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Introduction

 Relations can be friendly or Hostile
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Introduction
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Introduction

 Relations can be Positive or Negative

Signed Networks
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Introduction

« People usually have a consistency in their
relationships.

« Example: Consistency in behavior at work and
outside work.
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Introduction Bob
« Sports club and work relationship w
« Variations in consistency lead to a cognitive

dissonance

N[
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Introduction

 Officially friends and privately enemies?
e Variations in consistency lead to a cognitive
dissonance

Interactions between different relations linking the
same pair of individuals
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Introduction Bob Alice
 Officially friends and privately enemies? w
« Variations in consistency lead to a cognitive

dissonance

Interactions between different relations linking the

N[

same pair of individuals

Alice

[Interactions is for the relations and not between the people] H

NS
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WUT
Outline

Social science Lens Physics Lens

Heider Balance to
multiplex networks

Simulations

Duplex network with
contrasting relationship
layers.

HB with missing links
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Heider Balance theory
e Friend of my friend is my friend A A
* Enemy of my enemy is my friend

e Friend of my enemy is my enemy ‘;E:I“a‘r";z")e“d unbalanced)
* Enemy of my friend is my enemy
fnend s enemy all agalnst all

(balanced) (unbalanced)
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Model

Assumptions: - :L’,E;I) = +1
- Each layer corresponds to a different type of relationship
- Interlayer interactions exist between different relations for the same pair of agents

Hamiltonian (Utility Potential):

L

H=— ZA(O‘) Z xf?xﬁ%:é? — K Z Za:z(]a)mgf)

a=1 1>7>k a>fp 1>]
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Model

Assumptions: - :L’,E;I) = +1
- Each layer corresponds to a different type of relationship
- Interlayer interactions exist between different relations for the same pair of agents

Hamiltonian (Utility Potential):

L

H = — ZA(O‘) Z 965?1:5?3:12?) — K Z Za:z(?)mgf)

a=1 1>7>k a>fp 1>]

d

Heider interactions
(in the layer)
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Model

Assumptions: - :L’,E;I) = +1
- Each layer corresponds to a different type of relationship
- Interlayer interactions exist between different relations for the same pair of agents

Hamiltonian (Utility Potential):

L
_ a (a) () () () (B)
H=y A wfaylnd-|K Y D v
a=1 1>7>k a>fp 1>]
Heider interactions Ising Interactions
(in the layer) ( between the layer)
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L
_ a (a) () () () (B)
H=y A wfaylnd-|K Y D v
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Heider interactions Ising Interactions
(in the layer) ( between the layer)

o« =1,2..,L indicates the layer
A = Heider interaction strength
K =Ising Interaction strength
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Model

Assumptions: - $(;I) +1

- Each layer corresponds to a different type of relationship
- Interlayer interactions exist between different relations for the same pair of agents

Hamiltonian (Utility Potential):

H:_Z IR S PP j
a=1 i>7>k a>fB i>j W.
/ N\
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Model

Assumptions: - :L’(;I) +1

- Each layer corresponds to a different type of relationship
- Interlayer interactions exist between different relations for the same pair of agents

Hamiltonian (Utility Potential):

_ (@) .(8) Layer 1
ZEN ) SECD SRR RIS ) DEL y =
a=1 1>7>k a>fp 1>]
.
Heider interactions Ising Interactions
(in the layer) ( between the layer) K
o Layer 2
«=1,2...,L indicates the layer .
A =Heider interaction strength a

K =Ising Interaction strength
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Model

Assumptions: - :L’(;I) +1

- Each layer corresponds to a different type of relationship
- Interlayer interactions exist between different relations for the same pair of agents

Hamiltonian (Utility Potential):
( Y ) [ Complete graph! ]

_ (@) .(8) Layer 1
ZEN ) SECD SRR RIS ) DEL y =
a=1 1>7>k a>fp 1>]
.
Heider interactions Ising Interactions
(in the layer) ( between the layer) K
o Layer 2
«=1,2...,L indicates the layer .
A =Heider interaction strength A

K =Ising Interaction strength
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How the connection evolve

What happens to the links when the system
evolves?
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How the connection evolve

What happens to the links when the system
?
evolves’ Temperature
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How the connection evolve

What happens to the links when the system
?
evolves’ Temperature

5/16/2024 Faculty of Physics | FENS 8



WVUT
Analytical Approach:

MEAN FIELD APPROXIMATION
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Analytical Approach:

» Replacing individual interactions with a single effective interaction representing
the average effect of the system.

MEAN FIELD APPROXIMATION

Mean Beld = +1.2
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MF Approximation :Microstate

For a duplex network

(1) (2)]

Elementary Subsystems: Pair of coupled links T;; = [%j » Lyjj

Interactions: These pairs experience interlayer interactions proportional to[(x(1))2, (2:(2))2]

The probabilities of states of this pair are described by the canonical ensemble P(Z;;)
_, 1 2 2 2

B(Tyj) = —AN = 2)a;) (@) = AW — 2)a7) (22
W (2

1] “71g

Average polarization (Tij) = Zx;.j P(x7;)Zs;

+ +

O
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exp(—FE(x7;)/T)

men exp(—E(Zmn)/T)
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Mean field solution

2O = W @) | falaD,2?) =
e?? sinh(a[(z)*+(2*)"])+ sinh(a(=1)*[(z*) "~ (=) "])

Self consistency equations:
2@ = fo(aM,2®)) | T cosh(al(z®)*F(@®))?])+cosh(al(@M)*—(2(>)7])

a = AM d = X = Re-scaled intralayer and
AM interlayer interaction strength

Observations: 1.00+
» Temperature and Polarization: Increasing temperature T N T.
leads to a continuous decrease up to x,. 0.754 . (/W' XC)
= Critical Point: At Tc, the mean polarization abruptly jumps »d =02
to zero, indicating a first-order transition. §>=<>0.50- Lo b
» Unidirectional Transition: This first-order transition ~ d=3
always goes from a polarized to an unpolarized state. 0.254
Reversed transition does not occur; bl
= Dependence on Coupling Strength K: When increasing the 0.00- e
coupling strength (K), the critical temperature (Tc) also 0.0 0.5 1.0 1.5 2.0
increases, T/AM
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WUT
Finding critical temperature

V(4 1) = fr(z1 (1), 22 (1))

Dynamical equations:
P (t+1) = fo(D (1), 22 (1))

( ) ( )
Jacobian to find
largest Eigenvalue 7 = X’ Calculate the largest value of z for a
rD = @) =y D = od fixed value of D
_ _ (2*—=1)(2*D?+42224+D?)
Ay =1 8Inz = 22(244222D2+1)
\_ J \_ J \_ J
3.0
2.5
T. _ w2 _ (L) D2(z*=1) \?
AM — Inz  \lnz D2 (z441)+222 2.0
™ 1.5-
1.04 m===—m e
0.5_ /'-i
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\VUTr
MF Approximation

Microstate

« Set of links between i and j.

e Lnumber of self consistency
equation

« Lower order ( duplex, triplex
network)

5/16/2024 Faculty of Physics | FENS 13



\VUTr
MF Approximation

« Set of links between i and j.

e L number of self consistency
equation

« Lower order ( duplex, triplex
network)

5/16/2024 Faculty of Physics | FENS 13



\VUTr
MF Approximation

e Set of links between i and j. « Number of positive links L™ among all L
e L number of self consistency links in the set.

equation * One MF equation.
« Lower order ( duplex, triplex « Higher order multiplex network

network)
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\VUTr
MF Approximation

« Set of links between i and j. « Number of positive links L* among all L
e L number of self consistency links in the set.
equation * One MF equation.
« Lower order ( duplex, triplex « Higher order multiplex network
network)
()

0—O0 O0—0 O0—0 0—=0
T
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\VUTr
MF Approximation

e Set of links between i and j. « Number of positive links L™ among all L
e L number of self consistency links in the set.

equation * One MF equation.
« Lower order ( duplex, triplex « Higher order multiplex network

network)
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MF Approximation : mesostate

- +
Mean link polarization | (z) = <L+_L > =L 9

i i
L
M = [+

10
Self-consistent equation 3 T
L + —eE(Lt)/T —~ 6] g
(1) = g((1) = Blepma () S|
T (&) BT =
2_
= L is a paradise state, an = is a disordere 0
(LY=L di d(L,) = L/2 is a disordered

0 1 2 3 456 7 8 910
(L™)

state
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Saturation of critical temperature
2.0

For large coupling strength K-

TC| %L.Tc‘oazl

a=L,K—+o0

Matching Order
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Impact of number of Layers on the

Critical temperature

The critical temperature Tc increases
with the number of layers L when coupling K
is positive

The mean-field approach, while
qualitatively correct, is not capable of
accurately predicting the behavior of a
system with numerous weakly interacting
layers.
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WUT
Critical behavior of the system with layers

in different states

What happens when two layers start differently?
N

, 2
Paradise (xgj)> =1

* Heider (Intralayer) Energy in ground state
* Ising (Interlayer) Energy in Excited state

2-Clique <:z:7(;32-)> =0

N = 2m

Mismatched Order
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Critical behavior of the system with layers

in different states

« Different layers may exist in different states

« Possibilities include one layer ordered and
the other disordered, or variations in order
within both layers.

+X(1)

0.4+

0.37

Y

0.2+

0.1+

0.0- \BE 24
0.0 0.2 0.4 06 0.8 1.0 . .
) Synchronization between the layers!
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Critical behavior of the system with

layers in different states

100

Temperature T: ,
Critical temperature where different go-| Matching Order
states of layers synchronize.

60 - ;
Tm: The limit of retaining order after Disorder

nchronization
synchronizatio 10
T

T,: The limit of spontaneous order ’

20-
T.: Critical temperature for the existence Mismatched

Order
of ordered states 0 : |
0 20 40 60
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Not everyone knows everyone !

Missing links — x;; = 0 (not a true link state)




Not everyone knows everyone !

Missing links — x;; = 0 (not a true link state)
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Erdos-Rényi graph!

-

-

Heider interaction strength scales

with p?, while interlayer interaction

strength scales with p.

J
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Critical temperature

1.0

0.8-

0.6

thm
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Important results

Transition from a state of stability
to unrest

Tendency of relationships in one
layer to align with those in the

other.

Influence of balanced or imbalanced
relationships becomes increasingly
pronounced.

Complete graph

Transition

Duplex network with
contrasting
relationship layers

Random graph

Interaction

Temperature rise causes a multiplex
network's shift from paradise to
disorder, surpassing single-layer
critical temperatures.

Synchronization of interlayer
relations

Heider interaction scales like p?
Interlayer interaction scales like p.



Main Message

_‘-'.---
=1/ W NATIONAL SCIENCE CENTRE
e POLAND

interactions make the social
structures more stable

" Building several layers of social

)

." ALPHORN PROJECT

[1] Mohandas, K., Suchecki, K. and Hotyst, J.A., 2024. Physical Review E, 109(4), p.044306.
[2] P. J. Gorski, K. Kutakowski, P. Gawro nski, and J. A. Hotyst, Sci. Rep. 7, 16047 (2017).
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Thank you
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