ii = 1 , ∀ i ∈ [1 , N] } . (1)

 graph G is said to be structurally balanced if it can be partitioned 

nto two factions of vertices such that edges between vertices of 

he same faction have nonnegative weights, and edges between 

ertices from different factions have nonpositive weights (see, also, 

he aforementioned concept of “triad-wise structural balance” in 

18] ). 

The following result easily follows from Lemma 2.2 in [19] . 

emma 1 (Structural balance for complete graphs) . Given a matrix 

 ∈ S N 
1 

∩ {−1 , 1 } N×N , the following facts are equivalent: 

i) X = pp 

� , for some vector p ∈ {−1 , 1 } N ; 
ii) rank (X ) = 1 ; 

ii) for every a, b ∈ [1 , N] either e � a X = e � 
b 

X or e � a X = −e � 
b 

X ; 

v) the graph G(X ) is structurally balanced; 

v) all the triads (i, j, k ) of distinct vertices in G(X ) are balanced. 

In the following we will say that X is structurally balanced if 

(X ) is structurally balanced. 
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. The model: properties, equilibrium points and periodic 

olutions 

Given a group of N agents, we denote by X (t) ∈ {−1 , 0 , 1 } N×N 

he appraisal matrix at time t of the agents, whose (i, j) -th entry 

epresents agent i ’s appraisal of agent j at time t . X i j (t ) = 1 if i has

ositive feelings towards j and X i j (t) = −1 if i has negative feel- 

ngs towards j, while X i j (t) = 0 if i chooses not rely on j in form-

ng its opinion 

1 . We assume that for each pair of agents (i, j) at

ach time instant t the appraisal is mutual, namely X i j (t) = X ji (t) 

 i, j ∈ [1 , N] , and hence X (t) is a symmetric matrix ∀ t ≥ 0 . The

undirected and signed) graph G(X ) , having X as adjacency matrix, 

epresents the appraisal network [19] . 

We assume that the agents express their opinions about a cer- 

ain number, say m , of issues. This information is collected in a 

atrix Y (t) ∈ R 

N×m , whose (i, j) -th entry is the opinion that agent

 has about the issue j at the time instant t . Y (t ) is called the opin-

on matrix at the time instant t of the social network. We assume 

hat the opinion matrix and the appraisal matrix evolve according 

o an intertwined dynamics expressed by the following equations 

 (t + 1) = sgn (Y (t) Y (t) � ) (2) 

 (t + 1) = 

1 

N 

X (t + 1) Y (t) (3) 

hat component-wise correspond to 

 i j (t + 1) = sgn 

( 

m ∑ 

k =1 

Y ik (t) Y jk (t) 

) 

(4) 

 i j (t + 1) = 

1 

N 

N ∑ 

k =1 

X ik (t + 1) Y k j (t) . (5) 

q. (5) shows that the opinion that agent i has about issue j at the

ime instant t + 1 is a (signed) weighted average of the opinions 

hat all agents have about the topic j at the time instant t , where 

he weights are the appraisals that agent i has about them at the 

ime instant t , divided by the number of agents. 

On the other hand, from Eq. (4) , we notice that the (i, j) -th en-

ry of the appraisal matrix at the time instant t + 1 , namely, the

ppraisal that agent i has about agent j at the time instant t + 1 ,

epends on the comparison between the opinions that agents i 

nd j have about all the topics at the time instant t . In particular, 

f the agents agree (resp. disagree) on a specific issue k , this will

ive a positive (resp. negative) contribution Y ik (t) Y jk (t) > 0 (resp. 

 ik (t) Y jk (t) < 0 ), in determining the relationship between i and j

t the time instant t + 1 . 

Essentially, this model captures the evolution of opinion- 

ependent time-varying graph structures. In this regard one can 

ee analogies with the pioneering work form Hagselmann-Krause 

13] , in which the closeness of opinions determines the structure 

opology of the (unweighted) interaction graph. On the other hand, 

n our model all agents potentially communicate and their opin- 

ons will rather determine the type (friendly/antagonistic) of re- 

ationship. Eqs. (2) and (3) can be grouped into a single equa- 

ion that describes the update of the opinion matrix alone and 

akes the form 

 (t + 1) = 

1 

N 

sgn (Y (t) Y (t) � ) Y (t) . (6)
1 Since we consider small-medium size networks, this formalizes the case when 

gent i knows agent j but does not find correlation between its own choices and 

gent j’s opinions, and hence chooses not to give it any weight. 

a

{  

z  

B

a

3 
Eq. (6) shows that the mathematical abstraction of the band- 

agon bias leads the intertwining between opinion dynamics and 

ppraisal dynamics to a peculiar form of opinion dynamics model. 

t is immediate to notice that if Y (0) has a zero row (a situation

hat formalizes the case when one of the agents expresses no opin- 

on on any of the m topics), then that same row remains zero in

very subsequent opinion matrix Y (t) , t ≥ 0 . Similarly, if Y (0) has

 zero column (none of the agents expresses any judgement on a 

pecific topic), that same column remains zero in all the matrices 

 (t) , t ≥ 0 . Therefore both cases are of no interest (substantially,

ne can always remove the agent and/or the topic and focus on 

he analysis of the remaining variables) and will not be considered 

n the following. 

emark 2. Compared with the model proposed and investigated in 

16] , we have modified the law that governs the appraisal matrix 

pdate and how it affects the opinion dynamics in two aspects. 

irst, we have chosen to keep into account only the signs of the 

utual appraisals, rather than their absolute values. This is moti- 

ated by the fact that, in a lot of practical situations, being able 

o assess the sign of the mutual appraisal is easier and more ro- 

ust to modeling errors with respect to determining the numer- 

cal value associated to the tie strength. Moreover, the influence 

hat agent j can have on the opinion agent i has on a certain is- 

ue does not necessarily scale with the absolute value of X i j . Sec- 

ndly, we have chosen to “give a weight” also to the fact that a 

air of agents chooses not rely on each other’s opinion, namely 

o the fact that X i j = 0 . Since we consider small-medium size net- 

orks, this formalizes the case when agent i knows agent j but 

oes not find correlation between its own choices and agent j’s 

pinions, and hence chooses not to give it any weight. In this per- 

pective, the fact that the mutual appraisal is 0 is an information 

hat should be considered and this motivates the fact that in the 

pinion dynamics update equation (5) each row is divided by the 

verall number of agents N, rather than by the absolute value of 

ts entries. It is worth noticing that, however, since the appraisal 

atrix is obtained by comparing the (real valued) opinions of the 

gents on the various topics into play, and its (i, j) -th entry is zero

nly if the opinion vectors of agents i and j are orthogonal, a zero 

ntry in the appraisal matrix is a very rare occurrence, as it will be 

onfirmed by the numerical simulations at the end of the paper. 

As we will see in the following, our model retains all the rele- 

ant features of the model investigated in [16] , and it is simpler to 

nalyse and implement. 

ssumption 1. (No zero rows/columns). In the following, we will 

teadily assume that Y (0) is devoid of zero rows/columns. 

emma 3 (No zero rows dynamics) . If Y (0) ∈ R 

N×m has no zero

ows, then for every t ≥ 0 the matrix Y (t) , obtained from the model

6) corresponding to the initial condition Y (0) , has no zero rows. 

roof. Suppose, by contradiction, that this is not the case, and let 

 0 ≥ 0 be the smallest time instant such that Y (t 0 ) has no zero

ows, but Y (t 0 + 1) has (at least) one zero row. It entails no loss of

enerality assuming that the first row of Y (t 0 + 1) becomes zero (if

ot we can always resort to a relabelling of the agents to reduce 

urselves to this case). If we set Y := Y (t 0 ) , this means that Y has

o zero rows, but 

 

� 
1 sgn ( YY 

� ) Y = 0 

� . 

et z � := e � 
1 

sgn ( YY 

� ) ∈ {−1 , 0 , 1 } 1 ×N . We observe that since the

rst row of Y is not zero then the (1,1)-entry of YY 

� is positive 

nd hence the first entry of z is 1. The remaining ones belong to 

−1 , 0 , 1 } . We distinguish two cases: either all the other entries of

 are zero (Case A) or there exist other nonzero entries in z (Case

), and in this latter case we can assume without loss of gener- 

lity (if not, we can always permute the m topics, namely the m 
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olumns of Y , to make this possible) that 

 

� = 

[
1 

∣∣ z 2 . . . z r 
∣∣ 0 . . . 0 

]
, 

z i ∈ {−1 , 1 } , 
i ∈ [2 , r] . 

ondition z � Y = 0 � implies that the columns of Y are all orthogo-

al to the vector z . In Case B this implies that Y can be expressed

s 

 = 

[ 

1 

� 
r −1 

�

∣∣ 0 

� 

0 

� 

0 

∣∣ I N−r 

] [
C a 
C b 

]
(7) 

or some matrices C a ∈ R 

(r−1) ×m and C b ∈ R 

(N−r) ×m , where � := 

diag { z 2 , . . . , z r } . On the other hand, the vector z � and the ma-

rix Y are related by the identity z � = e � 
1 

sgn ( YY 

� ) = sgn (e � 
1 

YY 

� ) ,
nd hence it must be 

1 

∣∣ z 2 . . . z r 
∣∣ 0 . . . 0 

]
= sgn 

(
1 

� 
r−1 C a 

[
C � a C � 

b 

][1 r −1 

∣∣ �
∣∣ 0 

0 

∣∣ 0 

∣∣ I N−r 

])
. 

his implies, in particular, that 

z 2 . . . z r 
]

= sgn (1 

� 
r−1 C a C 

� 
a �) , 

r, entrywise, keeping into account the definition of �: 

 i = −sgn (1 

� 
r−1 C a C 

� 
a z i e i −1 ) , ∀ i ∈ [2 , r] . 

his amounts to saying that 

gn (1 

� 
r−1 C a C 

� 
a e i −1 ) = −1 , ∀ i ∈ [2 , r] , 

amely 1 � 
r−1 

C a C 
� 
a � 0 , by this meaning that it is a vector with all

egative entries. But this would imply ‖ C � a 1 r−1 ‖ 2 = 1 � r−1 C a C 
� 
a 1 r−1 <

 , which is clearly impossible. 

We consider now Case A. If the only nonzero entry of z is 

he first one, then Y can be expressed as Y = W C 0 , where W =
 0 | I N−1 ] 

� and C 0 is a real matrix of size (N − 1) × m . By resorting

o the same reasoning as in Case B, condition z � = e � 
1 

sgn ( YY 

� ) be-

omes 

1 0 . . . 0 

]
= sgn (e 1 W C 0 C 

� 
0 W 

� ) = sgn (0 

� ) , 

hich is impossible. Therefore it is not possible that there exists 

 0 ≥ 0 such that Y (t 0 ) has no zero rows, but Y (t 0 + 1) has (at least)

ne zero row. �

Based on the preliminary remarks and Lemma 3 , we introduce 

he set [19] 

 nz−rows := { Y ∈ R 

N×m : e � i Y � = 0 

� , ∀ i ∈ [1 , N] } , 
nd in the following we will steadily assume that Y (0) ∈ S nz−rows ,

nd hence Y (t) ∈ S nz−rows for every t ≥ 0 . It is worth noticing that,

ifferently from [16] , we do not need to impose that Y (0) ∈ Y :=
 Y : Y (t) ∈ S nz−rows ∀ t ≥ 0 } , since for our model it suffices to as-

ume that Y (0) ∈ S nz−rows to guarantee that Y (t) ∈ S nz−rows , ∀ t ≥ 0 .

Note that, as a further consequence, for every t ≥ 0 , X (t + 1) =
gn (Y (t) Y (t) � ) is a symmetric matrix with unitary diagonal en- 

ries, and hence belongs to S N 1 , ∀ t ≥ 0 . 

emark 4. The case when there exists t > 0 such that the ma-

rix Y (t) has a zero column, even if Y (0) has no zero columns,

ay arise, but it is a rare occurrence. This happens if and only if 

ne of the columns of Y (t) belongs to the kernel of the matrix

 (t + 1) = sgn (Y (t ) Y (t ) � ) . This means that at the time t the col-

mn vector describing the opinions that the agents have on some 

pecific topic is such that for every agent i the sum of the opin-

ons of the agents trusted by i equals the sum of the opinions of

he agents not trusted by agent i . Since the agents’opinions are ar- 

itrary real numbers this case arises for a set of initial conditions 

 (0) having zero measure. 
4

An elementary example is represented by the case when Y (0) = 

1 ε
2 −ε

]
, where ε is nonzero and sufficiently small. Correspond- 

ngly, we get Y (1) = 

[
3 / 2 0 

3 / 2 0 

]
. 

After having explored these preliminary aspects regarding 

gents that become indifferent to all issues, or issues that become 

rrelevant to all agents, we want to investigate the existence and 

tructure of the equilibrium points for the model (2) - (3) , when 

tarting from initial opinion matrices Y (0) satisfying Assumption 

. 

efinition 5 (Equilibrium point) . A pair (Y 

∗, X 

∗) is an equilibrium

oint for the model (2) - (3) if 

 

∗ = sgn (Y 

∗(Y 

∗) � ) (8) 

 

∗ = 

1 

N 

X 

∗Y 

∗. (9) 

It is interesting to notice that the only possible nontrivial equi- 

ibrium points for the model are those that correspond to a struc- 

urally balanced configuration of the appraisal network G(X 

∗) . 
oreover, the appraisal network is necessarily complete, namely 

ach agent needs to express its appraisal towards all the other 

gents. 

roposition 6 (Equilibrium equivalence conditions) . A pair 

Y 

∗, X 

∗) � = (0 , 0 ) is an equilibrium point for the model (2) - (3) if and

nly if 

i) X 

∗ = pp 

� , for some p ∈ {−1 , 1 } N ; 
ii) Y 

∗ = p 

[
a 1 a 2 . . . a m 

]
, for some a i ∈ R , 

∑ m 

i =1 a 
2 
i 

� = 0 . 

roof. It is immediate to observe that if i) and ii) hold, then 

he identities (8) and (9) hold. Conversely, assume that the pair 

Y 

∗, X 

∗) is an equilibrium point. Then (9) holds, but this means

hat the nonzero columns of Y 

∗ are eigenvectors of 1 
N X 

∗ corre- 

ponding to the unitary eigenvalue. This means that 1 ∈ σ
(

1 
N X 

∗)
nd therefore, by Lemma 17 in the Appendix, i) holds. On the other 

and, by replacing the matrix X 

∗ in (9) with pp 

� , we obtain ii). �

emark 7. The non-trivial equilibrium points of the model are 

odulus consensus configurations, see, e.g., [16] . This is also what 

appens for equilibrium points in [3] and [16] . Moreover, when the 

odel converges to the non-trivial equlibrium configurations, the 

ign distribution of the opinions mirrors the network partition into 

actions. 

As in Altafini’s model [3] , and as it will be clear in the follow-

ng, the system dynamics either achieves modulus consensus (in a 

nite number of steps) or converges to zero (asymptotically). 

emark 8. This situation is different from the one that arises 

ith the model investigated in [5] , [16] and [18] . In [16] (see

emark 4 and section IV in [16] ) the equilibrium points identi- 

ed in the previous Proposition 6 are not the only possible ones. 

ndeed, for the model explored in [16] the case may occur that 

he matrix X 

∗ at the equilibrium corresponds to a non connected 

raph, whose connected components however achieve structural 

alance. As we will see later (see Remark 14 ), if G(X 

∗) becomes

isconnected then both the opinion matrix and the appraisal ma- 

rix converge to zero. On the other hand, for the binary model in 

18] , convergence to a non-all-to-all structurally balanced network 

s also possible while the topological structure of the associated 

raph is time invariant. Also, under some conditions, convergence 

o “two-factions” structural balance is obtained in finite time. The 

igned formation game in [5] dynamically drives the network to- 

ards clustering balance. 
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2 The expression i + 1 mod T means the remainder of i + 1 when divided by T . 
We want now to show that the model we have proposed can- 

ot exhibit periodic solutions and hence limit cycles. To prove this 

esult we need a preliminary lemma, that will be useful also for 

he subsequent analysis. 

emma 9 (Upper bounded opinion dynamics) . For every j ∈ [1 , m ]

nd every t ≥ 0 

) 

max 
 ∈ [1 ,N] 

| Y i j (t + 1) | ≤ max 
i ∈ [1 ,N] 

| Y i j (t) | . (10) 

i) Condition 

max 
 ∈ [1 ,N] 

| Y i j (t + 1) | = max 
i ∈ [1 ,N] 

| Y i j (t) | � = 0 

olds if and only if 

(a) Y (t) e j = p · μ j , ∃ p ∈ {−1 , 1 } N and μ j > 0 ; and 

(b) once we set h := argmax i ∈ [1 ,N] | Y i j (t + 1) | then e � 
h 

X (t + 1) has

o zero entries and e � 
h 

X (t + 1) = p h · p 

� . 

roof. i) From Eq. (3) it follows that 

 Y i j (t + 1) | = | 1 

N 

N ∑ 

k =1 

X ik (t + 1) Y k j (t) | ≤ 1 

N 

N ∑ 

k =1 

| X ik (t + 1) || Y k j (t) | 

≤ 1 

N 

N ∑ 

k =1 

| Y k j (t) | ≤ 1 

N 

N max 
k 

| Y k j (t) | = max 
k 

| Y k j (t) | , 

nd hence (10) holds. ii) Set h := argmax i ∈ [1 ,N] | Y i j (t + 1) | .
hen | Y h j (t + 1) | = max i ∈ [1 ,N] | Y i j (t + 1) | coincides with

ax i ∈ [1 ,N] | Y i j (t) | if and only if 

N 
 

� =1 

| X h� (t + 1) || Y � j (t) | = N · max 
i ∈ [1 ,N] 

| Y i j (t) | 

nd this is possible if and only if all the entries in the j-th col-

mn of Y (t) have the same absolute value μ j > 0 (and this leads to

a), for some suitable vector p ) and all the terms X h� (t + 1) Y � j (t) ,

 ∈ [1 , N] , have the same sign. But this latter condition means that

 

� 
h 

X (t + 1) either coincides with p 

� or with its opposite, and since

 hh (t + 1) = 1 this means that condition (b) holds. �

We are now in a position to prove the following result. 

roposition 10 (Aperiodicity in opinion dynamics) . Suppose that 

here exist t̄ ≥ 0 , T ≥ 1 and nonzero matrices ˜ Y i ∈ R 

N×m , i ∈ [1 , T ] ,

uch that 

 ( ̄t + i ) = 

˜ Y i , i ∈ [1 , T ] , and Y ( ̄t + T + 1) = 

˜ Y 1 , 

amely from t̄ + 1 onward the sequence of matrices { Y (t) } t≥t̄ +1 be-

omes periodic of period T , then T = 1 , namely the sequence becomes

onstant. 

roof. From Lemma 9 , part i), we can claim that for every j ∈
1 , m ] and every t ≥ 0 

max � ∈ [1 ,N] | Y � j (t + T + 1) | ≤ max � ∈ [1 ,N] | Y � j (t + T ) | 
≤ ... ≤ max � ∈ [1 ,N] | Y � j (t + 2) | ≤ max � ∈ [1 ,N] | Y � j (t + 1) | . 
ut since for t = t̄ we have Y ( ̄t + T + 1) = Y ( ̄t + 1) = 

˜ Y 1 and hence

he two extremes in the previous sequence of inequalities coincide, 

t follows that all the symbols ≤ are equalities, namely 

max 
 ∈ [1 ,N] 

| [ ̃  Y i ] � j | = μ j > 0 , ∀ j ∈ [1 , m ] , ∀ i ∈ [1 , T ] . 

his also implies, see Lemma 9 part ii), that, for every non zero 

olumn in 

˜ Y i , 

˜ 
 i e j = p i · μ j , ∃ p i ∈ {−1 , 1 } N , μ j > 0 , (11)

nd that, for every h ∈ [1 , N] , one has e � 
h 

sgn ( ̃  Y i ̃
 Y 

� 
i 
) = [ p i ] h · p 

� 
i 

. This

mplies that for every i ∈ [1 , T ] 

gn ([ ̃  Y i ̃
 Y 

� ]) = p i p 

� , ∃ p i ∈ {−1 , 1 } N×N . 
i i 

5 
Consequently 2 

˜ 
 (i +1 mod T ) = 

1 

N 

sgn ([ ̃  Y i ̃
 Y 

� 
i ]) ̃  Y i = 

1 

N 

p i p 

� 
i 

˜ Y i . (12) 

o, by comparing (11) and (12) one gets that every matrix ˜ Y i , i ∈
1 , T ] , takes the form 

˜ 
 i = p i 

[
a (i ) 

1 
. . . a (i ) 

m 

]
, ∃ p i ∈ {−1 , 1 } N , a (i ) 

k 
∈ R , 

ut this also implies that 

˜ 
 (i +1 mod T ) = 

1 

N 

sgn ([ ̃  Y i ̃
 Y 

� 
i ]) 

˜ Y i = 

1 

N 

sgn (p i p 

� 
i ·

∑ 

k 

[ a (i ) 
k 

] 2 ) p i 

[
a (i ) 

1 
. . . a (i ) 

m 

]
= 

1 

N 

p i p 

� 
i p i 

[
a (i ) 

1 
. . . a (i ) 

m 

]
=p i 

[
a (i ) 

1 
. . . a (i ) 

m 

]
= ̃

 Y i . 

So, all matrices ˜ Y i coincide. �

. Convergence to an equilibrium in a finite number of steps 

We want to explore under what conditions the equilibrium can 

e reached in a finite number of steps. It is easy to see that if

here exists a time instant t 0 ≥ 0 such that Y (t 0 + 1) = Y (t 0 ) � = 0

hen Y (t) = Y (t 0 ) =: Y 

∗ for every t ≥ t 0 . Consequently, also X (t)

ecomes constant starting at t = t 0 + 1 , and it coincides with X 

∗ :=
gn (Y (t 0 ) Y (t 0 ) 

� ) . 
However, the converse is not true: if the appraisal matrix be- 

omes constant at some time t 0 ≥ 0 , the opinion matrix Y (t) 

an still keep evolving for t ≥ t 0 . This situation is illustrated in 

xample 11 , below. 

As a matter of fact, if there exists a time instant t 0 ≥ 0 such

hat X (t) = X 

∗, ∀ t ≥ t 0 , we can only claim that Y (t + 1) = 

1 
N X 

∗Y (t) .

quivalently, if we denote by y j (t) , the j-th column of the matrix 

 (t) , then the dynamics expressed by Eq. (2) decomposes into m 

inear time invariant systems of the form 

 j (t + 1) = 

1 

N 

X 

∗y j (t) , ∀ j ∈ [1 , m ] . (13)

s X 

∗ ∈ S N 
1 

, the matrix X ∗
N is symmetric and hence diagonalizable. 

oreover, by Gershgorin Circle theorem, all its (real) eigenvalues 

i , i ∈ [1 , N] , satisfy 

 λi −
1 

N 

| ≤ N − 1 

N 

⇐⇒ −N − 2 

N 

≤ λi ≤ 1 , ∀ i ∈ [1 , N] . 

s a consequence, two cases may arise. The first case is the one 

epicted in Example 11 , namely the case when the systems in 

13) are asymptotically stable, which means that Y (t) asymptoti- 

ally converges to 0 (and hence lim t→ + ∞ 

X (t) = 0 � = X 

∗). 

xample 11. Let us consider the case N = m = 3 , with 

 (0) = 

[ 

1 . 41 −1 . 21 0 . 49 

1 . 42 0 . 72 1 . 03 

0 . 67 1 . 63 0 . 73 

] 

. 

t turns out that ∀ t ≥ 1 

 (t) = X 

∗ = 

[ 

1 1 −1 

1 1 1 

−1 1 1 

] 

nd σ (1 / 3 · X 

∗) = (−1 / 3 , 2 / 3 , 2 / 3) , and indeed for t ≥ 14 we have

 i j (t) = o(10 −2 ) , ∀ i, j ∈ [1 , 3] . 

The second possible situation is when 

X ∗
N is simply (but not 

symptotically) stable. This amounts to saying that 1 is a (simple) 
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igenvalue of X ∗
N , and hence by Lemma 17 , X 

∗ takes the form X 

∗ =
p 

� , ∃ p ∈ {−1 , 1 } N . In this case, the convergence is not asymptotic

ut instantaneous. In fact, it is sufficient that 1 
N X (t 0 ) becomes sim- 

ly (but not asymptotically) stable at a single time instant, to en- 

ure the instantaneous convergence of Y (t) to an equilibrium con- 

ition. 

roposition 12 (Equilibrium points characterization) . If there exists 

 0 > 0 such that 1 
N X (t 0 ) , with X (t 0 ) ∈ S N 

1 
, is simply (but not asymp-

otically) stable, then (X 

∗, Y 

∗) := (X (t 0 ) , 
1 
N X (t 0 ) Y (t 0 − 1)) is an equi-

ibrium point. 

roof. By Lemma 17 in the Appendix, we know that if 1 
N X (t 0 ) ∈ S N 

1 

s simply stable or, equivalently, 1 ∈ σ ( 1 N X (t 0 )) , then there exists a

ector p ∈ {−1 , 1 } N such that X (t 0 ) = pp 

� . On the other hand, if

 (t 0 ) = pp 

� , then 

 (t 0 ) = 

1 

N 

pp 

� Y (t 0 − 1) = p [ a 1 , . . . , a m 

] , 

here 

 a 1 , . . . , a m 

] := 

1 

N 

p 

� Y (t 0 − 1) . 

herefore (X 

∗, Y 

∗) := (X (t 0 ) , 
1 
N X (t 0 ) Y (t 0 − 1)) is an equilibrium

oint. �

emark 13. If m = 1 the model reaches the equilibrium in one 

tep. When so, in fact X (1) = sgn (Y (0) Y 

� (0)) = pp 

� , where p :=
gn (Y (0)) . Numerical simulations at the end of the paper will 

how that, when m > 1 , namely multiple topics are considered, 

onvergence to structural balance is almost surely guaranteed, and 

t occurs in a rather small number of steps even for medium size 

etworks (e.g. N = 100 ). 

emark 14. Gershgorin Circle theorem also allows to say that if X 

∗

s the adjacency matrix of a disconnected graph, all the eigenvalues 

f the matrix X ∗
N lie in the circle of the complex plane of center the 

rigin and radius N−1 
N (or smaller), and hence X ∗

N is necessarily an 

symptotically stable matrix. 

Theorem 15 summarizes the main results of this section. 

heorem 15 (Main theorem) . The following conditions are equiva- 

ent 

i) there exists a time instant t 0 ≥ 0 such that 1 ∈ σ ( 1 N X (t 0 )) ; 

ii) there exists a time instant t 0 ≥ 0 such that Y (t 0 ) = Y (t 0 + 1) ; 

ii) the opinion-appraisal dynamic model (2) - (3) converges in finite 

time to an equilibrium (X 

∗, Y 

∗) ; 
v) the opinion-appraisal dynamic model (2) - (3) converges in fi- 

nite time to an equilibrium (X 

∗, Y 

∗) , with X 

∗ = pp 

� and

Y 

∗ = p [ a 1 , . . . , a m 

] , ∃ p ∈ {−1 , 1 } N , and a i ∈ R , i ∈ [1 , m ] , with∑ m 

i =1 a 
2 
i 

� = 0 . 

roof. iv) ⇔ iii) follows from Proposition 6 . iii) ⇒ ii) is obvious,

hile the converse has been commented upon at the beginning of 

he section. i) ⇒ iv) follows from Proposition 12 , while iv) ⇒ i) is

bvious. �

. Long term behavior 

In the previous section, we have investigated what happens if 

ither Y (t) or X (t) become constant starting at some time instant. 

n the former case the overall system (2) - (3) reaches the equi- 

ibrium in a finite number of steps. In the latter case a nontrivial 

quilibrium is reached if and only if X (t) at some point becomes 

tructurally balanced. Differently the opinion matrix asymptotically 

onverges to zero. We want to investigate now if a nontrivial equi- 

ibrium can be reached asymptotically, but not in a finite number 

f steps. An immediate consequence of the analysis of the previous 
6 
ection is that if the sequence of appraisal matrices { X (t) } t≥1 does

ot converge in a finite number of steps then 

X (t) 
N is an asymptot- 

cally stable matrix for every t ≥ 1 . This means that if we define

he set 

 stable := S N 1 \ { X ∈ S N 1 : X = pp 

� , ∃ p ∈ {−1 , 1 } N } , (14)

hen X (t) ∈ S stable for every t ≥ 1 . 

roposition 16 (Zero vanishing condition) . If for every t ≥ 0 , X (t) ∈
 stable , then lim t→ + ∞ 

Y (t) = 0 . 

roof. For every j ∈ [1 , m ] , let us define μ j (t) := max i ∈ [1 ,N] | Y i j (t) | ,
nd let us introduce the (generalized) Lyapunov function for the 

ystem in Eq. (6) , V : R 

N×m → R , defined as 

 (Y (t)) := 

m ∑ 

j=1 

μ j (t) . 

e notice that V (Y ) ≥ 0 , ∀ Y ∈ R 

N×m and that V (Y ) = 0 if and only

f Y = 0 . Define �2 V (Y (t)) := V (Y (t + 2)) − V (Y (t)) . We want to

rove that �2 V (Y (t)) < 0 , ∀ t ≥ 0 . 

By Lemma 9 it immediately follows that �2 V (Y (t)) = 

 m 

j=1 μ j (t + 2) − μ j (t) ≤ 0 . We show now that there is not a time

nstant t 0 ≥ 0 such that �2 V (Y (t)) = 0 . If this were the case, in

act, this would mean that ∀ j ∈ [1 , m ] , μ j (t 0 + 2) = μ j (t 0 ) and

herefore μ j (t 0 + 2) = μ j (t 0 + 1) = μ j (t 0 ) =: μ j . As a consequence

f Lemma 9 we deduce that 

a) Y (t 0 ) e j = p j (t 0 ) μ j , ∃ p j (t 0 ) ∈ {−1 , 1 } N , Y (t 0 + 1) e j =
p j (t 0 + 1) μ j , ∃ p j (t 0 + 1) ∈ {−1 , 1 } N , 

b) ∀ h ∈ [1 , N] , e T 
h 

X (t 0 + 1) = p h p j (t 0 ) 
� , 

rom which it follows that X (t 0 + 1) = p j (t 0 ) p j (t 0 ) 
� for every j ∈

1 , m ] . But then X (t 0 + 1) = p (t 0 ) p (t 0 ) 
� with p (t 0 ) = ±p j (t 0 ) , ∀ j ∈

1 , m ] , that means that X (t 0 + 1) is structurally balanced and hence

t does not belong to S stable , thus contradicting the hypotheses. 

onsequently, it must be �2 V (Y (t)) < 0 , ∀ t ≥ 0 . Finally, by defin-

ng �1 V (Y (t)) := V (Y (t + 1)) − V (Y (t)) we get that 

2 V (Y (t)) + �1 V (Y (t)) < 0 , ∀ t ≥ 0 , 

o the thesis follows as a direct consequence of Theorem 2.1 in 

2] . �

Summarizing, Theorem 15 and Proposition 16 show that either 

here exists a time instant t 0 such that ∀ t ≥ t 0 , X (t) = pp 

� and

onsequently Y (t) = p [ a 1 , a 2 , . . . , a m 

] , a i ∈ R , 
∑ 

i a 
2 
i 

� = 0 , otherwise,

f a time instant t such that X (t) reaches the structural balance 

oes not exist, then Y (t) converges to zero as time goes to infinity.

. Simulations 

In this section we show the outcome of Monte Carlo simula- 

ions in order to validate the convergence properties of the model. 

ig. 1 shows how the average number of iterations needed in 

rder to reach a structural balanced configuration over the total 

umber of 30 0 0 0 simulations varies as a function of the number 

f topics m ∈ [1 , 10] , for networks involving N = 9 , 20 , 100 agents.

imulations are based on initial conditions Y (0) with entries in- 

ependently drawn from a Gaussian random variable with zero 

ean and standard deviation σ = 10 , namely Y i j (0) ∼ N (0 , 100) . It

urns out that, in accordance with the Chernoff bound, by running 

0 0 0 0 simulations, the estimated probability ˆ p to reach a struc- 

urally balanced configuration is equal to 1 with accuracy ε = 0 . 01 

nd confidence level 1 − δ = 0 . 99 , namely P (| ̂  p − p| ≤ ε) ≥ 1 − δ,

or the case of N = 20 , 100 agents, regardless of the number of top-

cs taken into account while ˆ p is greater than or equal to 0.98 for 

ll m ∈ [1 , 10] , for N = 9 , with the same accuracy and confidence

nterval. 
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Fig. 1. Average number of iterations, over 30 0 0 0 simulations, needed in order 

to reach a structural balance configurations for the cases N = 9 , 20 , 100 and m ∈ 
[1 , 10] . 
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. Conclusion 

In this paper we have proposed a modified version of Liu et al. 

odel [16] for the interplay between homophily-based appraisal 

ynamics and influence-based opinion dynamics. In order to up- 

ate the agents’ opinions on a numbers of issues, only the signs 

and not the values) of the agents’ mutual appraisals are used. This 

implified model retains all the main characteristics of the origi- 

al model, is simpler to analyse and implement, leads to the same 

ind of nontrivial structurally balanced equilibria as in [16] , but 

ules out nontrivial equilibria that correspond to disconnected so- 

ially balanced networks. Furthermore, nontrivial equlibria can al- 

ays be reached in a finite number of steps, while the case when 

ll opinions and appraisals converge to zero corresponds to sets of 

nitial conditions of zero measure. 
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ppendix 

emma 17 (Rank-one matrices with special structures) . Given a 

atrix M ∈ S N 
1 

, if 1 ∈ σ
(

1 
N M 

)
, then M = pp 

� for some p ∈ {−1 , 1 } N ,
nd hence M has no zero entries and σ (M ) = (0 , . . . , 0 , 1) . 

roof. Let v := 

[
v 1 v 2 . . . v N 

]� ∈ R 

N , v � = 0 , be an eigenvec-

or of 1 
N M corresponding to the unitary eigenvalue, or equivalently 

f M corresponding to N. Then Mv = Nv . Let h := argmax i ∈ [1 ,N] | v i | .
hen condition 

v h = 

N ∑ 

i =1 

M hi v i = v h + 

N ∑ 

i =1 
i � = h 

M hi v i 

olds if and only if (a) | v i | = | v h | for every i ∈ [1 , N] ; (b) M hi � = 0

or every i ∈ [1 , N] , and sgn (M hi ) sgn (v i ) = sgn (v h ) . 
7

This implies that v = p m for some p ∈ {−1 , 1 } N and some m > 0

nd e � 
h 

M = sgn (v h ) p 

� = p h p 

� . 
On the other hand, since condition (a) holds, this means that 

very index j ∈ [1 , N] is argmax i ∈ [1 ,N] | v i | , and hence all the rows

f M satisfy e � 
i 

M = p i p 

� . This implies that M = pp 

� , and the rest

mmediately follows. �
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