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What makes teams successful?
▶ relevant for organizational psychology, software

engineering, complex systems theory and industry

▶ how can we measure, model, and predict collective
phenomena in complex social systems?

▶ since 1980s: agent-based models of collective dynamics
in biological, social, and economic systems

▶ since 2000s: focus on complex networks of interactions
between agents

▶ since 2010s: application of machine learning to complex
networks

image credit: DALL-E generated image
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networks

Max Weber
1864 – 1920

“Die zunehmende Intellektualisierung und Ra-
tionalisierung bedeutet [. . . ] den Glauben
daran [. . . ] daß man [. . . ] alle Dinge –
im Prinzip – durch Berechnen beherrschen
könne. Das aber bedeutet: die Entzauberung
der Welt.” → M Weber: “Wissenschaft als Beruf”, 1917

image credit: Ernst Gottmann, Wikimedia Commons, public domain
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What makes teams successful?
▶ relevant for organizational psychology, software

engineering, complex systems theory and industry

▶ how can we measure, model, and predict collective
phenomena in complex social systems?

▶ since 1980s: agent-based models of collective dynamics
in biological, social, and economic systems

▶ since 2000s: focus on complex networks of interactions
between agents

▶ since 2010s: application of machine learning to complex
networks

Frank Schweitzer
ETH Zürich

The resulting systemic behavior [...] often
shows consequences that are hard to pre-
dict [...] we need a more fundamental in-
sight into the system’s dynamics and how they
can be traced back to the structural prop-
erties of the underlying interaction network.
→ F Schweitzer et al: “Economic Networks: The New Chal-

lenges”, Science, 2009
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What makes teams successful?
▶ relevant for organizational psychology, software

engineering, complex systems theory and industry

▶ how can we measure, model, and predict collective
phenomena in complex social systems?

▶ since 1980s: agent-based models of collective dynamics
in biological, social, and economic systems

▶ since 2000s: focus on complex networks of interactions
between agents

▶ since 2010s: application of machine learning to complex
networks

complex collaboration network
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Identifying social factors of “success”

highly-cited
paper?

time

range = [1:n]
result = {}
for i in range:
   n1 = str(s[0])
   n2 = str(t[1])
   l.append(n1)
   l.append(n2)
   key = (n1, n2)
   result[key]=1

range = [1:m]
result = { 0:0 }
for i in range:
   n1 = str(t[0])
   n2 = str(t[1])
   l.append(n1)
   l.append(n2)
   key = (n1, n2)
   result[key]=1

range = [1:100]
result = { 0:0 }
for i in range:
   n1 = str(t[0])
   n2 = str(t[1])
   l.append(n1)
   l.append(n2)
   key = (n1, n2)
   result[key]=0

commit 1 commit 2 commit 3 commit 4
v_list = []
dat = []

dat = getData()
dat = sort(dat)
dat = clean(dat)

return dat

e�cient 
software 

team?
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Identifying social factors of “success”

author
centralities

machine learning
algorithm

highly-cited
paper?

prediction

result

authors’ position in collaboration network allows to predict future
citation success of paper six times better than expected at random
→ E Sarigöl, R Pfitzner, I Scholtes, A Garas, F Schweitzer, EPJ Data Science, 2014
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e�cient 
software 

team?

result

structure of coordination network among developers allows to
explain productivity differences across software teams
→ I Scholtes, P Mavrodiev, F Schweitzer, Emp. Softw. Eng., 2016

Ingo Scholtes What makes teams successful? From Network Science to Causal Graph Learning SG Symposium, ETH Zürich 2024/10/31 3



Identifying social factors of “success”

author
centralities

machine learning
algorithm

highly-cited
paper?

prediction

time

range = [1:n]
result = {}
for i in range:
   n1 = str(s[0])
   n2 = str(t[1])
   l.append(n1)
   l.append(n2)
   key = (n1, n2)
   result[key]=1

range = [1:m]
result = { 0:0 }
for i in range:
   n1 = str(t[0])
   n2 = str(t[1])
   l.append(n1)
   l.append(n2)
   key = (n1, n2)
   result[key]=1

range = [1:100]
result = { 0:0 }
for i in range:
   n1 = str(t[0])
   n2 = str(t[1])
   l.append(n1)
   l.append(n2)
   key = (n1, n2)
   result[key]=0

commit 1 commit 2 commit 3 commit 4
v_list = []
dat = []

dat = getData()
dat = sort(dat)
dat = clean(dat)

return dat

e�cient 
software 

team?

open questions

▶ can we use end-to-end deep learning to model social factors of success in teams?
▶ how can we leverage high-resolution data on dynamic collaboration networks?
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Deep learning in complex networks
▶ graph convolutional network (GCN) = neural

network architecture for graph-structured data
→ T Kipf, M Welling, 2017

▶ neural message passing: use complex network to
iteratively update node features based on

1. differentiable function with (learnable) parameters
2. neighbor aggregation function
3. non-linear activation function

end-to-end representation learning

▶ use differentiable loss function to compare model output to
ground truth (supervised setting)

▶ partial derivatives w.r.t. model parameters yield gradients that
point towards local minimum of loss function

▶ GPU-accelerated backpropagation algorithm to learn “useful”
vector space representation
→ DE Rumelhart, GE Hinton, RJ Williams, Nature, 1986
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Geoffrey E. Hinton
Nobel prize in physics 2024

Nvidia G102 GPU
28.3 billion transistors

40 TeraFLOPs

image credit: Tom’s Hardware, Fritzchens
Fritz

Alpha Centauri
distance approx.

40 billion km

image credit: ESO/DSS 2, CC-BY-SA
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The end of theory?
▶ good machine learning models . . .

▶ capture relevant patterns in data
▶ generalize to unseen data

▶ good scientific theories . . .
▶ describe relevant observed phenomenon
▶ make predictions that can be validated
▶ help to understand causal mechanisms

▶ grand challenge: incorporate causality in deep (graph)
learning models

“The scientific method is built around testable
hypotheses. [...] This is the way science has
worked for hundreds of years. But faced with
massive data, this approach to science - hy-
pothesize, model, test - is becoming obsolete.”
→ C Anderson: “The End of Theory: The Data Deluge Makes the

Scientific Method Obsolete”, Wired, 2008
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▶ good machine learning models . . .

▶ capture relevant patterns in data
▶ generalize to unseen data
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▶ describe relevant observed phenomenon
▶ make predictions that can be validated
▶ help to understand causal mechanisms

▶ grand challenge: incorporate causality in deep (graph)
learning models

image credit: xkcd.com, Randall Munroe, CC-BY-SA
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The end of theory?
▶ good machine learning models . . .

▶ capture relevant patterns in data
▶ generalize to unseen data

▶ good scientific theories . . .
▶ describe relevant observed phenomenon
▶ make predictions that can be validated
▶ help to understand causal mechanisms

▶ grand challenge: incorporate causality in deep (graph)
learning models

Bernhard Schölkopf
MPI for Intelligent Systems

[. . . ] if we compare what machine learning can
do to what animals accomplish, we observe that
the former is rather bad at some crucial feats
where animals excel. [. . . ] causality [. . . ] can
make a substantial contribution towards under-
standing and resolving these issues and thus
take the field to the next level.
→ B Schölkopf: “Causality for Machine Learning”, 2019

image credit: Herlinde Koelbl, MPI Tübingen
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The arrow of time in networks
▶ network science maps and analyzes topology of possible

causal relations between agents in complex systems

▶ neural message passing in GCN uses all possible paths

▶ but: cause must temporally preceed effects

DC

A B

from  to  

A   B 
B   C 
D   B 
C   A 
D   B 
B   D 
D    A 
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The arrow of time in networks
▶ network science maps and analyzes topology of possible

causal relations between agents in complex systems

▶ neural message passing in GCN uses all possible paths

▶ but: cause must temporally preceed effects

Sir Arthur Stanley
Eddington
1882 – 1944

image credit: public domain

“ I shall use the phrase ’time’s arrow’ to ex-
press this one-way property of time which has
no analogue in space.” → Sir Arthur Eddington
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The arrow of time in networks
▶ network science maps and analyzes topology of possible

causal relations between agents in complex systems

▶ neural message passing in GCN uses all possible paths

▶ but: cause must temporally preceed effects

Networks, time, and causality at the Chair of Systems Design

▶ temporal correlation measure → R Pfitzner et al., PRL 2013
▶ predicting diffusion speed → I Scholtes et al., Nature Comm 2014
▶ temporal centralities → I Scholtes, N Wider, A Garas, EPJ B 2016
▶ multi-order model selection → I Scholtes, SIGKDD 2017
▶ anomaly detection for temporal data → T LaRock et al., SIAM Data Mining 2020
▶ controllability of temporal networks → Y Zhang et al., JoP Complexity 2021
▶ generative models for path data → C Gote et al., Applied Network Science 2023

state-of-the-art (temporal) graph neural networks
ignore arrow of time in time series data

DC

A B

A B C D
from  to  when

B   C 12:30
A   B 12:31
D   B 12:33
C   A 12:35
D   B 12:36
B   D 12:37
D    A 12:41
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Towards deep “causal” graph learning
▶ De Bruijn graph neural network (DBGNN) = deep learning

architecture using higher-order De Bruijn graphs

▶ idea: use neural message passing, but restrict messages
to follow arrow of time

▶ we use statistical learning to infer parsimonious
message passing architecture
→ I Scholtes, SIGKDD 2017
→ L Petrovic, I Scholtes, WWW 2022
→ J von Pichowski, V Perri, L Qarkaxhija, I Scholtes, arXiv 2406.16552

causality-aware graph representation learning

▶ gradient descent optimization yields static vector space
representation of temporal network that captures . . .

▶ topology of interactions between nodes

▶ “causality” due to temporal order of interactions
▶ increases node classification performance by up to 22 %

compared to state-of-the-art → L Qarkaxhija, V Perri, I Scholtes, PMLR 2022

from  to  when

A   B 12:30
B   C 12:31
D   B 12:33
C   A 12:35
D   B 12:36
B   D 12:37
D    A 12:41

A-B

B-C

B-D

C-A

D-A

D-B

A-B

B-C

B-D

C-A

D-A

D-B

A-B

B-C

B-D

C-A

D-A

D-B

A B C D
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Who is “important” in a team?
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time

5

temporal betweenness temporal closeness
dataset model Spearman Speedup Spearman Speedup
sociopatterns GCN1 0.804 0.744
hospital TGN2 0.522 0.509

DBGNN 0.832 0.918
gain +3.4% 271 x + 23.4 % 33 x

sociopatterns GCN1 0.786 0.809
hypertext TGN2 0.260 0.360

DBGNN 0.839 0.977
gain +6.7% 485 x + 20.7 % 28 x

sociopatterns GCN1 0.540 0.540
highschool TGN2 0.166 0.166

DBGNN 0.661 0.925
gain +22.4% 1077 x + 71.3 % 43 x

manufacturing GCN1 0.404 0.556
email TGN2 0.320 0.496

DBGNN 0.744 0.971
gain +84.1% 17 x + 74.6 % 14 x

1 → T Kipf, M Welling, ICLR, 2017 2 → E Rossi et al., arXiv:2006.10637, 2020

challenge

▶ temporal node centralities
substantially differ from static
centrality measures

▶ but: computing temporal centralities
is prohibitively expensive

example: 2,247 s for temporal
betweenness in data set with 327 nodes
and 188,000 time-stamped edges

→ F Heeg, I Scholtes, NeurIPS 2024

Ingo Scholtes What makes teams successful? From Network Science to Causal Graph Learning SG Symposium, ETH Zürich 2024/10/31 8



Who is “important” in a team?

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

1
2
3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

time

5

temporal betweenness temporal closeness
dataset model Spearman Speedup Spearman Speedup
sociopatterns GCN1 0.804 0.744
hospital TGN2 0.522 0.509

DBGNN 0.832 0.918
gain +3.4% 271 x + 23.4 % 33 x

sociopatterns GCN1 0.786 0.809
hypertext TGN2 0.260 0.360

DBGNN 0.839 0.977
gain +6.7% 485 x + 20.7 % 28 x

sociopatterns GCN1 0.540 0.540
highschool TGN2 0.166 0.166

DBGNN 0.661 0.925
gain +22.4% 1077 x + 71.3 % 43 x

manufacturing GCN1 0.404 0.556
email TGN2 0.320 0.496

DBGNN 0.744 0.971
gain +84.1% 17 x + 74.6 % 14 x

1 → T Kipf, M Welling, ICLR, 2017 2 → E Rossi et al., arXiv:2006.10637, 2020

challenge

▶ temporal node centralities
substantially differ from static
centrality measures

▶ but: computing temporal centralities
is prohibitively expensive

example: 2,247 s for temporal
betweenness in data set with 327 nodes
and 188,000 time-stamped edges

→ F Heeg, I Scholtes, NeurIPS 2024

Ingo Scholtes What makes teams successful? From Network Science to Causal Graph Learning SG Symposium, ETH Zürich 2024/10/31 8



Who is “important” in a team?

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

1
2
3

4

time

5

1

train causality-aware DBGNN model2

1-2

2-3

2-4

3-1

4-1

4-2

1-2

2-3

2-4

3-1

4-1

4-2

1-2

2-3

2-4

3-1

4-1

4-2

3 predict temporal 
betweenness/closeness 

centrality for 
future period

compute temporal 
betweenness/closeness centrality

in (short) training period

temporal betweenness temporal closeness
dataset model Spearman Speedup Spearman Speedup
sociopatterns GCN1 0.804 0.744
hospital TGN2 0.522 0.509

DBGNN 0.832 0.918
gain +3.4% 271 x + 23.4 % 33 x

sociopatterns GCN1 0.786 0.809
hypertext TGN2 0.260 0.360

DBGNN 0.839 0.977
gain +6.7% 485 x + 20.7 % 28 x

sociopatterns GCN1 0.540 0.540
highschool TGN2 0.166 0.166

DBGNN 0.661 0.925
gain +22.4% 1077 x + 71.3 % 43 x

manufacturing GCN1 0.404 0.556
email TGN2 0.320 0.496

DBGNN 0.744 0.971
gain +84.1% 17 x + 74.6 % 14 x

1 → T Kipf, M Welling, ICLR, 2017 2 → E Rossi et al., arXiv:2006.10637, 2020

challenge

▶ temporal node centralities
substantially differ from static
centrality measures

▶ but: computing temporal centralities
is prohibitively expensive

example: 2,247 s for temporal
betweenness in data set with 327 nodes
and 188,000 time-stamped edges

idea

train causality-aware DBGNN model for
regression of temporal centralities

→ F Heeg, I Scholtes, NeurIPS 2024

Ingo Scholtes What makes teams successful? From Network Science to Causal Graph Learning SG Symposium, ETH Zürich 2024/10/31 8



Who is “important” in a team?
temporal betweenness temporal closeness

dataset model Spearman Speedup Spearman Speedup
sociopatterns GCN1 0.804 0.744
hospital TGN2 0.522 0.509

DBGNN 0.832 0.918
gain +3.4% 271 x + 23.4 % 33 x

sociopatterns GCN1 0.786 0.809
hypertext TGN2 0.260 0.360

DBGNN 0.839 0.977
gain +6.7% 485 x + 20.7 % 28 x

sociopatterns GCN1 0.540 0.540
highschool TGN2 0.166 0.166

DBGNN 0.661 0.925
gain +22.4% 1077 x + 71.3 % 43 x

manufacturing GCN1 0.404 0.556
email TGN2 0.320 0.496

DBGNN 0.744 0.971
gain +84.1% 17 x + 74.6 % 14 x

1 → T Kipf, M Welling, ICLR, 2017 2 → E Rossi et al., arXiv:2006.10637, 2020

challenge

▶ temporal node centralities
substantially differ from static
centrality measures

▶ but: computing temporal centralities
is prohibitively expensive

example: 2,247 s for temporal
betweenness in data set with 327 nodes
and 188,000 time-stamped edges

idea

train causality-aware DBGNN model for
regression of temporal centralities

→ F Heeg, I Scholtes, NeurIPS 2024

Ingo Scholtes What makes teams successful? From Network Science to Causal Graph Learning SG Symposium, ETH Zürich 2024/10/31 8



Who is “important” in a team?
temporal betweenness temporal closeness

dataset model Spearman Speedup Spearman Speedup
sociopatterns GCN1 0.804 0.744
hospital TGN2 0.522 0.509

DBGNN 0.832 0.918
gain +3.4% 271 x + 23.4 % 33 x
sociopatterns GCN1 0.786 0.809

hypertext TGN2 0.260 0.360
DBGNN 0.839 0.977

gain +6.7% 485 x + 20.7 % 28 x
sociopatterns GCN1 0.540 0.540

highschool TGN2 0.166 0.166
DBGNN 0.661 0.925

gain +22.4% 1077 x + 71.3 % 43 x
manufacturing GCN1 0.404 0.556

email TGN2 0.320 0.496
DBGNN 0.744 0.971

gain +84.1% 17 x + 74.6 % 14 x
1 → T Kipf, M Welling, ICLR, 2017 2 → E Rossi et al., arXiv:2006.10637, 2020

→ F Heeg, I Scholtes, NeurIPS 2024

Ingo Scholtes What makes teams successful? From Network Science to Causal Graph Learning SG Symposium, ETH Zürich 2024/10/31 8



Who will leave the team?
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X

dataset model Balanced Accuracy

facebook react-native GCN1 72.41 ± 0.02

DBGNN 79.02 ± 0.03
gain + 9.1%

airbnb pay service GCN1 61.12 ± 3.75

DBGNN 70.79 ± 2.47
gain + 15.8%

alphagov enzyme GCN1 58.98 ± 0.94

DBGNN 72.46 ± 0.2
gain + 22.9%

keras GCN1 54.25 ± 0.57

DBGNN 95.57 ± 0.0
gain + 76.2%

1 → T Kipf, M Welling, ICLR, 2017

challenge

▶ exit of central developer can be
existential threat for software teams

▶ can we predict exit of key team
members before they happen?

→ L Qarkaxhija, C Gote, B Sendhoff, I Scholtes,

in preparation
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Application perspective
▶ social factors in software teams introduce

severe risks in software supply chains

recent example

social engineering attack to install backdoor into fundamental
Linux library xz that is largely maintained by single developer
→ CVE-2024-3094

Industry project Software Campus 3.0

▶ BMBF-funded industry project with major software
company DATEV eG, Nürnberg

▶ online platform to analyze software projects based on
repository data

▶ built around temporal graph learning library pathpyG

▶ helps stakeholders to monitor and assess
socio-technical risk factors in (Open Source) software
dependencies

image credit: Randal Munroe, xkcd.com, CC BY-NC 2.5
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Thank you!

→ L Qarkaxhija, V Perri, I Scholtes,
Proc. of Learning on Graphs, 2022

www.pathpy.net

→ F Heeg, I Scholtes,
NeurIPS, 2024
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