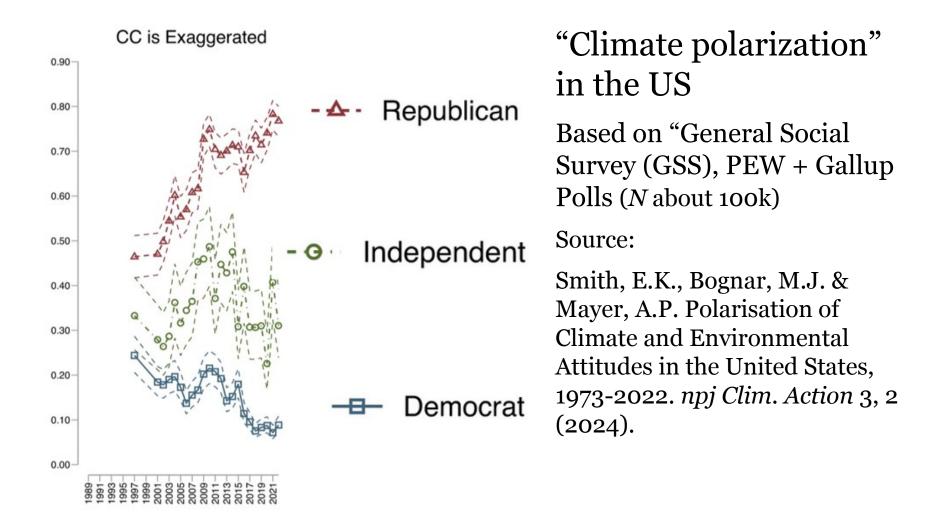


Andreas Flache

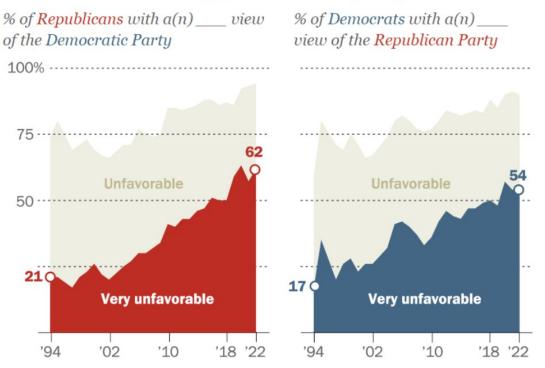
Presentation @ SG Final Symposium The Complexity of Social and Economic Systems: From Models to Measures 31 October 2024, ETH Zurich

One danger of polarization: loosing common ground on key societal issues



"Affective polarization" Negative views of (ideological) outgroups

Two decades of rising partisan antipathy



Note: Based on partisans and does not include those who lean to each party. Source: Yearly averages of survey data from Pew Research Center American Trends Panel (2020-2022) and Pew Research Center phone surveys (1994-2019).

PEW RESEARCH CENTER

PEW "American Trends Panel", ca. 10.000 respondents per wave

Source: Pew Research Center, August 2022, "As Partisan Hostility Grows, Signs of Frustration With the TwoParty System"

Polarization and social complexity

Macro + meso-level societal context CC is Exaggerated theory + data: Macro-level outcomes: 0.90 0.80 polarization? 0.70 0.60 0.50 0.50 0.40 0.25 belief inequality 0.30 distributions 0.20 segregation 1.00 0.10 0.00 0.50 0.25 0.00 t = 00001.00 0.75 0.50 0.25 0.00 5000 10000 15000 **Micro-level processes:** What can we expect? In which context? Changing opinions, emotions, Under which assumptions network relations: And how to influence this?

Behavioral theory + on- offline data + experiments **Empirically grounded ABM** of "opinion dynamics"

- energy policies
- migration policies ...

"In silico" experiments + **Empirical validation**

Polarization and social complexity

Macro + meso-level societal context CC is Exaggerated theory + data: Macro-level outcomes: 0.90 0.80 polarization? 0.70 0.60 0.50 0.50 0.40 0.25 belief inequality 0.30 distributions 0.20 segregation 0.10 0.00 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00 5000 10000 15000 **Micro-level processes:** What can we expect? In which context? Changing opinions, emotions, Under which assumptions network relations:

Behavioral theory + on- offline data + experiments Behavioral theory + on- offline data + experiments

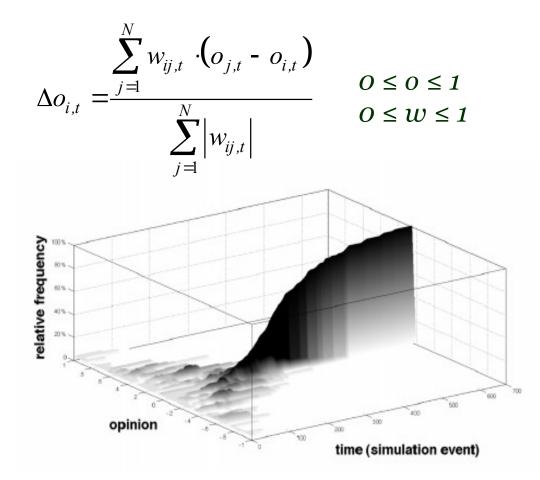
- migration policies ...

"In silico" experiments + Empirical validation

And how to influence this?

Classical models of social influence in networks (e.g. French, Abelson, Harary, Lehrer & Wagner,...)

Assimilative Influence: move towards opinion of network neighbors ⁺



In connected networks, opinions will always converge to perfect consensus

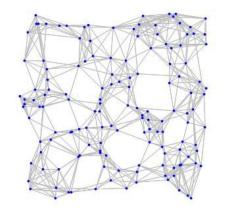


Figure: Mäs & Flache A 2013. PLoS ONE 8(11): e74516.

How reconcile social influence at micro-level with polarization at macro-level?

Axelrod's puzzle (1997)

66 If people tend to become more alike in their beliefs, attitudes, and behavior when they interact, why do not all such differences eventually disappear? ??

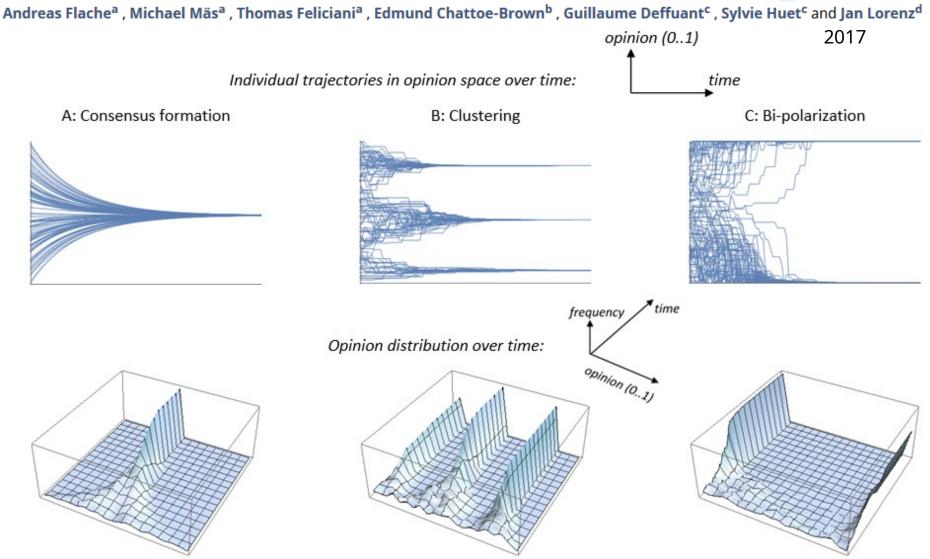
Abelson's puzzle (1964)

What on earth one must assume in order to generate the bimodal outcome of community cleavage studies?

[•] Axelrod, R. (1997). The dissemination of culture a model with local convergence and global polarization. *Journal of Conflict Resolution*, 41(2), 203–226.

[•] Abelson, R. P. (1964). Mathematical models of the distribution of attitudes under controversy. In N. Frederiksen & H. Gulliksen (Eds.), *Contributions to mathematical psychology* (pp. 142–160). New York: Holt, Rinehart & Winston.

Models of Social Influence: Towards the Next Frontiers



Typical opinion dynamics generated by different agent-based models of social influence

3 classes of models that can generate clustering and polarization

Bounded confidence & homophily

Accept influence only from similar sources

Deffuant et al 2000; Hegselmann & Krause 2002; Lorenz & Urbig 2007, Urbig ea 2008

Assimilative + repulsive influence

Move towards similar sources, distance from dissimilar sources Macy ea 2003; Jager & Amblard 2005; Fent, Groeber, & Schweitzer, 2007; Flache & Macy 2011;

Reinforcing influence

Similar sources strengthen opinion, dissimilar sources moderate

2 major challenges for ABM of opinion dynamics

> Theoretical: comparing and integrating models

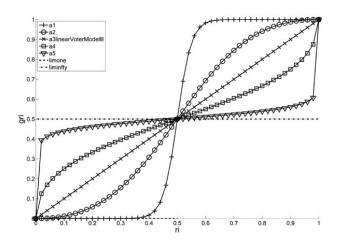
- For which situations do models make different predictions?
- Which assumptions cause different model behavior?
- What are deeper-level behavioral mechanisms of different influence processes, and how do they affect polarization patterns?

• Empirical: calibration, measurement and testing

- Micro-level foundations: lab experiments, behavioral data
- Macro-level predictions: e.g. voting outcomes, spatial data

Which assumptions cause different model behavior?

What are deeper-level behavioral mechanisms of different influence Processes?



Journal of Mathematical Sociology, 38: 147–174, 2014 Copyright © Taylor & Francis Group, LLC ISSN: 0022-250X print/1545-5874 online DOI: 10.1080/0022250X.2012.724486

DISSONANCE MINIMIZATION AS A MICROFOUNDATION OF SOCIAL INFLUENCE IN MODELS OF OPINION FORMATION

Patrick Groeber

Chair of Systems Design, ETH Zurich, Zurich, Switzerland

Jan Lorenz

Chair of Systems Design, ETH Zurich, Zurich, Switzerland; Institute for Social Sciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany; and Bremen International Graduate School of Social Sciences, Jacobs University Bremen, Bremen, Germany

Frank Schweitzer

Chair of Systems Design, ETH Zurich, Zurich, Switzerland

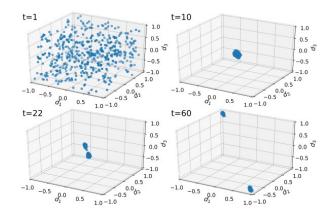
Models of opinion formation are used to investigate many collective phenomena. While social influence often constitutes a basic mechanism, its implementation differs between the models. In this article, we provide a general framework of social influence based on dissonance minimization. We only premise that individuals strive to minimize dissonance resulting from different opinions compared to individuals in a given social network. Within a game theoretic context, we show that our concept of dissonance minimization resembles a coordination process when interactions are homogeneous. We further show that different models of opinion formation can be represented as best response dynamics within our framework. Thus, we offer a unifying perspective on these heterogeneous models and link them to rational choice theory.

Keywords: conventions, coordination, opinion dynamics, social influence

ASSS

What are deeper-level behavioral mechanisms of different influence processes,

and how do they affect polarization patterns?



A Weighted Balance Model of Opinion Hyperpolarization

Simon Schweighofer^{1,2}, Frank Schweitzer³, David Garcia^{1,2}

¹Complexity Science Hub Vienna, Josefstädter Str. 39, 1080 Vienna, Austria ²Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna Spitalgasse 23, 1090 Vienna, Austria ³Chair of Systems Design, Weinbergstrasse 56/58, 8092 Zurich, Switzerland Correspondence should be addressed to schweighofer@csh.ac.at Journal of Artificial Societies and Social Simulation 23(3) 5, 2020

Doi: 10.18564/jasss.4306 Url: http://jasss.soc.surrey.ac.uk/23/3/5.html

Received: 19-12-2019 Accepted: 09-04-2020 Published: 30-06-2020

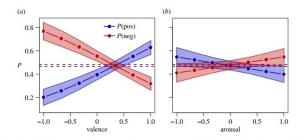
Abstract: Polarization is threatening the stability of democratic societies. Until now, polarization research has focused on opinion extremeness, overlooking the correlation between different policy issues. In this paper, we explain the emergence of hyperpolarization, i.e., the combination of extremeness and correlation between issues, by developing a new theory of opinion formation called "Weighted Balance Theory (WBT)". WBT extends Heider's cognitive balance theory to encompass multiple weighted attitudes. We validated WBT on empirical data from the 2016 National Election Survey. Furthermore, we developed an opinion dynamics model based on WBT, which, for the first time, is able to generate hyperpolarization and to explain the link between affective and opinion polarization. Finally, our theory encompasses other phenomena of opinion dynamics, including mono-polarization and backfire effects.

Keywords: Polarization, Balance Theory, Opinion Dynamics, Agent-Based Modeling

What are deeper-level behavioral mechanisms of different influence Processes

Empirical: calibration, measurement and testing

Micro-level foundations: behavioral experiments testing Assumptions of ABM cyber-emotions modelling framework



ROYAL SOCIETY OPEN SCIENCE

rsos.royalsocietypublishing.org

Cite this article: Garcia D, Kappas A, Küster D, Schweitzer F. 2016 The dynamics of emotions in online interaction. *R. Soc. open sci.* **3**: 160059. http://dx.doi.org/10.1098/rsos.160059

Received: 27 January 2016 Accepted: 12 July 2016

Subject Category:

Psychology and cognitive neuroscience

Subject Areas: psychology/human-computer interaction

Keywords:

computational social science, emotions, online interaction

Author for correspondence:

The dynamics of emotions in online interaction

David Garcia¹, Arvid Kappas², Dennis Küster² and Frank Schweitzer¹

¹Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, 8092 Zurich, Switzerland ²Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

(DG, 0000-0002-2820-9151; FS, 0000-0003-1551-6491

We study the changes in emotional states induced by reading and participating in online discussions, empirically testing a computational model of online emotional interaction. Using principles of dynamical systems, we quantify changes in valence and arousal through subjective reports, as recorded in three independent studies including 207 participants (110 female). In the context of online discussions, the dynamics of valence and arousal is composed of two forces: an internal relaxation towards baseline values independent of the emotional charge of the discussion and a driving force of emotional states that depends on the content of the discussion. The dynamics of valence show the existence of positive and negative tendencies, while arousal increases when reading emotional content regardless of its polarity. The tendency of participants to take part in the discussion increases with positive arousal. When participating in an online discussion, the content of participants' expression depends on their valence, and their arousal significantly decreases afterwards as a regulation mechanism. We illustrate how these results allow the design of agent-based models to reproduce and analyse emotions in online communities. Our work empirically validates the microdynamics of a model of online collective emotions, bridging online data analysis with research in the laboratory.

Figure 5. Results of logistic regression of post positive and negative content measured with SentiStrength as a function of (a) valence and (b) arousal. Error bars show standard errors of the estimate of the probability of being positive or negative.

Empirical: calibration, measurement and testing

Micro-level foundations + polarization outcomes:

Measuring positive and negative links in social networks from behavioral data

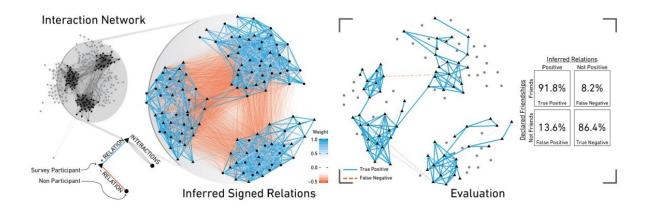
scientific reports 2023

Check for updates

OPEN Reconstructing signed relations from interaction data

Georges Andres, Giona Casiraghi, Giacomo Vaccario & Frank Schweitzer[™]

Positive and negative relations play an essential role in human behavior and shape the communities we live in. Despite their importance, data about signed relations is rare and commonly gathered through surveys. Interaction data is more abundant, for instance, in the form of proximity or communication data. So far, though, it could not be utilized to detect signed relations. In this paper, we show how the underlying signed relations can be extracted with such data. Employing a statistical network approach, we construct networks of signed relations in five communities. We then show that these relations correspond to the ones reported by the individuals themselves. Additionally, using inferred relations, we study the homophily of individuals with respect to gender, religious beliefs, and financial backgrounds. Finally, we study group cohesion in the analyzed communities by evaluating triad statistics in the reconstructed signed network.



Experimental test and model calibration: Should we pop filter bubbles in online social media ... or better not?

JASSS is an interdisciplinary journal for the exploration and understanding of social processes by means of computer simulation

ENHANCED BY Google

Homepage Journal information - Journal statistics - Journal Content - Contact us

Home > 27 (1), 7

Polarization on Social Media: Micro-Level Evidence and Macro-Level Implications

Marijn Keijzer^a, Michael Mäs^b and Andreas Flache^c

^aInstitute for Advanced Study in Toulouse, France; ^bKarlsruhe Institute of Technology, Germany; ^cUniversity of Groningen, Netherlands

Other articles by these authors v

```
Journal of Artificial Societies and Social Simulation 27 (1) 7
<https://www.jasss.org/27/1/7.html>
DOI: 10.18564/jasss.5298 Save citation...
```

Received: 06-Jan-2023 Accepted: 01-Nov-2023 Published: 31-Jan-2024

Does "sorting" in social media foster polarization? Obama says "yes"

Retreating in your own bubble fosters polarization

For ... too many of us it's become safer to retreat into our own bubbles, whether in our neighborhoods, ... or especially our social media feeds, surrounded by people who look like us and share the same political outlook and never challenge our assumptions.

Farewell address Barack Obama, Chicago, January 10, 2017.

Others (e.g. Mark Zuckerberg) claim that "popping the bubble" could make things even worse

Source: Wikipedia (Anthony Quintano)

Popping the bubble may foster polarization

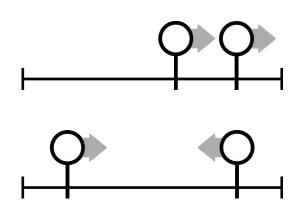
Some of the most obvious ideas, like showing people an article from the opposite perspective, actually deepen polarization by framing other perspectives as foreign **99**

Zuckerberg, M. 2017. "Building global community". https://www.facebook.com/notes/3707971095882612/

Modelling these intuitions

A model based on **persuasive argument theory**

- Opinion is constituted by **arguments** arg_vector ++---- ⇒ opinion = -0.33
- **Influence**: if *i* interacts with *j*, then *i* adopts argument from *j*.
- **Homophily**: the more similar *i* and *j*, the more likely they interact
 - Similarity in opinions, ethnicity, gender, ...
 - \Rightarrow interaction with similar others
 - strengthens "extreme" views, and
 - is more likely than interaction with dissimilar others

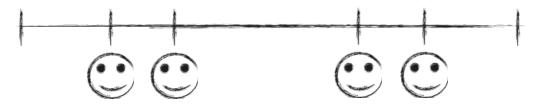


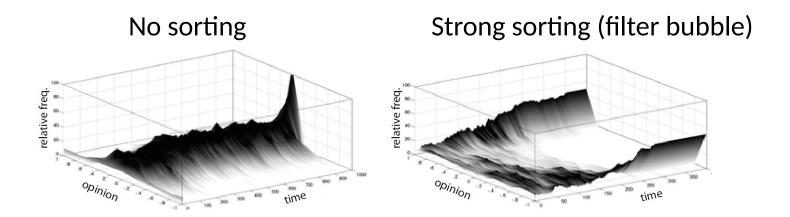
[•] Mäs, M., Flache, A., Takács, K., & Jehn, K. (2013). Organization Science 24. 3: 716–736.

[•] Mäs, M., & Flache, A. (2013). PLoS ONE 8(11): e74516.

Simulation model of collective opinion dynamics assuming as microfoundation

"opinion reinforcement" (say, Obama)





less sorting would decrease polarization

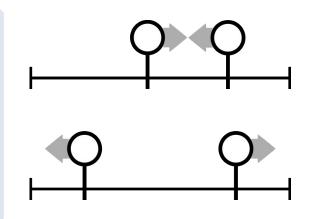
Mäs et al 2013, *Organization Science* Mäs & Flache 2013, *PLoS One* Feliciani et al 2021, *CMOT*

Another possible model of polarization: xenophobia and repulsive influence

Xenophobia

differences too large \Rightarrow relations become negative

- **Repulsive influence**
 - relations negative \Rightarrow
- people want to become more dissimilar from each other



Theories

social balance, cognitive dissonance, social judgement

Experiments

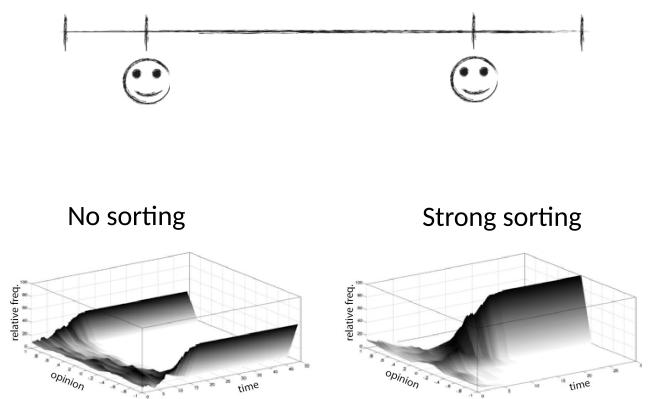
group categorization, group polarization, negative referents

Several computational models \rightarrow

- Macy, Kitts, Flache, Benard (2003)
- Jager & Amblard (2005)
- Fent, Gröber & Schweitzer, 2007
- Flache & Mäs (2008)
- Flache & Macy (2011, JMS) ...

Simulation model of collective opinion dynamics assuming microfoundation

"repulsive influence" (say, Zuckerberg)



less sorting would INCREASE polarization

Flache & Mäs 2008, *CMOT* Flache & Macy 2011, *JMS* Feliciani, Flache & Tolsma 2017, *JASSS* Feliciani, Tolsma & Flache 2023, *JoCSS*

What now? Experiments to test microfoundation

Online social influence experiments (Keijzer et al 2024).

> Extending earlier experiments

Takács, Flache & Mäs 2016. *POne* 11(6): e0157948

 Participants received opinion messages with systematically varied characteristics, then opinion change was measured

> **Results:**

- participants tend to move towards message from source
- less so if source is "ideologically distant"
- and there is a tendency towards "repulsive influence" among "right wing" participants if disagreement is strong
- ⇒ We estimated parameters influence function from data
- ⇒ Feeded this into simple simulation model

Table 2: Posterior distribution and model fit for Bayesian weighted linear influence models with stimulus morality and ideological identification

	Model 0		Model 1		Model 2	
	Estimate	SD	Estimate	SD	Estimate	SD
persuasiveness (α)	0.041	0.036	0.209	0.103	0.533	0.131
distance (β_0)			0.259	0.152	0.265	0.143
moral (β_1)					-0.437	0.116
right (β_2)					-0.652	0.176
moral \times right (β_3)					0.843	0.238
σ	0.212	0.011	0.216	0.012	-0.203	0.010
elpd _{LOO}	143.402	23.428	143.282	24.266	147.872	23.300
WAIC	-286.835	46.845	-286.623	48.509	-295.809	46.590
N	311	1	311		311	

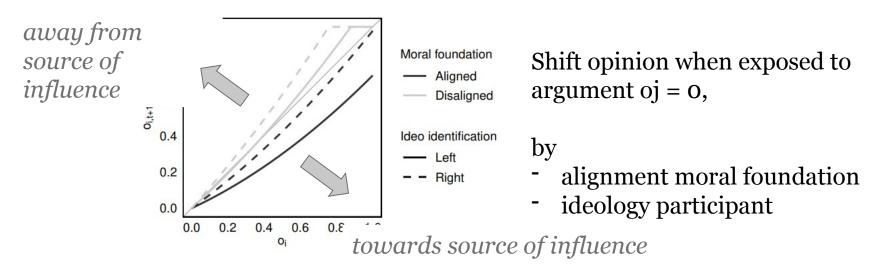


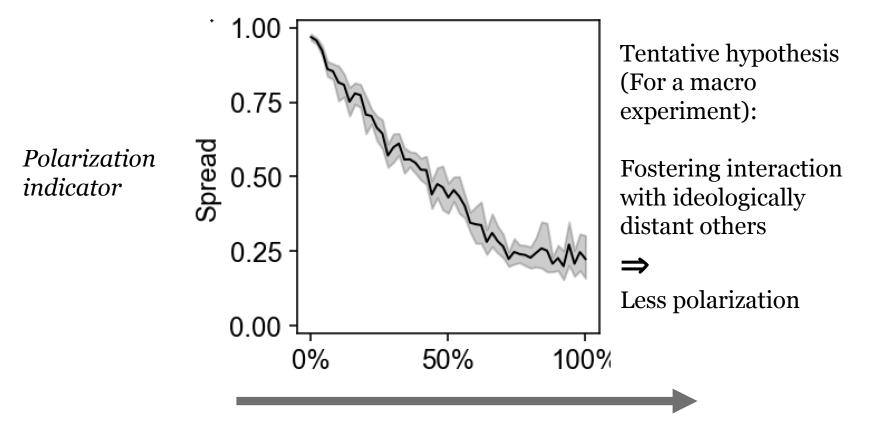
Figure 4: Predicted argument response function by political orientation and alignment of moral foundation. Opinion shifts are predicted relative to an argument $o_j = 0$

Keijzer et al, 2024

23

"Empirically informed" (calibrated) simulation of "popping the filter bubble"

Keijzer, Mäs & Flache 2024 JASSS



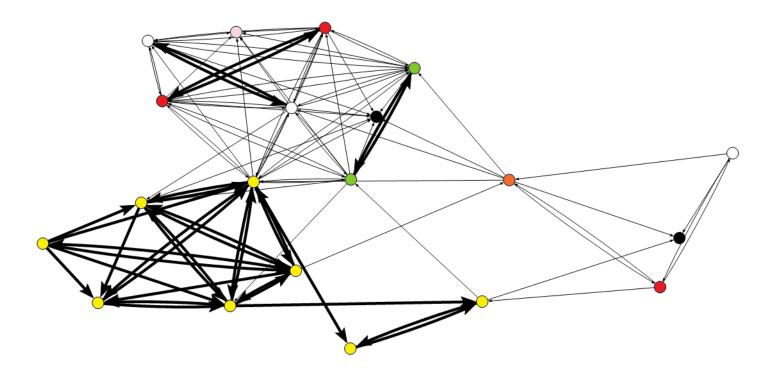
"bubble size" (ideological distance still allowing interaction)

Flache @ SG Final Symposium ETH 2024

From experiments to real evolving networks:

An empirical Investigation of Bounded Confidence and Repulsive Influence in Adolescents' Networks

Thanze Tang, Tom A.B. Snijders & Andreas Flache (under review)



Test critical ABM assumptions in stochastic actororiented modelling framework (SAOM)

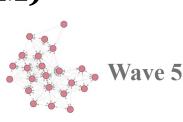
(Tang, Snijders & Flache, under review)

> Limitation of experiments:

- "in the field" there are multiple interdependent dynamics
- Limited time span
- "lack of external validity"

> In this project:

- We use longitudinal co-evolution data opinions + networks (Arnhem school study)
- Control for simultaneous interdependent processes of network + attitude changes
 "SAOM": stochastic actor oriented model (Snijders et al)
- Develop and estimate SAOM parameters capturing key social influence assumptions
 - Negative (aka repulsive) social influence
 - "bounded confidence" (influence only from similar others)



Effects of main interest in this study:

• *simAllNear*:

If the estimate is positive → people shift opinions to be closer to others with similar opinions (Positive influence with bounded confidence is supported)

• *simAllFar*:

If the estimate is negative \rightarrow people move their opinions to be different from others with dissimilar opinions (Negative aka repulsive influence is supported)

Controls:

Network endogenous processes (e.g. reciprocity, transitive closure, homophily)

Trends in opinion changes independent from influence (e.g. shift in one direction, tendency to move towards extremes or towards center, ...)

RESULTS

Based on Effect Feature p.s.d. b.s.d. p.m. p Network Effects out-degree (density) Random -2.12500.2916 0.0889 0.00 46 classrooms reciprocity Random 2.2937 0.0924 0.3104 1.00 begin secondary transitive triplets Fixed 0.3687 0.0167 1.00 . school transitive reciprocated triplets Fixed -0.06030.0259 0.01 in-degree related popularity Fixed -0.08940.0108 0.00 out-degree related activity 0.0057 Fixed 0.0828 1.00 2 waves reciprocal degree-related activity Fixed -0.25670.0149 0.00 6 months apart opinion similarity Fixed 0.2405 0.0836 1.00 0.1589 log class size Fixed -0.35500.01 N=991 adolescents same gender Random 0.6124 0.0533 0.2051 1.00 **Opinion Effects** linear shape Random -0.29030.0749 0.3379 0.00 quadratic shape Random -0.25980.0868 0.1655 0.00 1-near similarity Random 0.53 0.0018 0.0272 0.0937 SAOM with 3-far similarity Random -0.16640.0863 0.1796 0.03 average similarity Bayesian method for Fixed 1.0573 0.6339 0.95 . p.m. = posterior mean; p.s.d. = posterior standard deviation; estimating parameters, b.s.d. = posterior between-groups standard deviation; random coefficients p = posterior probability that the parameter is greater than 0.Koskinen & Snijders 2023

Main conclusions Tang et al (under review)

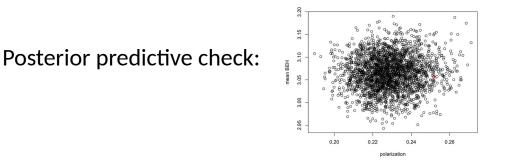
The results show

- evidence of discrepancy-induced negative influence
- no evidence of bounded confidence induced positive influence

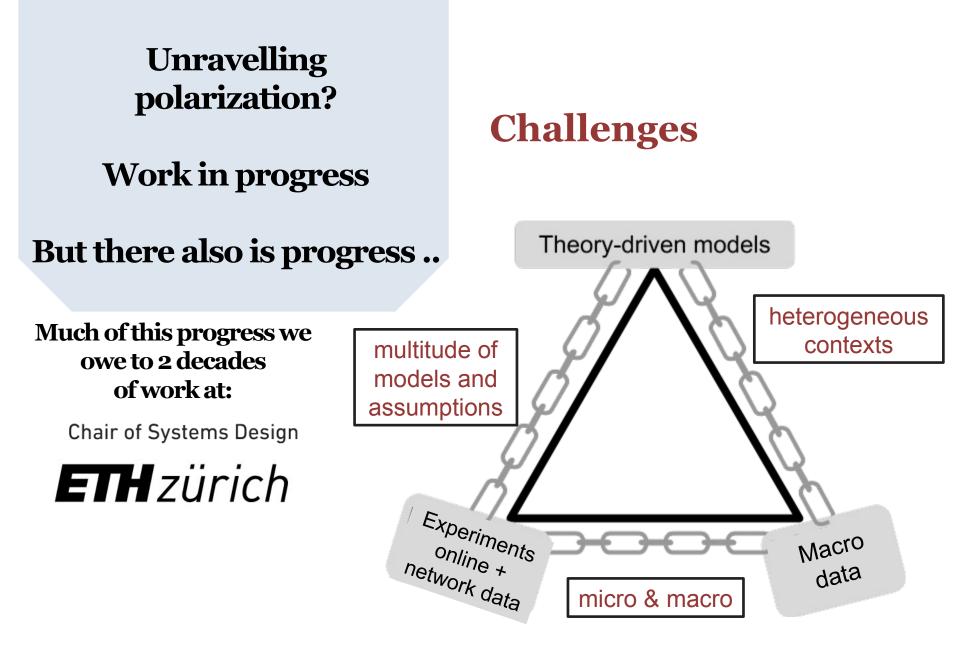
However:

Simulation of the aggregate dynamics resulting from the interplay of all network and attitude change processes included in the empirical model of the data shows:

Despite negative influence, the observed microprocesses do NOT induce a clear tendency towards opinion polarization



Polarization indicator < 0.5: low polarization



Thank you for your attention <u>https://flache.gmw.rug.nl/</u>

Looking forward to your comments and questions!

Credits

Reserve slides below here

Affective polarization

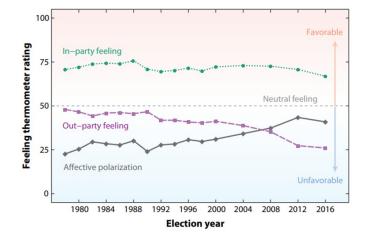
2008, Fiorina et al. 2008). But regardless of how divided Americans may be on the issues, a new type of division has emerged in the mass public in recent years: Ordinary Americans increasingly dislike and distrust those from the other party.

Democrats and Republicans both say that the other party's members are hypocritical, selfish, and closed-minded, and they are unwilling to socialize across party lines, or even to partner with opponents in a variety of other activities. This phenomenon of animosity between the parties is

known as affective polarization.

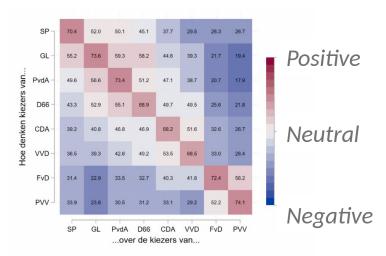
Iyengar et al 2019,

Annu. Rev. Political Sci. 2019. 22:129-46



U.S.

Source: Iyengar et al 2019



Netherlands Source: Harteveld, E. 2020 **Stochastic Actor-Oriented Modelling** (SAOM) implemented by software **RSIENA** (Stochastic Investigation of Empirical Network Analysis, in R)

• Input:

Longitudinal data on co-evolution network relations + "behavior" individuals in a complete network

A selection of effects (mechanisms) that are (potentially) important for explaining observed network + opinion dynamics

 \Rightarrow

Agents are modelled as myopically optimizing "objective functions" capturing their preferences about desirable network states and behavioral states (e.g. opinions)

• Output:

The parameter estimates for each effect (can be roughly interpreted as the relative importance of each effect governing the dynamics)

Snijders, T.A.B., Van de Bunt, G.G., Steglich, C.E.G., 2010. Introduction to stochastic actor based models for network dynamics. *Social Networks* 32, 44-60

Two new SAOM effects capturing key assumptions of social influence ABM's

• *simAllNear*:

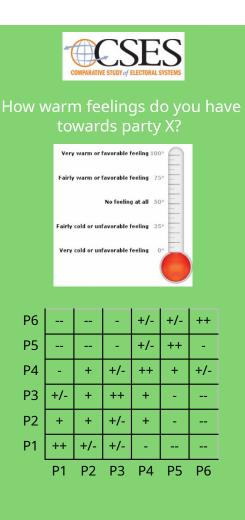
Captures the influence from those whose opinion difference with the focal agent is <u>smaller</u> than p, a pregiven threshold. NOT ONLY FROM NETWORK TIES.

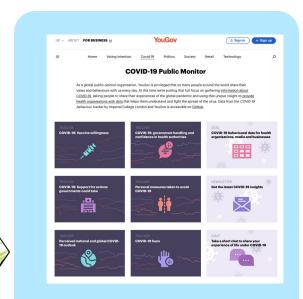
• *simAllFar*:

Captures the influence from those whose opinion difference with the focal agent is <u>larger</u> than p, a pregiven threshold. NOT ONLY FROM NETWORK TIES.

Effects are estimated controlling for – i.a. – influence from friends (average similarity) and individual tendencies (linear + quadratic shape)

Macro level data on "conditions" and "outcomes"





[r1] To what extent do you agree or disagree that ...?

-[r1 1]	Coronavirus (COVID-19) is very dangerous for me
-[r1_2]	It is likely that I will get coronavirus (COVID-19) in the future
-[r1_3 fixed]	Wearing a mask will protect me against coronavirus (COVID-19)
-[r1_4 fixed]	Wearing a mask will protect others against coronavirus (COVID-19)
-[r1_5 fixed]	Wearing a mask to protect me against coronavirus (COVID-19) is not possible for me
-[r1_8 fixed]	Getting a vaccine will protect me against coronavirus (COVID-19)
-[r1_9 fixed]	Getting a vaccine will protect others against coronavirus (COVID-19)
-[r1_10 fixed]	Getting a vaccine to protect me against coronavirus (COVID-19) is not possible for me
-[r1_6]	I feel it is important to carry out activities which will improve my health
-[r1_7]	My life has been greatly affected by coronavirus (COVID-19)
<1>	1 – Disagree
<2>	2
<3>	3
<4>	4
<5>	5
<6>	6
<7>	7 - Agree

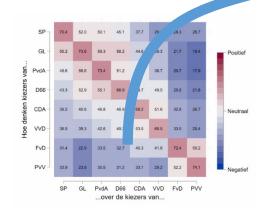
Modelling effect of "feeling temperature" on micro-interactions in OD framework

Start from "usual" pairwise interaction. Then:

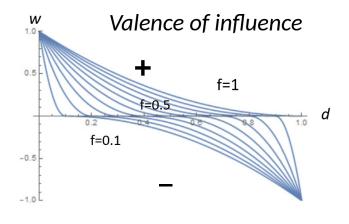
$$o_{i,t+1} = o_{i,t} + w(o_{i,t}, o_{j,t}, \varepsilon)(o_{j,t} - o_{i,t})$$

 $0 \le o \le 1$
 $-1 \le w \le +1$

 \Rightarrow Incorporate "feeling thermometer" into influence weight.



The "colder" the feeling, the less disagreement suffices to induce negative (repulsive) influence

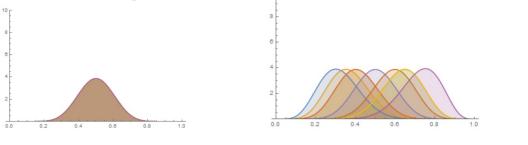


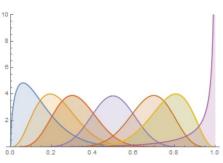
 $0 \leq \varepsilon \leq 1$

Further country-level characteristics affecting micro-level interactions in model (CSES data)

• Number and voteshare parties (group composition) ⇒likelihood of interaction between members of party i and party j

Ideological dispersion parties (left-right position)
 ⇒Affects distribution *initial opinions* across different parties
 ⇒Model parameter





igd = 0.5

Simulation experiments

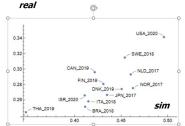
Compare different models with different parametrizations, assessing:

How well does a model explain differences between countries in extent of disagreement (s.d. in real data) in final week of observation period?

⇒Correlation sdReal with sdSim where correlations mean across X realizations (N=12 country cases)

Simulations for 3 different items:

- r1_1 Coronavirus is very dangerous for me
- r1_3 Wearing a mask will protect me against coronavirus
- r1_4 Wearing a mask will protect others against coronavirus



Wolfram Mathematic

One experiment with 12 countries, 2500 parameter combinations

Parameters varied:

Name	Note	Range of variation
ε^{0}	Baseline threshold disagreement for pos / neg switch	01, step 0.25
φ	Sensitivity threshold to feeling value	01, step 0.25
S	Steepness weight function in distance	0.52, step 0.5
igd	Intergroup distance, alignment initial opinions with Ir-position party	01, step 0.25
<u>itPerAgent</u>	average # of iterations per agent until simulation stops	016, step 4

Main parameter of interest: φ

Further

- N=100
- Party sizes proportional vote share in CSES data
- 100 realizations per parameter vector
- Target statistic:

average correlation simulated variance opinions with real variance opinions in last week observation period

Issue r1_4

"Wearing a mask will protect others against coronavirus"

And the winner is ...

Top 10 parameter combinations in terms of correlation:

sF	eps0	phi	igd	itPerAgent	meanCorr
2	0.25	1	1	12	0.731549
1.5	0.25	1	1	8	0.716998
2	0.25	1	1	8	0.707923
2	0.25	0.75	1	12	0.707878
1.5	0.25	0.75	1	8	0.701111
2	0	1	1	8	0.700327
1.5	0.25	1	1	12	0.699055
2	0.25	0.75	1	8	0.697642
2	0.25	1	1	16	0.695283
1	0.25	1	1	8	0.694987
		\bigvee			

Issue r1_4 "Wearing a mask will protect others against coronavirus"

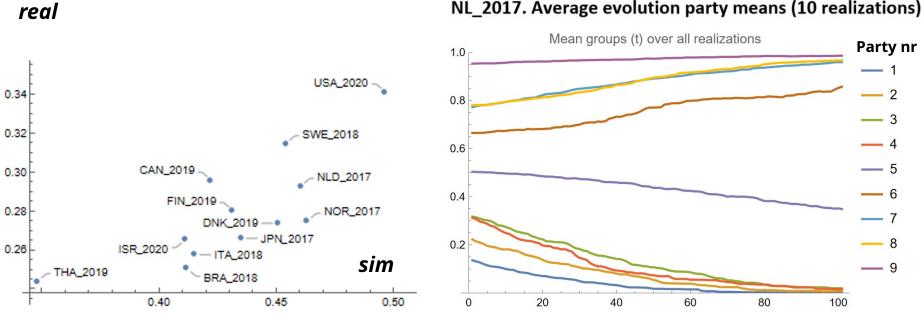
Properties of "winners":

- Consistently low eps0
- Consistently high igd
- Consistently high phi
- Relatively short runtime (8 itPerAgent)

These models tend to generate

- high disagreement between ideologically and affectively distant parties
- Low disagreement (consensus) between ideologically and affectively close partie
- Can pick up well extent to which a country is "polarization prone"

Example "best fitting"model:



NL 2017. Average evolution party means (10 realizations)

Many more experiments with more different parameter combinations:

- general profile of "well-explaining models" remained largely the same
- Correlations are somewhat lower for the other issues (r1 1 and r1 3)
- Models tend to (strongly) overestimate real polarization