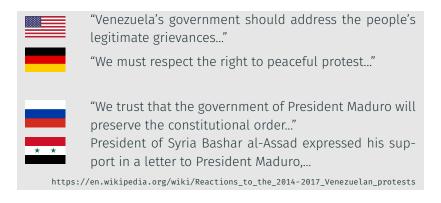
The fragility of opinion formation in a complex world

Matúš Medo Inselspital/UniBE, Bern

International Workshop "Signed Relations and Structural Balance in Complex Systems: From Data to Models" 16 May 2024, ETH Zurich

In 2014, a series of protests and political demonstrations began in Venezuela...

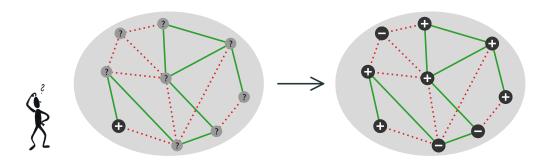

Reuters

In 2014, a series of protests and political demonstrations began in Venezuela...

Question #1:

Should we trust Maduro's government?

In 2014, a series of protests and political demonstrations began in Venezuela...

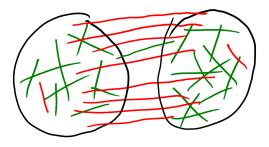


In 2014, a series of protests and political demonstrations began in Venezuela...

Question #2:

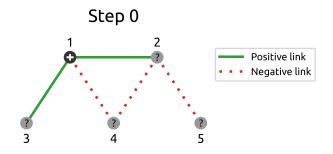
What happens if we generalize from this single question to a whole learning process?

Opinion formation on a signed network

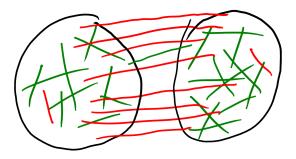

- Nodes: Subjects on which opinions are to be made
 - · Countries and other entities in world politics
- · Links: Signed relations between the subjects
- The observer: Outside, no social network

Setting up a synthetic world

- N nodes of two types: $\theta_i \in \{-1, +1\}$; unknown to the observer
- N_S source nodes: The observer knows their types
- Link signs correlate with node types:
 - $\theta_i = \theta_j$: link is positive with probability $r \ge 0.5$
 - $\theta_i \neq \theta_j$: link is negative with probability $r \geq 0.5$
 - \cdot r is link reliability

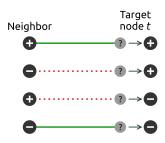

Setting up a synthetic world

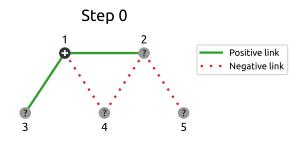
- *N* nodes of two types: $\theta_i \in \{-1, +1\}$; unknown to the observer
- N_S source nodes: The observer knows their types
- Link signs correlate with node types:
 - $\theta_i = \theta_i$: link is positive with probability $r \ge 0.5$
 - $\theta_i \neq \theta_j$: link is negative with probability $r \geq 0.5$
 - r is link reliability


Setting up a synthetic world

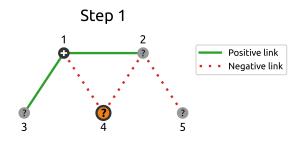
- *N* nodes of two types: $\theta_i \in \{-1, +1\}$; unknown to the observer
- N_S source nodes: The observer knows their types
- Link signs correlate with node types:
 - $\theta_i = \theta_j$: link is positive with probability $r \ge 0.5$
 - $\theta_i \neq \theta_j$: link is negative with probability $r \geq 0.5$
 - r is link reliability

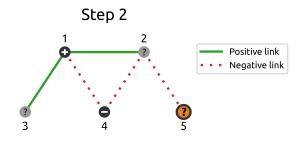
Possible applications of the model

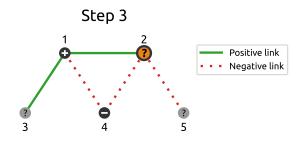

- 1. Two opposing camps: Mainstream media and misinformation sources
 - · You initially trust in some mainstream media
 - Do you end up trusting other mainstream media and distrusting misinformation sources?

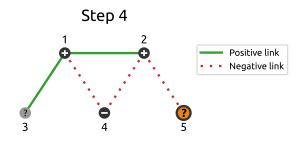

Possible applications of the model

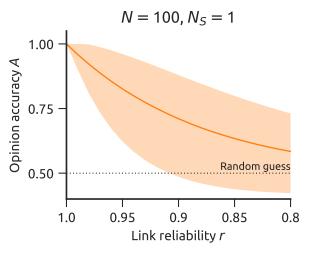
- 1. Two opposing camps: Mainstream media and misinformation sources
- 2. Employee network: Manager attempts to assess employee qualities
- 3. Inter-firm network: Which other firms to trust
- 4. Social networks: E.g., find a suitable roommate
- 5. ...


- 1. Choose target node t at random
- 2. Opinion on t is made using its random neighbor

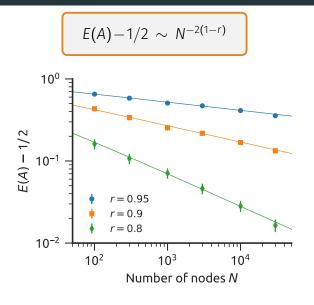

- 1. Choose target node *t* at random
- 2. Opinion on t is made using its random neighbor


- 1. Choose target node *t* at random
- 2. Opinion on t is made using its random neighbor


- 1. Choose target node *t* at random
- 2. Opinion on t is made using its random neighbor


- 1. Choose target node *t* at random
- 2. Opinion on t is made using its random neighbor

- 1. Choose target node *t* at random
- 2. Opinion on t is made using its random neighbor



Random neighbor heuristic: The outcome

Shaded area: 10th–90th percentile range

Random neighbor heuristic: The outcome

Lesson #1

Even at small noise,

resulting opinions show

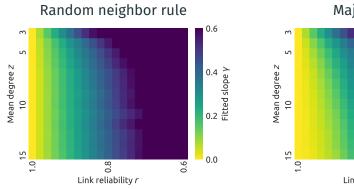
low accuracy and high variability

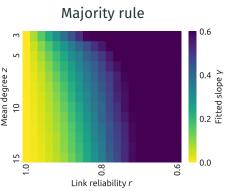
Lesson #2

As the system size grows, limit opinion accuracy is 1/2

regardless of how small is the noise

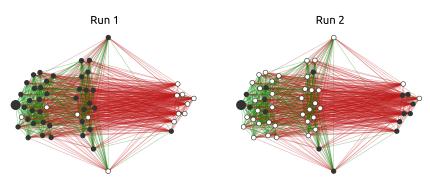
To make sense of a complex world

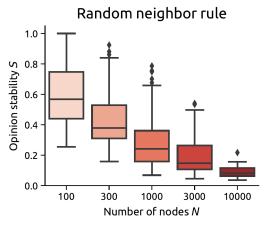

is difficult


The majority rule

- · Use all neighbors, not just a random one
- \cdot Choose the majority opinion signal

The majority rule


- · Use all neighbors, not just a random one
- · Choose the majority opinion signal
- Opinion accuracy still approaches 1/2 as $N^{-\gamma}$



Opinion formation on real signed networks

1st United Nations General Assembly network

Opinion formation on real signed networks

Slashdot social network

Two new methods (Meng et al, 2022)

1. Bayesian solution:

$$P[\boldsymbol{\theta}|\boldsymbol{\sigma},R] = \frac{P[\boldsymbol{\sigma},R|\boldsymbol{\theta}] \cdot P[\boldsymbol{\theta}]}{P[\boldsymbol{\sigma},R]} = \frac{q^{z_1(\boldsymbol{\theta})}(1-q)^{z_2(\boldsymbol{\theta})}r^{z_3(\boldsymbol{\theta})}(1-r)^{z_4(\boldsymbol{\theta})}}{\sum_{\boldsymbol{\theta}' \in \Theta} q^{z_1(\boldsymbol{\theta}')}(1-q)^{z_2(\boldsymbol{\theta}')}r^{z_3(\boldsymbol{\theta}')}(1-r)^{z_4(\boldsymbol{\theta}')}}$$

- 2. Shortest-path heuristic:
 - · Based on shortest paths between each source node and a target node
 - · Information from all paths is aggregated if they were not overlapping

Two new methods (Meng et al, 2022)

1. Bayesian solution:

$$P[\boldsymbol{\theta}|\boldsymbol{\sigma},R] = \frac{P[\boldsymbol{\sigma},R|\boldsymbol{\theta}] \cdot P[\boldsymbol{\theta}]}{P[\boldsymbol{\sigma},R]} = \frac{q^{z_1(\boldsymbol{\theta})}(1-q)^{z_2(\boldsymbol{\theta})}r^{z_3(\boldsymbol{\theta})}(1-r)^{z_4(\boldsymbol{\theta})}}{\sum_{\boldsymbol{\theta}' \in \Theta} q^{z_1(\boldsymbol{\theta}')}(1-q)^{z_2(\boldsymbol{\theta}')}r^{z_3(\boldsymbol{\theta}')}(1-r)^{z_4(\boldsymbol{\theta}')}}$$

2. Shortest-path heuristic:

- · Based on shortest paths between each source node and a target node
- · Information from all paths is aggregated if they were not overlapping

Shortest-path accuracy: $E(A) - 1/2 \sim N^{-\gamma}$, where

$$\gamma = -\ln(2r - 1)/\ln z$$

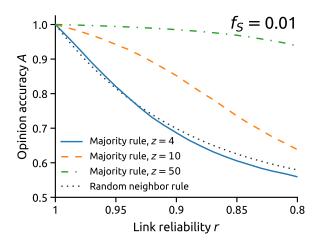
on a random network.

ending up with

How to avoid

random opinions?

Option 1: Start with many source nodes


- \cdot More source nodes \implies better accuracy
- Denoting $f_S := N_S/N$, the random neighbor rule gives

$$\lim_{N \to \infty} E(A) = \frac{1}{2} + f_{S}^{2(1-r)}/2$$

Option 1: Start with many source nodes

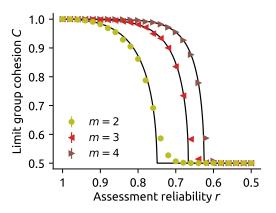
- \cdot More source nodes \implies better accuracy
- Denoting $f_S := N_S/N$, the random neighbor rule gives

$$\lim_{N \to \infty} E(A) = \frac{1}{2} + f_{\rm S}^{2(1-r)}/2$$

Option 2: Require consensus (Fenoaltea et al, 2022)

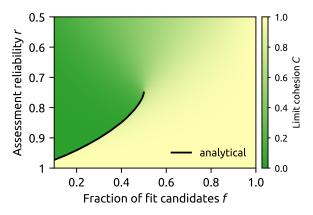
- From opinion formation to group growth:
 - 1. Individuals of two types: Fit or unfit for a group
 - 2. Group seed: N_0 fit members
 - 3. Each candidate is evaluated by *m* group members

Option 2: Require consensus (Fenoaltea et al, 2022)


- From opinion formation to group growth:
 - 1. Individuals of two types: Fit or unfit for a group
 - 2. Group seed: N_0 fit members
 - 3. Each candidate is evaluated by *m* group members
- Rules of the game:
 - A fit member positively evaluates a fit candidate with probability r
 - Admit a candidate only if all evaluations are positive
- Group cohesion, C: The fraction of fit nodes
 - The same as opinion accuracy, A

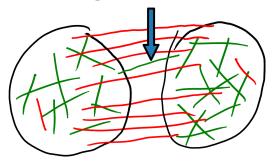
Group cohesion: Results

• When m = 1, cohesion vanishes (goes to 1/2) as N grows


Group cohesion: Results

- When m = 1, cohesion vanishes (goes to 1/2) as N grows
- When $m \ge 2$, a phase transition emerges at $r_c = 1/2 + 1/(2m)$

Group cohesion: Results


- When m = 1, cohesion vanishes (goes to 1/2) as N grows
- When $m \ge 2$, a phase transition emerges at $r_c = 1/2 + 1/(2m)$
- · The fraction of fit candidates matters too

1. Be aware of our cognitive limitations

- 1. Be aware of our cognitive limitations
- 2. Choose your source opinions wisely

- 1. Be aware of our cognitive limitations
- 2. Choose your source opinions wisely
- 3. Do not be that misleading link

- 1. Be aware of our cognitive limitations
- 2. Choose your source opinions wisely
- 3. Do not be that misleading link

Thank you for your attention!

M. Medo, M. S. Mariani, L. Lü, The fragility of opinion formation in a complex world, Communications Physics 4, 1 (2021) F. Meng, M. Medo, B. Buechel, Whom to Trust in a Signed Network? Optimal Solution and two Heuristic Rules, Information Sciences 606, 742 (2022)

E. M. Fenoaltea, F. Meng, R.-R. Liu, M. Medo, Robustness of cohesion in a model of group formation, Physical Review Research 5, 013023 (2023)

matus.medo@unifr.ch