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Reconstructing signed relations 
from interaction data
Georges Andres , Giona Casiraghi , Giacomo Vaccario  & Frank Schweitzer *

Positive and negative relations play an essential role in human behavior and shape the communities 
we live in. Despite their importance, data about signed relations is rare and commonly gathered 
through surveys. Interaction data is more abundant, for instance, in the form of proximity or 
communication data. So far, though, it could not be utilized to detect signed relations. In this paper, 
we show how the underlying signed relations can be extracted with such data. Employing a statistical 
network approach, we construct networks of signed relations in five communities. We then show that 
these relations correspond to the ones reported by the individuals themselves. Additionally, using 
inferred relations, we study the homophily of individuals with respect to gender, religious beliefs, and 
financial backgrounds. Finally, we study group cohesion in the analyzed communities by evaluating 
triad statistics in the reconstructed signed network.

Social interactions and signed relations are distinct yet related facets of human behavior. Social interactions are 
short-lived contacts during which individuals exercise directed or reciprocal influence over one  another1. Indi-
viduals can interact via different means, and their interactions may repeatedly occur over time. Signed relations, 
such as friendship and enmity, are interpersonal relations characterized by a sign (positive or negative) reflecting 
how one person feels or thinks about another. Signed relations are long-lived and change less frequently as more 
effort is required to form or change them.

While social interactions and signed relations are different, they are coupled to each other–relations acting as 
drivers for interactions. A positive relation commonly induces more interactions, while a negative one hinders 
 them2. Moreover, humans perceive surrounding patterns of positive and negative  relations3 to which they  adapt4. 
Over time, such adaptations can lead to interactions primarily within cohesive groups, potentially leading to echo 
chambers  . Negative links may be formed across opposing groups, pushing communities towards segregation 
and, eventually,  polarization5,6.

To understand such phenomena quantitatively, we require data on the positive and negative relations, which 
is rare. Interaction data is, instead, more abundant. However, it does not directly inform us about the relations 
among individuals. This leads to the problem of inferring meaningful information only from interaction data. 
Usually, this problem is addressed by taking the network perspective, where nodes represent individuals and 
edges their  interactions7–11. Network  filtering12 and backboning  methods13 can extract relevant connections from 
observed noisy interactions and find successful applications in  biology14,15 and  economics16. Alternative methods 
use thresholding  rules17, take a topic modeling  perspective18 or use relational event  models19. All these methods, 
though, can at most be applied to the study of unsigned relations or require knowledge about the exact time-
ordering of both interactions and relations. For the recovery of signed relations, we require novel approaches. 
Only a few recent  works20,21 have developed methods with precisely this goal in mind.

Following this path, we introduce a statistical network method to infer weighted signed relations from a col-
lection of unsigned, repeated interactions. We will refer to it as the �-method. It relies on the central assumption 
that a statistical over-representation of interactions signals a positive relation and an under-representation signals 
a negative relation. This assumption is motivated by the longstanding theoretical argument that individuals with 
positive relations are more likely to  interact2,22 and its empirical evidence across different  communities23–25. 
Moreover, the idea that negative relation induces fewer interactions is supported by the arguments that indi-
viduals avoid others who are considered a source of discomfort rather than  pleasure26–28. Hence, the �-method 
is the counter-part to methods developed for inferring signed relations from repeated signed  interactions29–31.

To demonstrate our �-method, we utilize five classical interaction datasets of social communities. These are 
a karate club in a  university32 (KC), a windsurfer  community3 (WS), a high school in  France33 (HS), participants 
in the Nethealth  project34 (NH) and user of the Epinions  website35 (EP). These social communities are chosen 
because they, in addition to interactions, contain information about social relations that can be used to validate 
our method.
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With our method, we reconstruct the underlying relational networks of the five communities. The inferred 
signed relations allow us to study pairs and triads of individuals in a new light. We illustrate the strength of 
having access to the complete relational structure of communities, which we represent using a weighted signed 
network. To this end, we investigate the pairwise homophily, relational triads, and cohesiveness of groups in the 
communities. Note that we refer to social communities (KC, WS, HS, NH, EP) rather than those detected by 
community-detection algorithms.

Results
Inference of signed networks
To infer the weighted signed networks Si for the five communities KC, HS, WS, NH, and EP (extended details 
provided in “Methods”), we first construct an interaction network Gi . An edge ev→w in Gi is created every time an 
interaction between individuals v and w is observed in the respective dataset. Furthermore, each dataset contains 
a small set of reported relations obtained by surveying a subset of the individuals or using a proxy (e.g., declared 
trust and distrust in EP). Such reported relations are either binary (i.e., positive/neutral or positive/negative), 
ordinal (i.e., strong positive, positive, neutral, negative), or continuous (i.e., how strong they are).

In Fig. 1, we visualize the interaction network GHS only for HS, which records interactions between students 
in a French high school divided into nine classes. From GHS we infer the weighted signed network SHS using the 
�-method. For each pair (v, w) of individuals, the weight of the relation sv→w is obtained as a linear combination 
of the probability that two individuals are interacting more than expected with the probability of interacting less 
than expected (see “Methods” for details). The coefficients of this linear combination are estimated based on the 
few reported relations in the community. Once determined, this allows us to infer both positive and negative 
relations between all individuals.  In36, we provide an implementation to quantify the probabilities mentioned 
above within the R library ghypernet.

In the reconstructed weighted signed network SHS , we observe clusters of positive relations with weak nega-
tive ties between the clusters. This pattern matches the class separation within the high school. If we compare 
SHS to the declared friendships provided in the survey (Fig. 1 (right)), we see that most declared friendships are 
within classes and only a few across classes.

Accurate prediction of reported relations
Using the �-method, we accurately predict the reported relations between individuals. To evaluate this accu-
racy, we perform both an in-sample and an out-of-sample prediction task where the dependent variable is the 
reported relation and the predictor the value of sv→w . We detail the results of the prediction tasks in Table 1. For 
HS, NH, KC, and EP, the reported signed relations are categorical (friends/not friends, trust/distrust, or indi-
viduals feeling a strong positive, positive, neutral, or negative attitude towards others). Hence, we evaluate Si by 
means of standard classification methods and list the resulting sensitivity, specificity, and balanced accuracy (see 
“Methods”). All these scores are remarkably high and above 80%—which holds for both the in-sample and the 
out-of-sample predictions—for HS, NH, and KC. For EP, the scores are slightly lower but still above 77% except 
for the specificity. The lower specificity is linked to the limitation of the �-method that we elaborate on in the 
discussion. For WS, the reported signed relations are continuous. Thus, we model them with a linear regression. 
We evaluate the goodness of fit using the R 2 and the root-mean-squared-error. These continuous relations are 
harder to model, as they were obtained through a convoluted interview process. Hence, the reported relations 
are more noisy. Our goodness of fit suffers from this with an R 2 just above 0.3.

We find that the �-method is robust in handling unseen data. For all datasets, we preserve a very similar 
accuracy between the in-sample and the out-of-sample prediction. In Table 5 of “Methods” section, we further 
show that the �-method outperforms other approaches for predicting relations based on thresholding rules or 
network modularity.

Figure 1.  (Left) Interaction network GHS from the HS dataset. Nodes represent individuals, and edges represent 
recorded interactions between them. Multiple interactions are shown by parallel edges. (Center) Inferred 
signed network SHS shown only for a subset individuals. Positive relations are represented by blue edges (darker 
color refers to larger weight). (Right) Network of declared friendship relations among individuals. We report a 
summary of the evaluation in a confusion matrix.
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Homophily
Homophily is the phenomenon of similar individuals being more likely to form positive relations. In the inferred 
signed networks SHS and SNH , we find strong gender homophily, i.e., the specific case in which similarity is 
defined by gender. To test the presence of this phenomenon, we compare two probabilities (in percentage): (1) 
the probability that individuals with a positive relation also have the same gender and (2) the probability that 
randomly sampled pairs of individuals have the same gender. These are shown in Fig. 2 in the outer (1) and 
inner (2) circles. We only have gender data in the NS and HS datasets, so we restrict the analysis to these two 
datasets. We find that the probability that individuals with a positive relation are also of the same gender is larger 
than the reference probability of randomly sampled pairs of the same gender (Fig. 2). Precisely, compared to 
the reference case, it is approximately 20% and 30% more likely that individuals with a positive relation have the 
same gender in the HS and NH datasets, respectively. By performing a binomial test, we verify that these results 
are statistically significant (see “Methods” for details). In Section S1 of the SI, we further characterize the effect 
of gender on the inferred signed relations.

Apart from gender, we find that religion and parental income homophily are of lesser importance to university 
students. This is shown in Fig. 2 by comparing 64.8 versus 49.0 for gender to 60.7 versus 55.5 for religion, and 
51.5 versus 45.9 for parental income. Only for this dataset do we have such additional information. The prob-
ability that friends have similar religious beliefs or parental income is slightly larger than in the reference case 
but nevertheless significant.

Table 1.  Quality of the model for in-sample and out-of-sample predictions. We report the sensitivity, 
specificity, and balanced accuracy for HS, NH, KC, and EP. For the continuous relations in WS, we report the 
R 2 and the root-mean-squared-error (RMSE). For KC, we map the multi-class prediction task to a binary 
prediction for consistency. Specifically, we map positive attitudes to a positive relation and neutral and negative 
attitudes to “non-positive relations.” Overall, the model quality is good for the binary relations and worse for 
the continuous ones. The model is robust as the out-of-sample prediction only loses little compared to the 
in-sample prediction.

HS NH KC EP WS

Model specification Friends ∼ φ Friends ∼ φ Faction ∼ φ Trust ∼ φ Closeness ∼ φ

In-sample

  Sensitivity 0.831 0.831 0.931 0.805

  Specificity 0.931 0.985 0.886 0.742

  Balanced accuracy 0.881 0.908 0.908 0.774

  R2 0.313

  RMSE 0.118

Out-of-sample

  Sensitivity 0.8 0.822 0.818 0.863

  Specificity 0.941 0.986 1 0.689

  Balanced accuracy 0.871 0.904 0.909 0.776

  R2 0.331

  RMSE 0.117

Figure 2.  (Left) Gender homophily in HS and NH. (Right) Religion and income homophily in NH. (Outer 
Rings) Probability in percentage that pairs of individuals with inferred positive relations share the same attribute 
(blue sector) against those with different attributes (orange sector). (Inner Rings) Probability of two random 
individuals sharing the same attribute (blue sector) against different attributes (orange sector). A comparison 
between outer and inner rings shows that all three types of homophily are present, i.e., the outer blue sector is 
larger than the inner one.
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Beyond dyadic properties
Thanks to our analysis, we have attributed a weighted signed relation sv→w = φvw(a, b) to each pair of individu-
als, where φvw(a, b) is defined in Eq. (4). The datasets contain additional information about the belonging of 
these individuals to different groups (e.g., classes and memberships). By looking at triads composed of three 
individuals, we can now characterize these groups. Considering only the sign of relations, four types of triads 
Tτ can appear: ( +++ ) ( T1 ), ( ++− ) ( T2 ), ( +−− ) ( T3 ), ( −−− ) ( T4 ). For each triad t = (v,w, z) of a given 
type Tτ , we assign a weight ωt by multiplying the weighted signed relations sv→w , sw→z , and sz→v

37. We define 
group cohesion by means of triads T1 with three positive relations ( +++ ). Group conflict, conversely, is defined 
by those triads T2 that have one negative link ( ++−).

Through the weights of the triads, we can quantify the importance of each type of triad for groups (see 
“Methods” for details). We can distinguish formal groups (e.g., classes) from informal groups. For example the 
two groups in KC centered around the leaders JA and HI. Analyzing the networks of signed relations SHS , SKC 
and SWS , we find that cohesion strongly outweighs conflict only in HS, which contains formal groups. Differ-
ently, informal groups emerging in WS and KC show weaker cohesion and a higher presence of conflict. Specifi-
cally, Table 2 shows that ( +++ ) ( T1 ) triads have high importance within the groups of HS (0.98 and 0.96). In 
the informal groups of WS and KC, their importance decreases to 0.51. Moreover, in the JA group of KC, conflict 
has almost as much importance as cohesion. Across all analyzed communities, the importance of relational triads 
with many negative relations, ( +−− ) ( T3 ) and ( −−− ) ( T4 ), is marginal.

Our analysis of KC further highlights leaders’ influence on group formation. While, at the time of the data 
collection, KC consisted of a single community, it eventually split into two groups centered around two leaders, 
JA and  HI32. Analyzing these two groups separately, we find that the triads involving their leaders are strongly 
cohesive: ( +++ ) ( T1 ) triads involving HI and JA have an importance of 0.77 and 0.64, respectively (see Table 2 
for details). However, when considering triads not involving the leaders, we only find cohesion in HI’s group 
(0.69). JA’s group instead is dominated by conflict (0.53). Hence, we have revealed that the presence of an influ-
ential leader is the major characteristic defining the group.

Discussion
Our work contributes to the study of human relations by unlocking new applications of interaction data for such 
investigations. To infer signed relations between individuals, we have employed data about face-to-face contacts 
(HS), SMS and phone calls (NH), proximity (WS), co-attendance (KC), and online consumer ratings (EP). Tradi-
tionally, weighted signed relations are obtained with surveys, an expensive and hardly scalable approach. Instead, 
interaction data is abundantly available. Despite the different data types, we have shown that our methodology 
is well suited to extract signed relations. Therefore, social scientists, behavioral researchers, and psychologists 
can now use interaction data in new ways.

Our central assumption is that positive relations imply more, and negative relations imply fewer interactions. 
This way of linking interactions to relations is a long-standing assumption in social  science2, which has been 
widely tested for positive  relations23–25. In the case of negative relations, instead, it has rarely been explored, 
mainly due to a lack of data. The �-method fills this gap.

Our broader perspective allows quantifying social phenomena such as homophily, cohesion, and conflict 
within groups. For instance, we have confirmed that gender homophily is essential in establishing positive rela-
tions, such as friendship. Additionally, we have found that leaders can strongly influence the cohesion of a group. 
This result can be related to the theories of social status and structural balance, according to which individuals 
adapt their behavior in response to their  surroundings4,38–40.

The main limitation of this work is linked to the assumption of the �-method. It assumes that positive rela-
tions imply more and negative relations imply fewer interactions. Even though this is true in many social settings, 
it is not always true. For instance, in large online social networks, creating a negative relation may require more 
interactions than retaining a neutral one. Indeed, in this online setting, most users do not know each other, have 
no relations (i.e., a neutral one), and never interact. Negative relations are instead established between users who 
interacted negatively once or a few times, leading to negative relations appearing between individuals interacting 
rather than between individuals not interacting. This process is why, for EP, we obtain a lower specificity than 
for the other datasets. Another setting in which the assumption of the �-method might not hold is in strategic 
settings where individuals might decide to “keep their friend close, and their enemies closer”.

Table 2.  Importance of triad types. (Left) Importance of triad types ( +++ ) and ( ++− ) for different 
communities. Each community features groups, and the importance of the triads is calculated within these 
groups. In all groups but the one of John A. (JA) in KC, the importance of cohesion outweighs conflict. (Right) 
Left are triads in KC involving the leaders of the groups (squared node); right triads not involving the leaders. 
Mr. Hi’s group is always characterized by cohesion, while John A.’s shows mostly conflict when he is not present.
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Overall, our work shows that diverse interaction data can be used to infer signed relations in social communi-
ties. The ability to infer signed relations from interaction data enables us to study how relations evolve over time. 
Social theories about structural balance, status, or social impact postulate different mechanisms for relational 
changes. We can now test these mechanisms by leveraging the fine-grained temporal resolution of interaction 
data. This opportunity paves the way for future research to explore the evolution of signed relations and their 
effect on communities with an unprecedented resolution.

Methods
Data
We require data about social communities containing both interactions and declared relations, gathered through 
surveys. While such data is, in general, scarcely available, we leverage five datasets fulfilling our requirements. 
They vary in size, number, and type of interactions, and form of surveyed relations. We summarize this infor-
mation in Table 3.

The data ranges from small communities of under 50 individuals to larger ones encompassing hundreds of 
people. In these datasets, an interaction ev→w indicates ratings, proximity, colocation, or communication events 
through phone calls, SMS, and WhatsApp between two individuals v and w. In the three datasets, HS, NH, and 
EP, interactions were collected automatedly. Thus, they feature the most interactions: up to roughly 4 · 106 for EP. 
In the other two datasets, instead, interactions were recorded manually by researchers. The surveyed relations rvw 
either indicate a quasi-continuous closeness, attitudes towards some individuals in ordinal categories, a binary 
friendship, i.e., people being friends or not, or trust/distrust.

Windsurfer (WS)
The study of the windsurfer community took place in California in the fall of 1986, with the authors being 
long-time members of this  community3. The windsurfers were naturally dividing themselves into two groups, 
newcomers and older members, but there was no display of intergroup conflict. They were observed over 31 days, 
each day for two 30-min intervals. The interactions can loosely be defined as proximity events, people sitting 
together for lunch, or social exchanges. Looking at the interaction network (Fig. 3a) makes it clear that most 
interactions took place within the two informal groups. All community members were interviewed shortly after 
the conclusion of the observation period. They were asked to perform a sorting task to identify how close they 
were to each other. This closeness is rescaled to a number in (0, 1) and represents the relations in this dataset. 
Even though the authors describe a dataset of 54 surfers, only data about 43 of them was released. Differently 
from all the other datasets analyzed, there are reported relations for all pairs. These are shown in Fig. S3a of the SI.

Zachary’s Karate Club (KC)
This dataset contains interactions between 34 members of a university karate club over three years. The recorded 
interactions occurred not during the karate lesson but in different contexts. The karate club had two factions 
that “were never organisationally crystallized” and “[...] not named” that evolved over  time32. However, the fac-
tions had two leaders: the club president (John. A.) and the karate instructor (Mr. Hi). These factions arose due 
to a dispute between the leaders over an increase in the costs of lessons. At a certain point, the club split into 

Table 3.  Summary of the main features of the data.

Nodes Interactions Relations (‰ of total) Directionality Interaction type Relation type

HS 327 67 613 406 (7.6‰) Undirected Face-to-Face Proximity Friendship

NH 698 1 987 527 1353 (2.8‰) Directed Communication Friendship

KC 34 231 36 (64‰) Undirected Co-attendance Ordinal Attitude

EP 84 483 4 109 866 689 728 (0.1‰) Directed Rating Trust/Distrust

WS 43 1206 903 (1e3‰) Undirected Proximity Closeness

Figure 3.  Interaction networks visualized for (a) WS, (b) the KC, (c) HS, (d) NH and (e) EP. Link weights in 
the figures are proportional to interaction counts.
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two clubs, one led by John. A. and the other by Mr. Hi. The club members mainly chose the leader they wanted 
to join according to the factions they were in before the  split32. The interaction network (Fig. 3b) makes these 
factions visible before the split, while inter-faction contacts are still present. Before the split, club members were 
asked which faction they saw themselves in and whether that sentiment was strong or weak. Only between Mr. 
Hi and John A. can we assume a negative relation. These declarations form the relations in our analysis (strong 
positive-, positive-, neutral-, and negative-attitudes). The resulting relations are shown in Fig. S3b of the SI. The 
data also contains information about each member’s final group after the split.

French Highschool (HS)
As a third community, we consider a high school in France. Mastrandrea et al.33 have recorded face-to-face 
interactions between students from four programs and organized them into nine classes. This was done using 
RFID trackers, which only trigger when individuals are close and facing each other. The interactions are recorded 
while being at school over five days. Interactions are mainly concentrated within classes, which becomes apparent 
when considering the network visualization (Fig. 3c). Nevertheless, students interacted with alters from other 
classes, possibly during breaks. On top of the interactions, information was collected about positive social rela-
tions, i.e., friendship. These are shown in Fig. S3c of the SI. The social relations have been collected by means of 
surveys, as detailed  in33. Only a subset (41%) of the students had taken active part in the survey. Unfortunately, 
no information about negative relations was collected.

Nethealth Project (NH)
We study the Nethealth Project, a long-lasting (2015–2019) study conducted by the Center for Network Science 
and Data at the University of Notre  Dame34. It investigates the social networks and health of initially around 700 
undergraduate students, comprising pair-wise interaction data as well as responses to surveys administered in 8 
waves over the study period. Interactions were recorded through communication events in the form of in- and 
out-going calls and messages from the participants’ phones. We construct the interaction network (Fig. 3d) only 
including people who have at some point participated in the study. The sheer size of the interaction network does 
not allow us to extract much information from its visualization. However, we see that the degrees of the nodes 
vary greatly, between 0 at least and 89950 at most. The data contains surveyed friendships, which constitute the 
relations we use in our work. These are shown in Fig. S4b of the SI. As there were multiple ‘waves’ of surveys, in 
our analysis, we focus on one wave, namely the second one. This wave contains the most individuals, as subse-
quently there were some drop-outs. We then only consider interactions happening between the first and second 
surveys. Our results remain stable over the other waves.

Epinions (EP)
Epinions was a general consumer review site where users could create reviews, issue ratings of articles, and 
establish trust or distrust relations. Interactions are created by rating the article of another user. We limit our 
prediction task to positive (trust) and negative (distrust) relations, filtering the links where no trust relation 
was established. As this dataset also contains information about the ratings issued to articles, we employ this 
information in the prediction task to characterize the authors of articles. Specifically, we use the mean of the 
received ratings as a proxy for popularity and the standard deviation of the received rating as a proxy for how 
controversial the author is. Note that we do not use the actual ratings, as this would defy the purpose of using 
the interactions stripped of their ratings. This leaves us with a dataset as specified in Table 3. In principle, our 
method allows for a prediction task on all three types of relations, including neutral ones. This comes with a 
significant loss in accuracy (10–20%), as we cannot a priori distinguish between individuals who did not know 
each other and those who did. Many different versions of the Epinions dataset exist. We employ the version used 
 in35. The size of the interaction network only allows us to plot a sample of it in (Fig. 3e). In Fig. S4a of the SI, we 
further show the signed network obtained from the trust values.

The �‑method
The �-method relies on the central assumption that over/under-representations of interactions signal positive/
negative relations, a longstanding hypothesis in social  sciences2. To quantify these over-and under-represen-
tations, we compare the observed interaction counts between individuals to a network null model, the hyper-
geometric ensemble of random graphs (HypE)41. By employing a network null model, we define an expectation 
for the number of interactions between individuals. This expectation should account for all factors that bias the 
observed number of interactions beyond the effect of signed  relations11. In this work, we specifically account for 
the heterogeneity in the activities of the different individuals. That means we account for the fact that a very active 
individual is more likely to interact with others regardless of whether they share a positive or negative relation. 
Similarly to a standard configuration  model42, HypE allows explicit modeling of such heterogenous activities and 
enables the estimation of network- and dyadic- sampling probabilities through closed-form  expressions41. It does 
so by modeling the network generation as a sampling process without replacement from a carefully designed urn.

The urn is filled with a given number of balls, each representing a possible directed edge between two nodes 
v and w. An edge ev→w from v to w is considered to be in this set of possible edges if the nodes have non-zero 
in- and out-degrees koutv  and kinw  , respectively. To account for the different levels of activity of different individu-
als, we specify the maximum number �vw of possible edges between each pair of individuals to be proportional 
to the activity—i.e., degree—of each individual in the network. To do so, we define a matrix ��� , whose entries 
�vw are given by koutv kinw  . It directly follows that 

∑

vw �vw = m2 is the total number of possible edges and, thus, 
the number of balls in the urn. A network realization XXX with m edges is given by sampling m balls from this 
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urn without replacement. This sampling procedure is akin to hypergeometric sampling, and the probability of 
finding the observed network configuration AAA is given by:

Equation (1) defines HypE, the network ensemble that we use to estimate the pair-wise over-and under-repre-
sentation of interactions. This ensemble has the benefits of incorporating interdependencies between pairs of 
individuals, preserving individuals’ activity and attractiveness, and being analytically tractable. For more details, 
we refer  to41. While in this work, we focus only on incorporating the activity of individuals into our null model, 
it is, in principle, possible to extend the null model to account for more complex factors, e.g., block or sub-group 
 structures43. In Section S2 of the SI, we discuss the role and the effect of such extensions.

From Eq. (1), we extract the two marginal probabilities P(Xvw < Avw) and P(Xvw > Avw) , where Avw is the 
observed number of interaction between v and w and Xvw is an hypergeometric random variable:

Intuitively, when the first probability is high, it is unlikely to find as many interactions as we observed, indicating 
an over-representation11,44 and, therefore, a positive relation. The same reasoning holds for the second prob-
ability, indicating a negative relation. Extending the approach  of20, we construct the signed relations by taking 
the difference of these probabilities, weighted according to some constants in what we call the �-method M�:

As shown in the following, we can learn the community-dependent constants a and b when we have access to 
data about the relations between a small number of individuals in the community. In the Section S3 of the SI, 
we explore the impact of a and b in the absence of such training data.

Training � on data
Whenever we can access data about interactions and relations between some individuals, we can train the �
-method to find optimal parameters â and b̂ to infer signed relations. By extrapolating the learned parameters 
to all pairs in the community, we compute Eq. (4) and construct full signed networks from only a few reported 
relations.

We employ simple machine learning techniques to estimate the parameters in Eq. (4). Our aim is to classify 
the reported relation rvw based on the value of φvw(a, b):

To deal with the different types of relations rvw in our datasets, we must choose the correct classification model 
and representation of the dependent and independent variables to fit equation Eq. (5). For HS, NH and EP, we 
have binary relations, rvw ∈ {Friend, Not Friend} or ∈ {Trust, Distrust} , and we perform the classification in Eq. 
(5) by means of a logistic regression. In KC, multiple ordered categories are possible as individuals declare strong 
or weak belonging to a faction, rvw ∈ {Strong Positive Attitude, Positive Attitude, Neutral, Negative Attitude} , 
and, hence, we employ a cumulative link method45 that results in a ordered multi-class regression. For the con-
tinuous relations in WS, rvw refers to some ‘closeness’ ∈ (0, 1) , and hence we have a regression rather than a clas-
sification problem. To account for this, we employ a linear regression but will still refer to this as a classification 
task for simplicity.

To compute φvw(a, b) , we have to consider whether the interaction data is directed or not. EP and NH have 
directed interactions and relations, so we extract φ from the directed HypE, see Eq. (2) and Eq. (3). This means 
that for each pair of individuals, we have two relations to predict and two φ-values to do so. In the undirected 
datasets (HS, WS, KC), we employ the undirected version of HypE as defined  in41. Hence, for each pair of indi-
viduals, we obtain one φ-value and predict their relation.

Also, as shown in Table 3, we only have partial information about the relational networks, which impacts how 
to fit Eq. (5). For KC, EP, and WS, we have values, e.g., trust, distrust, or closeness, for the relations rvw between 
some pairs v, w of individuals. Hence, we use these known relations to train our classification model. For HS 
and NH, only a subset of the individuals participated in the surveys that provides data about social relations. 
Therefore, only for them do we know whether there is a positive relation (Friend) or not (Not Friend). We train 
the classification model based on these known relations among the survey participants.

(1)Pr (XXX = AAA) =

∏

vw

(

�vw

Avw

)

(

m2

m

) .

(2)Pr (Xvw < Avw) =

Avw−1
∑

avw=0

(

�vw

avw

)(

m2 −�vw

m− avw

)

(

m2

m

)

(3)Pr (Xvw > Avw) =

�vw
∑

avw=Avw+1

(

�vw

avw

)(

m2 −�vw

m− avw

)

(

m2

m

)

(4)φvw(a, b) = aP(Xvw < Avw)+ bP(Xvw > Avw)

(5)rvw ∼ φvw(a, b)+ c.
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The classification just described gives us estimates â and b̂ for the parameters in Eq. (4), obtained for the subset 
of individuals for which reported relations rvw exist. With these, we can extrapolate our findings to the whole 
community, generating the signed network S , whose links sv→w = φvw(â, b̂) . In Table 4, we report the coefficients 
estimated for all datasets. These coefficients are community-dependent. However, a is always positive, and b is 
always negative. This finding is aligned with the assumption that having a high over-representation in interac-
tions increases the probability of having a surveyed friendship. Similarly, having a high under-representation 
decreases this probability. |b̂| is smaller than |â| for most datasets, indicating the presence of weak negative links. 
This observation is connected to the fact that negative links are less represented in the signed relation data. The 
percentage of negative links in the data varies between 0 and 13.5%. The low values of |b̂| reflect this. The only case 
where |b̂| is larger than |â| is for EP. Additionally, in KC, we observe a large negative b̂ compared to the remaining 
datasets. This is unsurprising as conflicts characterize both the EP and KC communities.

The coefficient c in Eq. (5) provides a baseline from which the value of φvw(a, b) can be related to the reported 
relations. Thus, we do not employ such value in constructing the signed network S.

Evaluating the �‑method
Scalability
The �-method aims at evaluating signed relations for each node pair. That means that there are ν2 pairs in a 
directed network–where ν is the number of nodes–that need to be analyzed. By choosing HypE as a network 
ensemble, we can express the marginal probabilities needed to compute Eq. (4) in a closed form. Hence, the 
complexity of Eq. (4) scales linearly with the number of pairs in the network. This would not be the case when 
employing network ensembles for which closed-form marginals are not known (e.g., the standard configuration 
model).

Quantifying the quality of the model
Sensitivity, specificity, and balanced accuracy are defined as follows:

where TP and TN are the true positives and negatives respectively, and P and N are the total observed positives 
and negatives. We perform this classification both in- and out-of-sample. The in-sample classification uses all 
the available data. For the out-of-sample prediction, we split the data between train and test. The train/test-split 
was done by randomly sampling 70% of the links. For the EP, NH, and HS, we employ a 10-fold, repeated cross-
validation on the train data to compute the parameters â and b̂ . Then, we evaluate the performance on the test 
data using Eq. (6). For the two small datasets, WS and KC, we perform a Leave-One-Out Cross-validation on 
the training data. The performance is again evaluated on the test data, using, however, the R-squared and RMSE 
in the case of the WS.

Comparing � to other methods
In the following, we show that the � method outperforms two other methods used to infer relations. The first is 
a threshold method MT . The user defines a threshold for the interactions over which individuals are assumed 
to be friends. Similarly, they are assumed to be enemies below this threshold. We assume one threshold for all 
pairs in the community, and this threshold can be learned from the known relations. Specifically, we use as a 
predictor the interaction counts Avw in the regression methods:

This method disregards any heterogeneities in the individuals, their different levels of activity in the community, 
or their popularity. We can partly alleviate this by factoring in the degrees of the individuals when defining their 
relations. By quantifying the expected number of interactions between two individuals based on their degrees, 
we reach a formulation akin to the one used in the well-known network  modularity46,47. We call this model the 
modularity method MM . Formally, it can be written as follows (for directed networks):

In the undirected case, total degrees are substituted koutv = kv and kinw = kw and the right-hand side is divided by 
two. While the modularity method now partly accounts for heterogeneities, it disregards that the two individuals 

(6)Sensitivity =
TP

P
, Specificity =

TN

N
, Bal. Acc. =

Sensitivity+ Specificity

2

(7)rvw ∼ αAvw + c.

(8)µvw = Avw −
koutv kinw
m

Table 4.  Estimated coefficients â and b̂ for over- and under-representation. |b̂| is smaller than |â| for most 
datasets, indicating the presence of weak negative links.

coefficient predictor HS NH KC EP WS

â P(Xvw < Avw) 4.71 5.67 2.49 0.66 0.18

b̂ P(Xvw > Avw) − 0.21 − 0.64 − 0.81 − 3.30 − 0.07
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we study are part of a larger system, namely the whole network. To compare it to the �-method, we use this µvw 
as a predictor in the regression to learn appropriate scaling parameters.

Below, we demonstrate that our proposed �-method outperforms both the threshold and the modularity 
methods in identifying the known relations. To do so, we perform cross-validation on a training subset of the data 
and validate the learned representations of the relations on a separate testing subset. This out-of-sample predic-
tion task tests the different methods’ ability to predict relations in unseen data based on its learned specification.

In Table 5, we report our findings for all datasets. For the four datasets with categorical relations (HS, NH, 
KC, EP), we are interested in correctly identifying the known relations, i.e., the true positives and true negatives. 
Additionally, we are dealing with unbalanced data, where most pairs have no relation. Therefore, we report the 
balanced accuracy (BA) score, the mean of sensitivity and specificity, which fits our problem best. We report the 
R 2 coefficient for the continuous relations in WS. Consistently across most datasets, the �-method outperforms 
the other two methods. Note that in the case of the small KC and WS datasets, the specific train-test split impacts 
the out-of-sample prediction. For the KC, the difference in performance is not significant when averaged over 
different train-test splits.

Studying signed networks using �
Significance of homophily
To evaluate the statistical significance of our results on homophily for NH and HS, we perform a binomial test. 
Let mSG be the number of pairs that share the same gender and mDG the number of opposite pairs. The probability 
of randomly sampling a pair with the same gender from the complete data is then p = mSG/(mSG +mDG) . If 
we have n friends in total and l friends who also share the same gender (success), the p-value of the binomial 
test is given by:

where Y is a random variable. If this probability is low, it is improbable to observe at random as many or more 
homophilous friends as we do in the data. For the HS, we find a p-value of pGHS = 1.6 · 10−6 . For NH, the p-values 
are pGNH = 3.16 · 10−95 , pINH = 1.67 · 10−6 and pRNH = 3.70 · 10−5 for gender, income and religion respectively. 
All p-values are significant ( < 0.05).

Importance of triads
Let Tτ={1,2,3,4} be the set of all triads of either one of the four types: ( +++ ), ( ++− ), ( +−− ), ( −−− ). We 
quantify the importance of a given triad type Tτ as:

The sum runs over all triads t in the set Tτ . The subscript vw ∈ t signifies that the link between v and w is in the 
triad t. Note that we use the absolute value of the �-measure. Thus, we consider the weight of the relation when 
evaluating the importance of a given triad. This way, triads containing mainly weak links will contribute less to 
the importance.

To obtain a number comparable across communities, we normalize the importance of each triad type over 
the total importance of all triad types.

where ψ = n(+++) + n(++−) + n(+−−) + n(−−−) . Such a normalization gives us the relative importance, which 
is the number we report for the different datasets in Table 2 in the main text.

Data availability
All datasets used in this work are publicly available at the links provided below: Highschool: http:// www. socio 
patte rns. org/ datas ets/. Nethealth: http:// sites. nd. edu/ nethe alth/ data-2/. Karate Club: https:// rdrr. io/ github/ statn 
et/ statn et. data/ man/ zach. html. Windsurfers: https:// github. com/ schoc hasti cs/ netwo rkdata. Epinions: https:// 
www. kaggle. com/ datas ets/ masou d3/ epini ons- trust- netwo rk.
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(9)p = P(Y ≥ k) =

n
∑

i=l

(

n
i

)

pi(1− p)n−i

(10)n(Tτ ) =
∑

t∈(Tτ )

ωt =
∑

t∈(Tτ )

�φvw∈t� · �φwz∈t� · �φzv∈t�

(11)I(Tτ ) =
n(Tτ )

ψ

Table 5.  Comparing � to other models. Balanced accuracy/ R 2 obtained from out-of-sample prediction.

HS (BA) NH (BA) KC (BA) EP (BA) WS (R2)

MT 0.813 0.869 0.840 0.739 0.204

MM 0.824 0.863 0.892 0.743 0.297

M� 0.871 0.904 0.909 0.776 0.331

http://www.sociopatterns.org/datasets/
http://www.sociopatterns.org/datasets/
http://sites.nd.edu/nethealth/data-2/
https://rdrr.io/github/statnet/statnet.data/man/zach.html
https://rdrr.io/github/statnet/statnet.data/man/zach.html
https://github.com/schochastics/networkdata
https://www.kaggle.com/datasets/masoud3/epinions-trust-network
https://www.kaggle.com/datasets/masoud3/epinions-trust-network
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