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Political polarization in online social platforms is a rapidly growing phenomenon worldwide. De-
spite their relevance to modern-day politics, the structure and dynamics of polarized states in digital
spaces are still poorly understood. We analyze the community structure of a two-layer, intercon-
nected network of French Twitter users, where one layer contains members of Parliament and the
other one regular users. We obtain an optimal representation of the network in a four-dimensional
political opinion space by combining network embedding methods and political survey data. We
find structurally cohesive groups sharing common political attitudes and relate them to the political
party landscape in France. The distribution of opinions of professional politicians is narrower than
that of regular users, indicating the presence of more extreme attitudes in the general population.
We find that politically extreme communities interact less with other groups as compared to more
centrist groups. We apply an empirically tested social influence model to the two-layer network to
pinpoint interaction mechanisms that can describe the political polarization seen in data, particu-
larly for centrist groups. Our results shed light on the social behaviors that drive digital platforms
towards polarization, and uncover an informative multidimensional space to assess political attitudes
online.

Understanding how people share information and in-
fluence each other in their political attitudes, poten-

tially leading to ideological partisanship and political po-
larization [1], is a relevant yet challenging issue that has
been tackled for decades using theories and methods from
fields as diverse as sociology [2], political science [3, 4],
economics [5] and, more recently, complexity and com-
putational social science [6–9]. Mathematical modeling
is a frequently applied method to elucidate the mecha-
nisms behind social influence and ideological polarization
[10–14]. Often times, however, models that are other-
wise conceptually robust and even inspired by empirical
data, are investigated only theoretically through analyt-
ical derivations and numerical simulations on idealized
synthetic populations [15, 16]. An example are models
of continuous political opinions that position individuals
in, e.g., liberal-conservative scales, where the dimension
capturing political ideology is defined a priori and not as
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the result of data analysis in the social context of interest.
Indeed, one of the most challenging aspects of bridging
opinion dynamics models and empirical observations of
political attitudes in social networks is the number of
dimensions determining social influence [17].

Ideal point estimation models [18] have been used to
position large numbers of social media users in a liberal-
conservative scale in several platforms [19, 20], amount-
ing to a single-dimensional opinion analysis where users
are classified from the most liberal to the most conser-
vative. And yet, social scientists acknowledge that polit-
ical systems in Europe [21] and also increasingly in the
US [22] are structured by several dimensions of opinion.
Recent advancements in multidimensional political opin-
ion estimation methods allow to embed structural data,
such as communication networks coming from social me-
dia, into political spaces with multiple political dimen-
sions [23]. In these spaces, dimensions act as continuous
indicators of positive or negative attitudes towards iden-
tifiable issues of political debate.

Here we propose a methodology to uncover and un-
derstand patterns of online political polarization in so-

ar
X

iv
:2

30
5.

02
94

1v
2 

 [
ph

ys
ic

s.
so

c-
ph

] 
 2

9 
M

ay
 2

02
3



2

Left Right (LR)
+

More left-wing More right-wing

EE
LV

LFI LRLR
EM

MoD
em

PC
F

PS RN

Anti-elite (AE)
+

Less anti-elite More anti-elite

EE
LV

LFILR LR
EM

MoD
em

PC
F

PS RN

Nationalism (NA)
+

Less nationalistic More nationalistic

EE
LV

LFI LRLR
EM

MoD
em

PC
F

PS RN

European Union (EU)
+

More anti-EU More pro-EU

EE
LV

LFI LR LR
EM

MoD
em

PC
F

PSRN

-1 0 1

-1 0 1

-1 0 1

-1 0 1

Po
lit

ic
al

 d
im

en
si

on
 2

Latent space Attitudinal Reference
Frame

Social graph

La
te

nt
 d

im
en

si
on

 2

MPs

Users

Center
LREM

MoDem

Left
PS

PCF

LFI

Liberal 
right

LR

LC

Nationalists

LR

LC

RN

Others
LC

others

A

B

C

cial media by combining embedding methods with em-
pirically grounded opinion models in a multidimensional
ideological space. Using follower networks in the online
micro-blogging platform Twitter, with data from both
professional politicians and regular users in France, we
estimate the ideological positions of individuals along
an optimal number of four politically relevant dimen-
sions: left-right stance and attitudes towards national-
ism, elites, and the European Union. By means of a net-
work community detection method based on stochastic
block-modelling, we first classify politicians and regular
users into groups, according to assortative patterns in the
Twitter interaction structure. We then embed the social

FIG. 1. Uncovering political opinions via online social
network data. (A) Schematic diagram of network struc-
ture in French Twitter, with Members of Parliament (MPs)
on top and regular users in the bottom. Colored circles high-
light the various communities found by the planted partition
model [24], which divides the network by assortativity pat-
terns for both MPs and users. Colors are chosen according to
their overall political leaning. MPs belong to five communi-
ties: Center, Left, Liberal right, Nationalist and Others (see
SI, Sec. S2). The party composition of each community is
specified in the legend. The color of links corresponds to the
community of the source nodes; User → User and MP → MP
links are represented by solid arrows, and User → MP links by
dashed arrows (we disregard MP → User links). (B) Scheme
of method to obtain politically relevant ideological positions
of users and MPs. The Twitter network is embedded in a mul-
tidimensional latent space preserving homophily: users who
are close in this space have higher probability of following the
same set of MPs. We compute positions of political parties in
latent space as the mean position of MPs of the same party.
Using these points and the corresponding party positions in
political survey data, we map the network onto the opinion
dimensions of the survey (see MM and SI, Sec. S1.2.2). (C)
Reference points in the resulting four-dimensional political
opinion space. Points correspond to the party positions of
eight different French political parties according to the CHES
political survey (see MM and SI, Sec. S1.2.2).

graph in a latent space preserving homophily, where di-
mensions are interpreted as ideological indicators using
a survey of political experts. Our four political dimen-
sions are optimal in the sense that they capture main
differences between competing parties in France. Rely-
ing on the community partition of the network and on
the inferred positions along the detected four political
dimensions, we propose formal measures that uncover
polarized states and diverging ideologies. Finally, we in-
troduce an empirically tested opinion dynamics model
capable of reproducing the large-scale behavior of empir-
ical data, providing a plausible explanation for the influ-
ence mechanisms underlying the structure and dynamics
of political polarization in multidimensional ideological
spaces.

RESULTS

We gather network data from the follower → followed
relations between the Twitter accounts ofM = 813 Mem-
bers of Parliament (MPs) in France and N = 230 254 of
their followers (here denoted regular users), who follow
at least 3 MPs and follow another user that follows at
least 3 MPs (Fig. 1A). Based on this directed online so-
cial network, we infer politically relevant ideological po-
sitions of MPs and users via a 2-step embedding method
(Fig. 1B). First, we embed nodes of the network onto a
homophily-preserving latent space (users close in space
follow similar sets of MPs). Then, positions in this la-
tent space are correlated to the attitude dimensions of a
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standard political survey, the Chapel Hill Expert Survey
(CHES) [25]. The resulting space is comprised by four
real-valued variables, or political dimensions, that repre-
sent attitudes towards: (i) the political left or right (LR),
(ii) nationalism (NA), (iii) the European Union (EU),
and (iv) anti-elite (AE). Beyond the standard left-right
dimension of political cleavage, our embedding process
is able to automatically identify additional dimensions
capturing relevant differences between party positions in
France (Fig. 1C ; for more details see Materials and Meth-
ods [MM], Ref. [23] for an implementation of the algo-
rithm, and Supplementary Information [SI] Sec. 1).

Structurally cohesive groups share political attitudes

Since MPs arguably carry the political agenda by high-
lighting topics of interest to their parties and the general
public, we choose to focus first on the part of the network
involving MPs only, i.e. the MP → MP links (Fig. 1A).
We run a standard community detection algorithm on the
MP layer to find the best partition into assortative groups
(groups more connected to themselves than to others), by
minimizing the description length of the network from an
information-theoretical perspective [24, 26].

We find four assortative communities, named Center,
Left, Liberal right, and Nationalists by following tradi-
tional distinctions in French politics [27], plus a non-
assortative group denoted Others (Fig. 2A; see also MM
and SI, Sec. S2). These names are determined by the po-
sitions of the corresponding MPs along the identified po-
litical dimensions (Fig. 1C and Fig. 2B–C ). The Center
is composed mainly of members of the LREM and Mo-
Dem parties in France, displaying centrist positions in all
dimensions except EU (where it is the most pro-Europe
community). The Left has a markedly left-leaning dis-
tribution, assembling most MPs from known left-wing
parties (LFI, PCF, and PS). The rightmost communities
in the LR dimension are named Liberal right and Na-
tionalists to account for their differences along the NA
and AE dimensions. The Others group is composed of
several parties across the whole political spectrum, and
the structural patterns of its MPs do not fit any of the
other groups. We observe that the dimensions of the la-
tent space properly capture the attitudes of politicans
expected by their party allegiance, and MPs of the same
group are clustered together in opinion space, except for
Others. We also identify interesting features in the opin-
ion overlaps between groups: the Liberal right and Na-
tionalists exhibit some overlap in their LR attitudes, but
occupy different regions in the NA and AE dimensions
(Fig. 2C ).

These results further cement the need and real-world
relevance of the political attitude dimensions compris-
ing our multidimensional latent space. Beyond the tra-
ditional left-right cleavage, we find a dimension of atti-
tudes towards institutions and elites (previously identi-
fied as relevant in French politics and political Twitter

in general [28]), an ideological position towards national-
ism that differentiates between two right-wing tendencies
(Liberal right and Nationalists), and a variable encap-
sulating opinions with respect to the EU, also deemed
significant in French politics [29] (see MM for a detailed
discussion on the selection of these dimensions).

Professional politicians have less extreme attitudes
than regular users

A natural next step is to analyze the positions of reg-
ular users in latent space and relate them to the ideolog-
ical positions of the MPs they follow (Fig. 3). Political
opinions of MPs lie exclusively within the limits of the
distribution of values for users, meaning that the most
extreme attitudes in French Twitter are held by the reg-
ular audience of the platform (Fig. 3A). This difference
indicates that opinions of MPs are not necessarily rep-
resentative of users’ beliefs: in the AE dimension, for
instance, users have more (and less) anti-elite tendencies
than MPs. Users also tend to align with the most popular
MPs based on their number of followers, which ultimately
produces a high concentration of opinions around popu-
lar MPs (see SI, Sec. S1.3). This is a first indication of
the social influence mechanisms potentially driving the
dynamics of political Twitter, such as opinion imitation
or assimilation [16, 30], which we explore further below.
We compare the structural patterns of connectivity of

users and MPs by running the same community detection
algorithm in the user layer, but now under a constraint of
four groups, the same number of communities found for
MPs (Fig. 3B). In other words, we focus on the particu-
lar level of the hierarchy of community structure among
the general audience of Twitter that corresponds to the
group divisions imposed by professional politicians (for
details see SI, Sec. S2). We denote the resulting four
communities by α, β, γ and δ. At this level of granu-
larity, the assortative communities of users also exhibit
opinion coherence, both in terms of the distribution of
political attitudes and their relation to the communities
and parties of MPs (Fig. 3C ).
The predominant political positions of user groups are

strikingly informative (Fig. 3D). The α community is the
only one having a marked left-wing stance over the LR
dimension. The δ group, the rightmost in the LR dimen-
sion, is the only one skewed towards the nationalist side
of the NA spectrum. The more centrist communities β
and γ lie in between α and δ in the LR dimension and
show a low nationalist stance. Yet they differ in their
attitudes towards elites and the EU, with the γ commu-
nity showing a marked antielite sentiment. Three of these
communities (α, β and δ, respectively) somewhat corre-
spond to identifiable political ideologies in France and
their associated MP groups: the traditional left and two
types of center to right-wing stances, the liberal and the
nationalist right [29]. On the other extreme, community
γ does not correspond to a single group in the MP layer;
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FIG. 2. Communities and ideological positions of pro-
fessional politicians. Using the best partition according to
the minimum description length principle of the planted par-
tition model [24], we find 5 MP communities: Center, Left,
Liberal right, Nationalists, and Others. (A) Chord diagram
indicating the connectivity (number of links) between and in-
side communities. The angular size of each community in the
diagram is proportional to the number links that depart from
it. (B) Party composition of each community. The list of par-
ties (horizontal axis) is ordered according to their positions
in the LR dimension. Bars indicate the number of MPs that
belong to each party in the specified community (rows). We
choose convenient colors for communities and parties in order
to better visualize their political attitudes (see SI, Sec. S2).
(C) Opinions of MPs in two-dimensional projections of the
latent space, leading to six possible pairs of opinion variables:
LR-EU, LR-NA, LR-AE, EU-NA, NA-AE, and EU-AE.

its users mainly follow Center politicians (see Fig. 3C )
and show a strong antielite sentiment.

Groups with extreme political attitudes are more
segregated

Assortative communities of users in political Twitter
also differ in the way they connect to each other despite
their ideological disagreement, as captured by our atti-
tudinal latent space (Fig. 3E ). For each user community,
we partition one of the dimensions of latent space (say,
LR) into chunks, and compute the fraction of links (of
users in that community and opinion interval) that lead
to one of the other groups. This is a measure of commu-
nity segregation, or political polarization, as a function of
attitudinal positions in LR space (for details and other di-
mensions see SI, Sec. S3.3.4). The β and γ communities,
roughly corresponding to the Liberal right and Center,
show a flat trend, meaning that individuals identifying
with these political ideologies interact with other groups
despite their differences. Notably, the more right-wing β
community is slightly better connected to others than the
more centrist γ group (i.e. the fraction of outside links is
larger on average). On the other hand, the politically ex-
treme α and δ communities, mostly associated to the Left
and Nationalists, have a decreasing trend in their con-
nectivity to users with diverging ideologies, highlighting
their segregation both in terms of structural connectivity
and attitudinal positions in latent space. The α and δ
groups are in this sense more heterogeneous yet assorta-
tive, since the political stances of their users are a strong
indication of their degree of homophily with peers, echo-
ing recent findings of increasing political polarization in
US Twitter [8, 9].

Modelling multidimensional political polarization
online

The positioning of professional politicians and regular
users of French Twitter in a multidimensional attitudi-
nal space indicates that people form structurally cohe-
sive groups that become more segregated as their po-
litical ideologies diverge. Regular users also tend to be
more extreme towards topics of political debate, while
concentrating their attention on popular MPs. In or-
der to identify potential idealized mechanisms that might
explain this behavior, we explore an opinion dynamics
model with social influence processes validated by con-
trolled psychological experiments [31, 32].
In the model, each user i holds a vector opinion v⃗i(t) =

(xi(t), yi(t), zi(t), wi(t)) at time t that determines its po-
sition in attitudinal latent space (the LR, NA, EU, and
AE dimensions, respectively). Each MP m has a static

vector opinion V⃗m = (Xm, Ym, Zm,Wm) that we extract
from data. This assumption can be understood as a sep-
aration of time scales: regular users of Twitter change
their minds and who they follow faster than MPs, who
pursue the political agenda of their parties at a slower
pace. In other words, we assume that users are influ-
enced by other users and MPs, but not the other way
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FIG. 3. Communities and ideological positions of regular users and their relation to professional politicians. (A)
Number distribution of ideological positions of users (MPs), represented by blue (orange) dots in a two-dimensional opinion
space for pairs of opinion variables: LR-NA (top) and EU-AE (bottom) (other pairs in SI, Sec. S1.3). Color shading for MPs
is proportional to the number of followers k (users) of each MP in logarithmic scale, i.e. in-degree in the User → MP network,

k ≡ k
in/um
m (see SI, Sec. S1.1.1). Corresponding marginal probability densities of users (blue) and MPs (orange) are plotted in

linear scale. (B) Communities in the user layer correspond to the best partition (minimum description length) of the planted
partition model [24] with a fixed number of communities equal to four. The color of each community is chosen according to
its characteristic political attitude in relation to the MP layer. The chord diagram indicates the connectivity (number of links)
between and inside communities of users. (C) Sankey diagrams indicating the connectivity between user groups and both MP
communities (top) and their parties (bottom). Size of flows is proportional to the number of links in the User → MP network,
whose source nodes belong to a particular community of users (indicated by colors). Link colors are chosen according to user
communities. (D) Probability densities of opinion variables (LR, NA, EU and AE) of users in each community (as indicated
by line color). Colored dashed lines represent the average opinion of each community, and the black dashed line is the global
average. (E) Fraction of links of users (in the user layer) pointing outside of their community as a function of the distance
of their opinion from the average opinion of all users. Plot corresponds to the LR dimension (for others see SI, Sec. S3.3.4).
While members of β and γ connect freely to other communities despite of political differences, this function rapidly decreases
with ideological distance for members of α and δ.

around (meaning we ignore links from MPs to users; see
Fig. 1A).

The dynamics of the model is as follows (Fig. 4A). In a
time step ∆t = 1/N , a randomly selected user i interacts
with one of its neighbors, either another user j or an MP
m, who influences the opinion of i according to

v⃗i(t+∆t) = v⃗i(t) + Iij [v⃗j(t)− v⃗i(t)], (1)

or

v⃗i(t+∆t) = v⃗i(t) + Iim[V⃗m − v⃗i(t)], (2)

where the influence factors Iij and Iim are drawn at each
time step from a predefined probability density function

f(I) (Fig. 4B). We follow the dynamics until the sys-
tem is stationary, i.e. until the distribution of opinion
values in all dimensions is stable. The distribution f(I)
captures a spectrum between prototypical influence pro-
cesses [32], here denoted Keep (I = 0) and Adopt (I = 1),
i.e., not being influenced by a neighbor or fully imitating
its behavior (for details on the choice of f(I) see MM).
Crucially, we introduce a parameter λ controlling the ra-
tio of rates of interactions with either users (Eq. (1)) or
MPs (Eq. (2)) (see SI, Sec. S3.1).

We fit the model by estimating f(I) and λ such that
the difference in the marginal distributions of all opinion
components between data and model are minimized (for
details see SI, Sec. S3.3.1). Despite its simplicity, numer-
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FIG. 4. Modelling multidimensional political polarization online. (A) In our minimal social influence model, user i
interacts with its neighbor, another user j or MP m, and decides to either keep its own opinion or incrementally adopt the
neighbor’s position according to influence factor Iij (see Eqs. (1)–(2)). (B) Based on experimental evidence [31, 32], we model
the influence factor Iij as a sum of two Gaussians peaked around Iij = 0 and Iij = 1. The height and width of the peaks are
parametrized by (p, σK , σA), which we determine by fitting (see MM). (C) Probability density function of attitudinal positions
of users in latent space (LR, NA, EU and AE) in both empirical data (colored solid lines) and best fit of stationary state of
the model (black solid lines). Colored (black) dashed lines represent the average opinion of data (model) in a given political
dimension. (D) Average opinion µ of users as a function of the weighted average opinion µ̃ of the MPs they follow (see Eq.
(3)). Weights are the in-degrees of the MPs coming from the considered set of users. Each point corresponds to either the
whole network (global) or certain community of users (indicated by colors; see Fig. 3) and for a given opinion variable (LR,
NA, EU, AE). The straight line is the degree-based mean field approximation µ = µ̃ (see SI, Sec. S3.2).

ical simulations of the stationary state of the fitted model
recover the attitudinal positions of most users across the
entire latent space (Fig. 4C ), with some deviations at
the extremes of the political spectrum, particularly in
the LR, NA, and AE dimensions. Our results imply that
the collective decisions of users to either keep their own
opinions or incrementally get influenced by others are
compatible with the amount of political polarization seen
in data.

The levels of political polarization across communities
in this latent space are further clarified by a degree-based
mean field analysis [33] of our model (Fig. 4D). Since
the attitudes of MPs are static, the average opinion µ
of users along a given dimension is approximately equal
to the degree-weighted average opinion µ̃ of MPs they

follow. In terms of, say, the stationary opinions x
(st)
i in

the LR dimension, we have

1

N

N∑

i=1

x
(st)
i = µ ≈ µ̃ =

∑M
m=1 k

in/um
m Xm∑M

m=1 k
in/um
m

, (3)

where k
in/um
m is the number of users following MP m (see

SI, Sec. S3.2). Attitudinal positions in French Twitter
roughly follow the mean-field trend µ ≈ µ̃ in all dimen-
sions of the latent space, both at the global level and
when separating users by their political communities (see
Fig. 3). In data, however, this approximately linear rela-
tion has a slope higher than 1, implying that users have
even more radical attitudes than the MPs they follow, es-
pecially at the extremes of the multidimensional political
spectrum (see Fig. 3A).
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DISCUSSION

Our results show that political polarization in online
social networks cannot be reduced to a single dimension.
This contrasts with a stream of recent research leverag-
ing ideological scaling in social media data, which focuses
in uni-dimensional left-right models. Using embedding
methods based on large-scale Twitter and political survey
data, we uncover at least four dimensions that capture
relevant attitudinal differences across political groups in
France. We observe that both professional politicians and
regular users of Twitter create cohesive communities of
similarly-minded people, but users are more extreme in
their attitudes and may distance themselves from groups
with dissimilar political leanings, further polarizing the
online platform. Indeed, there is a clear but nuanced
relationship between the group segregation in this multi-
dimensional latent space and the political party structure
in France, highlighting how real-world political cleavages
are reflected in online activity.

Political polarization is intrinsically multidimensional
and thus depends on particular topics of public debate.
In France, the political left-right and the nationalism is-
sue segregate online communities the most, while atti-
tudes towards the European Union and against socio-
economic elites are less polarizing. We observe a strong
relationship between the intra- and inter-connectivity of
communities and the political opinions of their members.
The centrist communities β and γ interact quite uni-
formly with other groups, while the more extreme com-
munities α and δ (in the left and right of the political
spectrum) connect less with other groups as the political
disagreement between them increases.

Identifying and understanding the characteristics of in-
dividuals in distinct regions of multidimensional political
spaces is of importance to several lines of research, with
broad implications for policy making, political campaign-
ing, grassroots movements, and collective social phenom-
ena in democratic spaces. By virtue of their engage-
ment with professional politicians, the inferred attitu-
dinal positions of a sample set of citizens could be har-
nessed in, e.g., the run up to elections. From a political
space competition perspective [34], eligible candidates
might take positions appealing to voters in certain re-
gions of a previously identified latent space. Identifying
the users and political spatial regions under-served by
existing candidates is a potential benefit of our method-
ology, which, together with text analysis of opinions in
social media, may have relevant implications for political
strategies. Other applications include the study of online
social movements [35], discovery of political biases in al-
gorithms [36–38], and polarization in online news media
consumption [8, 39, 40].

To complement our statistical analysis, we have ex-
plored a model that replicates the positions of profes-
sional politicians and Twitter users in opinion space and
pinpoints the basic social mechanisms, such as imitation,
that might drive the levels of political polarization seen

online. The fitted parameter λ (a ratio of the frequency
of interactions with politicians) indicates, in accordance
with empirical observations, that MPs lead the dynam-
ics. The relation between the opinions of users and MPs
predicted by the model shows a good fit with data. No-
tably, the global opinion average of users is independent
of model parameters and might be thought of as a fun-
damental property of the proposed imitation mechanism.
The model recovers this fundamental property at the
global level, but there are some deviations for individ-
ual communities. The discrepancies are mostly at the
extremes: the average opinion of communities with ex-
tremist individuals is more extreme than predicted by the
model. This indicates that, in addition to imitation, fur-
ther mechanisms are potentially at play in the dynamics
of polarization in French Twitter.
The emergence of political cleavages as indicated by

interactions in online social media is an inherently tem-
poral and cultural phenomenon. As the political agenda
evolves and the topics of national debate transition from
one administration to the next, the dimensions of our ide-
ological space relevant to political polarization will also
change. The results of the embedding process might also
depend on the selected online platform and the country
for which data is gathered. How does this opinion space
vary across countries and time? And, perhaps more cru-
cially, what characteristic dimensions of political polar-
ization are common around the world, despite cultural
differences? Our results offer a flexible framework to fur-
ther explore these tantalizing questions.

MATERIALS AND METHODS

Twitter network data

The network is obtained via the Twitter accounts of
Members of Parliament (MPs) in France [41]. We have
data on 813 MPs (out of 925), including 348 senators
and 577 deputies, each one belonging to one of ten po-
litical parties: LREM (La République en Marche), LR
(Les Républicains), PS (Le Parti Socialiste), LFI (La
France Insoumise), LC (Les Centristes), RN (Rassem-
blement National), PCF (Parti Communiste Français),
MoDem (Mouvement démocrate), PRG (Parti Radical de

Gauche), and EELV (Europe Écologie – Les Verts). Fol-
lowers of the MPs were collected in May 2019, from which
we keep only the 230 254 users with sufficiently high num-
ber of political interactions on Twitter (see SI, Sec. S1.1
for details on how we filter data).
Considering these two types of nodes, MPs and users,

we categorize their links (follower→ followed interactions
collected for the period August–December 2020) as: User
→ User (63 625 921), User → MP (3 351 359), MP →
MP (113 596) and MP → User (515 882). The average
number of followers of the MPs (4122) is higher than that
of users (276) (see SI, Sec. S1.1 for additional statistics
on data collection).
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Latent space embedding

For the political positions of MPs and users we rely on
the computation of Ref. [23] (see acknowledgements for
details on the data). From the described data, political
positions of individuals in a four-dimensional space are
computed in two steps as follows (see Fig. 1B). In the
first step, we consider the bipartite network of MPs and
users (User → MP links) and create an embedding in
a multidimensional latent space preserving homophily:
Users closer in space have higher chances of following the
same MPs, and MPs closer in space have higher chances
of being followed by the same users. To produce this
embedding, a generative homophilic process is considered
for the bipartite network of MPs and their follower users
[19, 28]:

P (Useri → MPj) = logit−1
(
αi + βj − γ∥ϕi − ϕj∥2

)
,
(4)

where P (Useri → MPj) is the probability of observing
Useri following MPj , αi is the level of activity of Useri
(number of followed friends), βj is the popularity of MPj

(number of followers), γ is a sensitivity parameter, and
ϕi and ϕj are unobservable positions of Useri and MPj

in latent space. The first step takes the bipartite graph
of MPs and users as observations to compute Bayesian
inference of ϕ values for them (see Fig. 1B). This is done
by performing a correspondence analysis [42] of the adja-
cency matrix of the bipartite graph as an approximation
of the unobservable positions of MPs and users in Eq. (4)
[43]. See Ref. [44] for an evaluation of this approxima-
tion, and SI, Sec. S1.2.1 for the first step leading to the
latent space embedding.

Political survey data

The second step of the embedding process uses po-
litical survey data to map latent space positions onto a
second space where dimensions do have explicit meaning,
as they stand for attitudes towards identifiable issues of
political debate (see Fig. 1B). The Chapel Hill Expert
Survey (CHES) data [25] contains positions of political
parties in France (and across Europe) in 51 policy and
ideological dimensions. We call this space the Attitudinal
Reference Frame (ARF) (SI, Sec. S1.2.2). To map posi-
tions from the latent space to this ARF, we use positions
of political parties to compute an affine transformation.
For each party, we compute the position in latent space
as the centroid or mean of the positions of MPs that be-
long to that party. Knowing party positions on both the
latent space and the ARF, we compute an affine transfor-
mation mapping positions of the former onto the latter by
choosing the number of latent dimensions that fully de-
termine the parameters of the affine transformation (see
SI, Sec. S1.2.2 for more details on this transformation).

The positions of French political parties, as captured
by the 51 CHES dimensions, can be described almost

completely with only 4 dimensions, as shown by prin-
cipal component analysis of the CHES dimensions (see
Sec. IV in Ref. [45]). The four dimensions deemed rele-
vant for our analysis are: left-right (LR, variable lrgen in
CHES), antielite salience (AE, variable antielite salience
in CHES), attitudes towards European integration (EU,
variable eu position in CHES), and nationalism (NA,
variable nationalism in CHES). The ARF is built with
explicit spatial reference points: e.g., the question that
experts answer to position parties on the left-right scale
is “Where do you position the party in terms of its overall
ideological stance, 0 being extreme left, 5 being centrist,
and 10 being extreme right?” (for the questions defining
all four dimensions in CHES data see SI, Sec. S1.2.2).
We further normalize the scales so that bounds of each
dimension of the survey match the [0, 1] interval, making
them comparable.
To test the validity of positions in ARF, we use Twitter

text written by users. We select subsets of users by key-
words that reveal their political leaning in their Twitter
bio profiles, and check that they are correctly positioned
in, e.g., the left-right scale (see Ref. [46] for a detailed
presentation of this text-based validation approach). For
example, we observe that the distribution of users that
employ the word “right” (droite, in French) with pos-
itive sentiment (via sentiment analysis) and thus with
a lack of criticism, are mostly on the right half of the
space, and their density grows monotonically across the
left-right dimension (see SI, Sec. S1.2.2 for more details
on this dataset and the quality metrics for positioning
individuals along the four dimensions).

Network community detection

The community analysis of the network data is per-
formed with the Python library “graph-tool” [47]. We
use the minimum description length of communities as
a measure of goodness of fit, which is optimal in the
sense that it avoids under- and over-fitting and minimizes
the occurrence of spurious communities. For the commu-
nity detection model, we choose a version of the stochas-
tic block model known as planted partition model [24],
which constrains the community search to find structural
patterns based on assortativity properties. Assortative
groups are characterized by nodes that are connected
mostly to other nodes of the same group (see SI, Sec.
S2). First we apply the method to find communities in
the MP layer and find 5 groups, 4 of which are assortative
and one non-assortative. Then we identify the modular
structure in the user layer by constraining the search to
4 communities (for more details see SI, Sec. S2).

Opinion dynamics model

The agent-based model defined by Eqs. (1)–(2) estab-
lishes the dynamics of opinions and evolves in discrete
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time steps. It considers two possible outcomes for each
user at every time step: one represents the adoption or
imitation of the opinion of a neighbor (“Adopt”), and the
other the preservation of its current opinion (“Keep”).
We consider a bimodal distribution for the influence
factor I, determining whether a user keeps its opinion
or adopts a new one (see Fig. 4B). We parametrize
this bimodal distribution as a mixture model: f(I) =
pN (I; 0, σ2

K) + (1 − p)N (I; 1, σ2
A), where N (x;µ, σ2) =

1
σ
√
2π

exp
[
−(x− µ)2/2σ2

]
is a normal distribution with

mean µ and variance σ2. We use the same distribution
for both Iij and Iim in Eqs. (1)–(2).

The parameter input of the model is as follows: (i)
(p, σK , σA) for the influence distribution f(I); (ii) λ as
a measure of the frequency at which users interact with
MPs compared to other users (both (i) and (ii) are fitting
parameters); and (iii) the network of interactions and the
opinions of MPs, {Xm}m=1,...,M , which we assume to be
constant and extract from the data. The dynamics and
stationarity of the model can be obtained by means of nu-
merical (Monte Carlo) simulations, for which we can op-
tionally apply boundary conditions in opinion space (see
SI, Sec. S3.3.2). At the degree-based, mean-field level
(SI, Sec. S3.2), the average opinion of users in Eq. (3)
depends only on input (iii) through the degree-weighted
average of MP opinions. The variance of user opinions
depends also on (i) and (ii).
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Société 9, 79 (2021).

[36] E. Bozdag, Ethics Inf. Technol 15, 209 (2013).
[37] A. F. Peralta, M. Neri, J. Kertész, and G. Iñiguez, Phys.
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S1 Data details

S1.1 Network

For establishing a French political Twitter network we take as starting point the dataset collected in [1].

The network is seeded using the Twitter accounts of the members of the parliament (MPs) in France,

these are 831 out of a total of 925 (577 in the National Assembly and 348 in the Senate). The followers

of the MPs were collected in May 2019, resulting in 4 487 430 users. To filter inactive or bot accounts, as

well as accounts without enough strong ideological interactional signals, the dataset only contains users

that have at least 25 followers and that follow at least 3 MPs (see Section 3.1 in [1]). These criteria have

also been used by similar ideological scaling methods applied to Twitter friendship networks [2–4]. As

a next step, we identified the edges in the friendship network (the follower → followed relations are the

links of the network) for the period August to December 2020 and kept only the 231 067 total number

of users who are connected to at least one other user. This restriction is necessary to disregard from

the study the nodes that do not play an active role in the political interaction on Twitter. We neglect

the MPs that do not have followers which results in a total number of MPs (m) equal to M = 813, and
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we also neglect the users that are not connected to other users and only follow a few MPs which results

in a number of users (u) equal to N = 230 254 (the total number is N + M = 231 067). Taking into

account these two node categories, i.e., MPs and users, we have four possible types of links: (i) User →
User (uu), (ii) User → MP (um), (iii) MP → MP (mm), and (iv) MP → User (mu). The link count of

each link category is: 63 625 921 for (uu), 3 351 359 for (um), 113 596 for (mm), and 515 882 for (mu),

and the corresponding out/in average degrees are: ⟨kout/uu⟩ = ⟨kin/uu⟩ = 276.33; ⟨kout/um⟩ = 14.56,

⟨kin/um⟩ = 4 122.21; ⟨kout/mm⟩ = ⟨kin/mm⟩ = 139.72; and ⟨kout/mu⟩ = 634.54, ⟨kin/mu⟩ = 2.24. The

average degree of the User → User subgraph is high indicating that in the network considered the users,

as well as the MPs, are highly active in politically related issues in Twitter. The difference in the

number of links in the User → MP and MP → User subgraphs demonstrates the lack of reciprocity in

the interactions between users and MPs. For this reason, we will not consider the MP → User links as

they will not be as important in the analysis. This assumption is fundamental both in the study of the

structure of the network and in the modelling part.

S1.1.1 Degree distributions

We present now a more detailed analysis of the degrees of the nodes in the network for the User → User

(uu) and User → MP (um) subgraphs. We define the adjacency matrix of these subgraphs as follows:

for the User → User subgraph it is Aij = 1 if there is a directed link between user i (source) and user j

(target) with i, j = 1, . . . , N and Aij = 0 otherwise; for the User → MP subgraph it is Pim = 1 if there

is a directed link between user i (source) and MP m (target) with i = 1, . . . , N , m = 1, . . . ,M , and

Pim = 0 otherwise. There are four possibles degrees in these subgraphs, i.e.: k
out/uu
i =

∑N
j=1 Aij and

k
in/uu
i =

∑N
j=1 Aji with i = 1, . . . , N , k

out/um
i =

∑M
m=1 Pim with i = 1, . . . , N and k

in/um
m =

∑M
i=1 Pim

with m = 1, . . . ,M . The degree distributions of the sequences {kin/uui , k
out/uu
i , k

out/um
i }i=1,...,N and

{kin/umm }m=1,...,M are shown in Fig. S1. The distributions of kout/uu, kout/um, and kin/um have maximum

(mode) around 40, 4 and 2000 respectively, while for kin/uu it is a decreasing function, and all the

distributions are fat tailed. Other properties that we observe is that all users follow at least three MPs

and that all MPs have at least 20 followers. Comparing the in-degree distribution of the users kin/uu

and MPs kin/um we see that the MPs have a huge number of followers and that only a few users are

comparable to them in popularity, which confirms our previous consideration that the MPs play the

central role and that the network revolves around politically related issues.

In Fig. S2 we show the degree correlations k
in/uu
i vs k

out/uu
i and k

out/um
i vs k

out/uu
i to examine if there

is a connection between the different degrees of users. We observe that some correlations are present

in both cases, although we also observe a very high level of noise. We compute the Pearson correlation

coefficient (r) and Kendall rank correlation coefficient (τ), which measure the linear correlation and

ordinal association (rank correlation or similarity in the orderings) between two variables. For k
in/uu
i vs

k
out/uu
i we have r = 0.29 and τ = 0.56 which shows some degree of correlation, the linear coefficient is

not very high but the rank coefficient is higher indicating that the two variables are associated but the

relation has some non-linearity, as it can be seen in Fig. S2. For k
out/um
i vs k

out/uu
i we have r = 0.49

and τ = 0.40 which shows a higher level of linear correlation but still with a high level of noise.

In Fig. S3 we show the assortativity of the User → User subgraph, which is calculated as the average

degree kj of the neighbors j of i (Aij=1), averaged over all nodes i that have the same degree ki,

depending if the degrees are in or out we have four possibilities. If we interpret the out-degree as a

measure of activity and the in-degree as a measure of popularity we draw the following conclusions: (i)
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Figure S1. Degree distributions of the User → User and User → MP subgraphs in log-log scale, i.e.,
N(k) ≡ number of nodes with degree k as a function of k, where the degree is for (a) kout/uu, (b) kin/uu,
(c) kout/um, and (d) kin/um. In panels (a), (b) and (c) the numbers N(k) of all possible values of k are
shown, while for panel (d) we use logarithmic binning for visualization purposes as the number of MPs
is not large enough.
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Figure S2. Number of nodes with degrees kin/uu and kout/uu in panel (a), and with degrees kout/um

and kout/uu in panel (b), in log-log scale and with hexagonal logarithmic binning.

for ⟨kin/uu⟩nn vs kout/uu we have that the average popularity of your neighbors decreases as a function

3



of your activity, (ii) for ⟨kout/uu⟩nn vs kout/uu the average activity of your neighbors does not depend on

your activity, (iii) for ⟨kin/uu⟩nn vs kin/uu the average popularity of your neighbors decreases as a function

of your popularity, and (iv) for ⟨kout/uu⟩nn vs kin/uu the average activity of your neighbors decreases as a

function of your popularity. These properties agree with what one can expect from directed dissasortative

networks (where low degree nodes are more probable to be connected to high degree nodes). Note also

that noise increases in the tails of the distributions Fig. S1, i.e., kout/uu ∼ 103−104 and kin/uu ∼ 103−105.
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Figure S3. Assortativity of the User → User network, i.e., average degree ⟨kin/uu⟩nn and ⟨kout/uu⟩nn of
the (nearest) neighbors of nodes with degrees kout/uu and kin/uu: (a) ⟨kin/uu⟩nn vs kout/uu, (b) ⟨kout/uu⟩nn
vs kout/uu, (c) ⟨kin/uu⟩nn vs kin/uu, and (d) ⟨kout/uu⟩nn vs kin/uu in log-lin scale.

S1.2 Network embedding

We rely on the method exposed in [1] for the estimation of the position of Users and MPs along our four

selected political dimensions. This method consist in two steps illustrated in Fig. 1B of the article: 1)

latent space embedding, and 2) attitudinal embedding using political survey data. The whole method

can be summarized as follows, and will be detailed in the following subsections. In the first step, we

rely on a possible generative probabilistic model that might be underlying observed parts of the Twitter

social graph. The model in which we rely is the multidimensional ideal point estimation [3, 5]. This
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models posits an underlying homophilic mechanism for the bipartite part of the social graph linking

MPs with their followers: users that follow a similar set of MPs should be positioned in proximity in a

latent space representing political preferences. Using the observed bipartite graph we infer latent space

positions. In the second step we tackle the problem of inferring semantical meaning for the dimensions

of the space. For this, we map positions of the latent space onto the dimensions of an instrument having

explicit meaning and references points. In this case, we use the Chapel Hill Expert Survey (CHES) data.

To compute the map between latent and the dimension of the instrument we use guiding points existing

in both: estimated positions of political parties.

S1.2.1 Latent space embedding

We first rely on our seed nodes, the 831 MPs, to collect their followers. We then collected (between

August and December 2020) the neighbors of these followers whenever they followed at least 3 MPs and

were followed by at least 25 other users. This resulted in a social graph of 230 254 users that followed

at least 3 MPs. We now consider the adjacency matrix P of the bipartite graph linking MPs and their

followers: Pim = 1 if user i follows MP m, and Pim = 0 if not. We consider an homophilic [6] process

hinging on unobservable multidimensional quantities ϕi and ϕm for users i and MP m [2]:

Prob. (Pim = 1|αi, βm, γ, ϕi, ϕm) = logistic
(
αi + αm − γ∥ϕi − ϕm∥2

)
, (S1)

where αi is the level of activity of User i in number followed users, βm is the popularity of MP m in

number of followers, and ϕi and ϕm are unobservable positions in a multidimensional space that might be

explaining the observed bipartite network. As in [1,3,5], we rely on the fact that Correspondence Analysis

[7] principal components of P approximate ideal point estimation [8]. We compute the Correspondence

Analysis of P using the Language-Independent Network Attitudinal Embedding (LINATE) package 1.

S1.2.2 Attitudinal embedding

To provide a spatialization with explicit spatial semantics, we map positions in this latent space to

a second space in which dimensions stand as indicators of continuous positive or negative attitudes

towards specified issues of political debate. We consider the 51 dimensional space of the CHES data as

the Attitudinal Reference Frame (AFR) in which we will analyze the collected social network. This ARF

was constructed using the assessment of the position of 277 parties from 32 countries (including 8 French

parties also included in our Twitter dataset) in this 51-dimensional space. See [9] for further details.

To map positions from the latent space to this ARF, we use positions of parties to compute an affine

transformation. For each party, we compute the position on the latent space as the centroid or mean of

the positions of MPs that belong to that party. Knowing party positions on both the latent space and

the ARF, we compute an affine transformation mapping position of the former onto the latter choosing

the number of latent dimensions that fully determine the parameters of the affine transformation. For 8

political parties (and thus reference points en both spaces) the affine transformation is fully determined

taking the first 7 dimensions of the latent space. In the arrival space, i.e., the ARF, we select only four

dimensions deemed relevant four our analysis: left-right (LR, variable lrgen of the CHES data), antielite

salience (AE, variable antielite salience of the CHES data), attitudes towards European integration (EU,

1http:www.github.com/pedroramaciotti/linate
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variable eu position of the CHES data), and nationalism (NA, variable nationalism of the CHES data).

We begin by considering the traditional left-right (LR) dimension leveraged in most social media

studies [2, 10]. We then include additional political dimensions. This is needed to address possible

distinctions identified by political science literature within the left- and right-wing politicians and indi-

viduals. We identified three types of distinctions in the literature that need to addressed. First, and

particularly in the case of France, recent works have shown that attitudes towards elites (AE) – from

the CHES data – are the most structuring political element in social media [11], and in particular in

structuring political Twitter networks [5]. Second, beyond LR and AE dimensions, we need to include

a dimension distinguishing traditional liberal right from the nationalist right. This distinction has been

identified for several years now and in particular for France [12], and motivates the inclusion of the CHES

dimension of attitudes towards nationalism (NA). Finally, we include a fourth dimension, addressing a

third distinction identified as important and independent from left-right dimension. Recent studies have

identified the how internationalization of legal frameworks and economies relates to decline in importance

of the left-right dimension in politics [13]. In particular in France this internationalization is first and

foremost related to the European integration process. This motivates the inclusion of the CHES dimen-

sion of attitudes towards the European Union (EU). Moreover, the positions of French political parties,

as captured by the 51 CHES dimensions, can be described almost completely with only 4 dimensions, as

shown by a Principal Component Analysis of the CHES dimensions (see Section IV of [14]).

In the survey, experts are asked to put parties in scales with respect to the following reference

positions, and according to the following descriptions:

• Left-right (LR): “position of the party in terms of its overall ideological stance”, with 0 being

“Extreme left”, 5 being “Center” and 10 being “Extreme right”.

• Anti-elite salience (AE): “salience of anti-establishment and anti-elite rhetoric”, with 0 being

“Not important at all” and 10 being “Extremely important”.

• EU position: (EU): “overall orientation of the party leadership towards European integration”,

with 1 being “Strongly opposed” and 7 being “Strongly in favor”

• Nationalism (NA): “position towards cosmopolitanism vs. nationalism”, with 0 being “Strongly

promotes cosmopolitan conceptions of society” and 10 being “Strongly promotes nationalist con-

ceptions of society”.

While the positions for political parties are bounded by construction of the CHES instrument, the

positions of individual MPs and their followers are not bounded to these intervals. The computed affine

transformation will map party position on the latent space to the corresponding party positions in the

CHES ARF. Individual MPs and followers inside the convex hull formed by party positions are mapped

into the convex hull of party positions in the ARF, and thus are placed within the limit values specified

on the CHES for each dimension. However, because party positions in the latent space are computed as

centroid of MPs of that party, a fraction of MPs of any given party, are bound to have more extreme

positions that those of the party, and can thus lay outside the CHES bounds in the ARF. Because of

these four dimensions have difference reference points, we further map them onto the 0−1 interval. More

precisely, we rescale each dimensions such that:

• Left-right (LR): position 0 is mapped to 0, and position 10 to 1;
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• Anti-elite salience (AE): position 0 is mapped to 0, and position 10 to 1;

• EU position (EU): position 1 is mapped to 0, and position 7 to 1;

• Nationalism (NA): position 0 is mapped to 0, and position 10 to 1;

Fig. S6 in the next section shows the distributions of our Twitter sample in several 2D projections of

this 4-dimensional political opinion space.

Next, we tackled the question of the validation of such space. The construction of this ARF embedding

rests in three hypotheses: 1) users are aware of the existence of MPs but choose to follow those with

whom they feel political affinity, such that the User → MP edges are homophilic to some degree, 2)

latent space preserves this homophily, in that users positioned in proximity in space follow similar sets of

MPs, and 3) that party positions perceived by users in the way they decide to follow MPs from parties

resembles that of experts (in particular in ordering along our 4 different dimensions). In order to test

the validity of the embedding, we use an independent set of data: the text produced by users in the

bio profile self-description. Indeed, users sometimes display their political positions voluntarily in their

profiles: e.g., “si vous êtes fier d’être de droite, dites le!” (“if you’r proud to be a right-winger, say it!”),

or “créons une meilleurs Europe pour nos enfants” (“Let’s create a better Europe for our children”). In

order to test the positions of users along our four dimensions, we leverage test data to identify subset

of users that have a clear stance on the issues related to these four dimensions with minimal place for

ambiguity. In doing so, we will also measure the sentiment of each profile text using NLPTown’s BERT

multilingual uncased sentiment detector2. With these elements, we identify the following subset of users

to test our dimensions:

• Labeled Right-wing (for testing dimension LR): users that use the keywork “droite” (“right”) with-

out negative sentiment (to minimize possible utterances of criticism towards the political right);

• Labeled Left-wing (for testing dimension LR): users that use the keyword “gauche” (“left”) without

negative sentiment (to minimize possible utterances of criticism towards the political left);

• Labeled pro-Europe (for testing dimension EU): users that use the keyword “Europe” or “European”

(in both genders and numbers) without negative sentiment (to minimize possible utterances of

criticism towards Europe);

• Labeled anti-elite (for testing dimension AE): users that use the keyword “elite” or “peuple” (“peo-

ple”). We argue that users that use these keywords subscribe a worldview that opposes two

supposedly homogeneous and antagonistic groups, “the elites” and “the people”, one of the most

common definitions of populism [15];

• Labeled patriot (for testing dimension NA): users that use the keyword “patriote” (“patriot”)

without negative sentiment (to minimize possible utterances of criticism towards the patriotism).

While patriotism and nationalism are not the same conceptually, we argue that people that declare

themselves publicly to be patriots in France are also nationalist, solving the issue to finding a

keyword to capture the more concept notion of nationalism.

Of course, our keywords are not exhaustive: the keyword “left” does not account for all possible ways with

which left-wing users can express that they are affiliated or sympathizers to the political left. Rather,

2https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
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each our five labeled groups represent a subpopulation that, we argue, has unequivocal skewed position

in one of our four political dimensions. In Fig. S4 we plot the density of these five groups along the

dimensions on which we expect them to be skewed to show that, in fact, they are positioned mostly in

the corresponding half of the space: e.g., users labeled as Right-wingers, are mostly concentrated to the

right of position 0.5, marking the explicitly defined center of the LR dimension. The same is true for the

other groups in their corresponding dimensions.
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Figure S4. Density of five groups of users defined by use of keywords used in their Twitter bio profile
text, according to their positions along the dimensions on which we expect them to be skewed to show
that, they are positioned mostly in the corresponding half of the space. For example, users labeled as
Right-wingers, are mostly concentrated to the right of position 0.5, marking the explicitly defined center
of the LR dimension. The same is true for the other groups in their corresponding dimensions.

To further assess the quality of the embedded positions we measure the density of our groups of

labeled users at different positions along our four different dimensions. To do so, we divide the 0 − 1

interval (where most of the users are, and thus where we can obtain a reliable proportion) in 6 bins. On

each bin, we compute the proportion of labeled users with respect to the total number of users in the bin.

We also compute the confidence intervals using the Clopper-Pearson estimates for α = 0.05 confidence.

As shown in Fig. S5, the density of labeled users grows with the direction on the corresponding dimension.

For example, the density of users labeled as Left-wingers, grows monotonically to the left, i.e., negative

LR direction. The expected corresponding trends verify for all 5 groups in our 4 dimensions.

8



0.0 0.2 0.4 0.6 0.8 1.0
Left  Right

0.00%

1.00%

2.00%

Labeled left-wing users

(a )

0.0 0.2 0.4 0.6 0.8 1.0
Left  Right

0.00%

1.00%
Labeled right-wing users

(b )

0.0 0.2 0.4 0.6 0.8 1.0
EU position

2.00%

3.00%

4.00%
Labeled pro-European users

(c )

0.0 0.2 0.4 0.6 0.8 1.0
Anti-elite sentiment

0.00%

0.50%
Labeled anti-elite users

(d )

0.0 0.2 0.4 0.6 0.8 1.0
Nationalism

0.00%

0.25%

0.50%
Labeled patriot users

(e )

Figure S5. The 0-1 interval (where most of the users are, and thus where we can obtain a reliable
proportion) along each one of the 4 political dimensions divided into 6 bins. For each bin, we compute
the proportion of labeled users with respect to the total number of users in the bin. Confidence intervals
(α = 0.05) are computed using the Clopper-Pearson estimates. The observed density of labeled users
grows monotonically with the direction on the corresponding dimension.

S1.3 Variable statistics

In this section we show some basic statistical properties of the state (opinion) of users and MPs, captured

by our four real variables (LR, NA, EU, AE). In Fig. S6 we show the distribution of the opinion variables

of users, i.e., for each variable separately with the marginal distributions and also for the correlations of

all possible pairs of variables. In Fig. S7 we reproduce the same figure (Fig. S6) but now we include,

as a matter of comparison, the opinion variables of MPs organised by “popularity” (orange color), i.e.,

number of followers kin/um of the MPs. These figures confirm in more detail (for all pairs of variables)

the line of reasoning given in the main text, i.e., the explanation of the relation between the opinion of

the users, that of the MPs, and the network structure, as well as the explanation of the differences in

the opinion distributions of MPs and users.

In Table S1 we computed some measures of the correlations between variables for users and MPs by

means of the Pearson correlation coefficient (r) and the Kendall rank correlation coefficient (τ). These

results indicate that some correlations exist between variables, which may be explained by the presence of

“ideologies” [16] that synthesize the opinions of individuals in different, in principle, uncorrelated topics

in a single unified group of ideas. The correlations between variables are also a reflect of the structural

correlations in the interactions between individuals. Note the parallelism between the correlation of

variables of the MPs and users, that result to be very similar and which indicate that the same ideologies

are shared between MPs and users.
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Table S1. Correlations (Pearson, r, and Kendall, τ) of all possible pairs of opinion variables (LR vs
NA, LR vs EU, LR vs AE, EU vs NA, EU vs AE, and NA vs AE) of users and MPs.

LR vs NA LR vs EU LR vs AE EU vs NA EU vs AE NA vs AE

r (Users) 0.61 0.21 −0.01 −0.57 −0.73 0.52
r (MPs) 0.69 0.22 −0.07 −0.47 −0.60 0.31

τ (Users) 0.44 0.07 0.02 −0.43 −0.57 0.36
τ (MPs) 0.53 0.05 0.00 −0.40 −0.32 0.16
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Figure S6. Number of users (N) with opinion variables at a particular position (hexbins) in a two
dimensional state space for all possible pair of variables: (a) NA vs LR, (b) EU vs LR, (c) AE vs LR, (d)
NA vs EU, (e) AE vs EU, (f) AE vs NA, hexagonal logarithmic binning is used for visualization purposes
with gridsize = 40. The marginal distributions of each separate variable are shown in the corresponding
margin of each subfigure.

S2 Communities

In order to find communities in the network and identify the best partition in terms of assortative groups

we use the nonparametric Bayesian formulation of the planted partition model (PP) [17], a version of the

more general stochastic block model (SBM). It is not our intention here to describe the details of this

model, neither to give an extensive explanation of why it is more convenient than other possibilities in the

literature. We will just clarify the most important features and advantages of this partition algorithm,

how we apply it to our network and understand the results, for more details about the partition algorithm
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Figure S7. Number of users (N) with state variables in a two dimensional space in blue using hexagonal
logarithmic binning, and state variables of MPs in orange for all possible pairs of variables: (a) NA vs
LR, (b) EU vs LR, (c) AE vs LR, (d) NA vs EU, (e) AE vs EU, (f) AE vs NA. The color (orange)
shading of the orange points is associated to the in-degree kin/um (k) in the User → MP subgraph in
logarithmic scale. The marginal distributions of each separate dimension are shown in the corresponding
margin of each subfigure, in blue for the users and in orange for the MPs.

and model the reader should refer to the original reference [17]. We decided to use the (PP) because it

considers assortativity, i.e., the tendency of the nodes of a group to be connected to other nodes of the

same group (homophily), as the main mixing pattern in the network. The (PP) simplifies the analysis

as compared to the more general (SBM), where other possible mixing patterns are also included, and

also allow us to focus on the relation between assortative structural patterns and the political positions

of users and MPs. The (PP) is more convenient than other algorithms such as modularity maximization

because avoids overfitting and underfitting problems while, at the same time, it can find an arbitrarily

large number of communities as long as there is enough statistical evidence of them, without a prior

knowledge of the optimum number.

Given the distinction between the two types of nodes that we use as a basis, i.e., MPs and users,

we develop our analysis of the community structure of the network in two steps in a specific order: (i)

we apply the (PP) on the MP → MP subgraph without restricting the number of communities and

infer the optimum number, and (ii) we apply the (PP) on the User → User subgraph restricting the

number of communities according to step (i). The reason for applying the algorithm in this way is to

simplify the analysis by first understating the structure of the politicians network, comparing altogether
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the communities obtained with party membership of their constituents, and then establish a parallelism

(if possible) between the MPs and users communities. Note that the optimum number of communities

in the User → User subgraph, without restricting it, is much larger than for the MP → MP. However,

our criterion of restricting the number of communities in the User → User subgraph does not prevent us

from studying the heterogeneities in the connectivity patterns of the users of a same group, as we carry

out in section S3.3.4. In Fig. S8 we show the results of step (i), i.e, the community detection of the

MP → MP network. The description length, i.e., a measure of the goodness of the community detection

model [17], as a function of the number of communities has a minimum at 5, which corresponds to the

best partition. This result is the one that we show in the main text, where we also discuss in detail the

name and composition of each community. The two second best results are 4 and 6 communities which

are very similar to 5, the differences being: for 4 communities the “Liberal right” and “Nationalist”

groups are merged together, and for 6 communities we find two different non-assortative groups instead

of one (“Others”).

A key question that we have to address is why the number of communities is smaller than the

number of parties. In Fig. S8 we show the party composition and connectivities of the communities in

comparison to the parties. The community → community and party → party connectivity shows that

some parties are non-assortative and consequently are grouped together in different communities. The

“Left” and “Others” are the two main communities that aggregate these non-assortative parties. Thus,

we conclude that the assortative structural patterns of the MP → MP subgraph do not identify some

minority parties as a separated unit. Despite this we remark that some difference can be observed in

the political positions of these parties, see Fig. S9, which would allow us to differentiate between them.

These difference, however, can be inferred from the (assortative) structural patterns of the User → MP

subgraph but not from the MP → MP.

S3 Model

S3.1 Definition

We consider a population of N individuals (users) that hold a time-dependent vector variable v⃗i(t) =

(xi(t), yi(t), zi(t), wi(t)) ∈ R4 defining the state of individual i = 1, . . . , N in the different (four) dimen-

sions at time t, and a set of zealots, i.e., parliamentarians (MPs) in this case, m = 1, . . . ,M that hold a

vector variable V⃗m = (Xm, Ym, Zm,Wm) ∈ R4 that we assume to be fixed in time. Individuals interact

between them through a (follower → following) network structure, that we map onto the usual (sym-

metric) adjacency matrix Aij for i, j = 1, . . . , N . Additionally, individuals interact with zealots through

a bipartite network with adjacency matrix Pim for i = 1, . . . , N and m = 1, . . . ,M . In the model we

consider that these two types of interactions, i.e., individuals with other individuals or individuals with

zealots, occur at a different rate and for this reason we introduce a set of parameters {λm}m=1,...,M for all

zealots3. This parameter λm measures the ratio between the frequency at which a neighbor zealot m of

an individual i, {m} with Pim = 1, is chosen for interaction as compared to a neighbor individual j of i,

{j} with Aij = 1. If individual i follows k
out/uu
i =

∑N
j=1 Aij other individuals and k

out/um
i =

∑M
m=1 Pim

zealots, then the probabilities of interacting with a neighbor individual probuui→j or a zealot probumi→m are:

3Note that in the main text we only introduce one parameter λ ≡ λm for all zealots m, but here we relax this assumption
for convenience in the calculations.
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Figure S8. Panel (a) description length of the planted partition community detection model as a
function of the number of communities in the MP → MP subgraph. Panel (b) party composition of the
minimum description length result for communities, i.e., number of MPs (vertical axis) belonging to each
party (horizontal axis) for each community separately (rows). Panel (c,d) chord diagrams indicating
the connectivity (number of links) between/inside parties (c) and communities (d) for the minimum
description length partition. The angular size of each party/community in the diagram is proportional
to the number links that depart from that party/community, the party/community of destination of the
links is indicated in the chord.

probuui→j = AijCi, probumi→m = PimλmCi,

C−1
i = k

out/uu
i +

M∑

m=1

Pimλm, (S2)

with normalization
∑N

j=1 prob
uu
i→j+

∑M
m=1 prob

um
i→m ≡ probuui +probumi = 1. Thus, the total probabilities

of i interacting with any other individual j = 1, . . . , N or zealot m = 1, . . . ,M are:

probuui =
k
out/uu
i

k
out/uu
i +

∑M
m=1 Pimλm

, probumi =

∑M
m=1 Pimλm

k
out/uu
i +

∑M
m=1 Pimλm

. (S3)

The dynamical rules of the model come defined by the following steps:
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Figure S9. States of the MPs in a two-dimensional opinion space for the six possible pairs of variables
(a/d) LR-EU, (b/e) LR-NA, (c/f) LR-AE, (g/j) EU-NA, (h/k) NA-AE and (i/l) EU-AE. The color of
the points indicate the party, for panels (a-c) and (g-i), and the community, for panels (d-f) and (j-i), to
which the corresponding MP belongs.

1. An individual i is selected at random from the N possibilities.

2. An interaction process takes place between i and one of its neighbors in the network selected at

random with probabilities Eq. (S2), which can be another individual j or a zealot m.

3. The selected neighbor influences the state of i as follows

v⃗i(t+∆t) = v⃗i(t) + Iij · (v⃗j(t)− v⃗i(t)), (S4)
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when the selected neighbor j is another individual, and

v⃗i(t+∆t) = v⃗i(t) + Iim · (V⃗m − v⃗i(t)), (S5)

when the selected neighbor m is a zealot, where the influence factors Iij and Iim are real numbers

drawn independently at each interaction step from a predefined probability density function f(I).

4. Time is increased t → t+∆t with ∆t = 1/N and after that another influence process takes place,

i.e., return to step 1., until the desired time limit is reached.

The parameters of the model are {λm}m=1,...,M and the probability density f(I) which can take any

value/shape, we will specify later our choice for these parameters. The influence process defined by Eqs.

(S4, S5) can be understood as a situation where an individual approaches the state of a neighbor, where

the influence factor I determines the magnitude of this approach, e.g., for I = 0 the individual does

not change state while for I = 1 it copies the state of the neighbor, where I can take any real value

depending on the behavior. The steps 1.–4. define the model and they are the rules that we follow in

the simulations to obtain numerical results of the dynamics. In order to have some analytical results of

the model too, and thus improve our understating of its macroscopic behavior, we will make different

assumptions in the following sections with respect to the ingredients that define the dynamics, especially

those related to the structure of the network of interactions.

S3.2 Mean Field approaches

In the so-called mean field approach we make assumptions about the structure of the network, depending

on the level of approximation and on the structural details it can be a good approximation or not. For

our case, see Section S1.1, a degree based approach [18] is a good estimation of the dynamics on top

of the real network. The simplest and coarser approach is to assume that everyone can interact with

everyone (fully connected network), which is equivalent to neglecting all structural features. Although

simple, it can be a helpful approximation to improve our comprehension of the dynamics and the impact

of the parameters of the model. A better approach is the degree-based approximation (or heterogeneous

mean field) in which the distribution of the degree (number of contacts) of the network is taken into

account. These mean field approaches work well for highly dense networks (with a high average degree).

In the following sections we show the most important results for both mean field approaches.

Fully connected

In a fully connected network we have that Aij = 1 for all i, j = 1, . . . , N and Pim = 1 for all i = 1, . . . , N

and j = 1, . . . ,M . In this case the interaction probabilities Eqs. (S4, S5) reduce to

probuui→j = C, probumi→m = λmC,

C−1 = N − 1 +
M∑

m=1

λm, (S6)
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and the total probability that i interacts with any individual or zealot Eq. (S3) reduces to

probuu =
N − 1

N − 1 +
∑M

m=1 λm

, probum =

∑M
m=1 λm

N − 1 +
∑M

m=1 λm

. (S7)

As every individual i has the same interaction probabilities, we will be able to obtain a time-evolution

equation for the density P (v⃗, t), defined as the probability that the state of an individual i is in between

v⃗ < v⃗i < v⃗ + dv⃗ at time t, with the normalization condition
∫
P (v⃗, t)dv⃗ = 1. This analysis is carried out

in detail in the next sections.

Degree-based approach

Taking the degree sequence of the individuals {kout/uui , k
in/uu
i , k

out/um
i }i=1,...,N and the zealots

{kin/umm }m=1,...,M , we replace the actual value of the adjacency matrix Aij and Pim by the ensemble

average over all networks that have the same degree sequence [19,20], i.e.,

Aij ≈
k
out/uu
i k

in/uu
j

N⟨kout/uu⟩ , Pim ≈ k
out/um
i k

in/um
m

N⟨kout/um⟩ . (S8)

Note that Eq. (S8) fulfills the necessary conditions: k
out/uu
i =

∑N
j=1 Aij , k

in/uu
i =

∑N
i=1 Aij , ⟨kout/uu⟩ =

⟨kin/uu⟩, kout/umi =
∑M

m=1 Pim, k
in/um
m =

∑N
i=1 Pim, and N⟨kout/uu⟩ = M⟨kin/uu⟩. Introducing this in

the interaction probabilities Eq. (S2) we have

probuui→j =
k
out/uu
i k

in/uu
j

N⟨kout/uu⟩ Ci, probumi→m =
k
out/um
i k

in/um
m

M⟨kin/um⟩ λmCi,

C−1
i = k

out/uu
i + k

out/um
i

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩ , (S9)

and the total probability that i interacts with any individual or zealot Eq. (S3) reduces to

probuui =
k
out/uu
i

k
out/uu
i + k

out/um
i

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩

, probumi =

k
out/um
i

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩

k
out/uu
i + k

out/um
i

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩

. (S10)

In contrast to the fully connected result Eq. (S7), the probabilities Eq. (S10) depend on the individual i,

we note, however, that if k
out/um
i = Ak

out/uu
i the degrees cancel out and this dependency is lost. If this

assumption is true, see Fig. S2a , then the degree based and fully connected approaches coincide after

an adequate re-scaling of parameters. The constant A can be determined from consistency conditions

A =
⟨kout/um⟩
⟨kout/uu⟩ , which leads to a reduced expression for the interaction probabilities

probuu =
1

1 +
⟨kout/um⟩
⟨kout/uu⟩

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩

, probum =

⟨kout/um⟩
⟨kout/uu⟩

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩

1 +
⟨kout/um⟩
⟨kout/uu⟩

∑M
m=1 k

in/um
m λm

M⟨kin/um⟩

, (S11)

that do not depend on i.
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Dynamical equation for the density P (v⃗, t)P (v⃗, t)P (v⃗, t) of users with opinion v⃗ at time t

Note that the rules Eqs. (S4, S5) are applied for each component separately, thus we only need to find

the dynamical equation of a single component say xi(t). In the mean field description we consider a fully

connected network and the rules of the model can be written as:

xi(t+ 1/N) =




xi(t) + Iij · (xj(t)− xi(t)), probuu ≡ α0,

xi(t) + Iim · (Xm − xi(t)), probumi→m ≡ αm,
(S12)

with j ̸= i = 1, . . . , N , any of them chosen at random, m = 1, . . . ,M , and the probabilities α0, {αm} are

α0 =
N − 1

N − 1 +
∑M

m=1 λm

, αm =
λm

N − 1 +
∑M

m=1 λm

, (S13)

with normalization α0 +
∑M

m=1 αm = 1. This formulation of the model is equivalent to the one given in

the original reference [21].

It is possible to write an evolution equation for the probability density P (x, t) of finding an individual

with opinion between x and x+ dx at time t

P (x, t+∆t)− P (x, t)

∆t
= −P (x, t)

+ α0

∫
dI

∫
dy

∫
dzP (y, t)P (z, t)f(I)δ(x− y − I(z − y))

+
M∑

m=1

αm

∫
dI

∫
dyP (y, t)f(I)δ(x− y − I(Xm − y)), (S14)

which can be read as the change in the density of individuals with state x per unit time is equal to

minus the probability of selecting an individual with state x that changes to any other state, plus the

probability of selecting an individual with state y that changes to x. For continuous time ∆t → 0 it is

∂P (x, t)

∂t
+ P (x, t) =

+ α0

∫
dI

∫
dy

∫
dzP (y, t)P (z, t)f(I)δ(x− y − I(z − y))

+

M∑

m=1

αm

∫
dI

∫
dyP (y, t)f(I)δ(x− y − I(Xm − y)), (S15)

and simplifying the Dirac deltas

∂P (x, t)

∂t
+ P (x, t) = α0

∫
dIf(I)

1− I

∫
dzP (z, t)P

(
x− Iz

1− I
, t

)
+

M∑

m=1

αm

∫
dIf(I)

1− I
P

(
x− IXm

1− I
, t

)
.

(S16)

Equation [S16] is an integro-differential equation for the probability density P (x, t) that we cannot solve

analytically, similar equations are derived in Ref. [22]. However, as we show in next section, it is possible

to obtain some closed expressions for the moments of the distribution.
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Average opinion and variance of users, time evolution and stationary

First we consider the evolution equation of the average state ⟨x⟩ =
∫
xP (x, t)dx, integrating both sides

of Eq. (S16)
∫
x(. . . )dx we find

d⟨x⟩
dt

= ⟨I⟩
M∑

m=1

αm(Xm − ⟨x⟩), (S17)

with ⟨I⟩ =
∫
f(I)IdI. The solution is

⟨x⟩(t) = ⟨x⟩st +
(
⟨x⟩(0)− ⟨x⟩st

)
e−⟨I⟩(1−α0)t, (S18)

with stationary value

⟨x⟩st =
∑M

m=1 αmXm∑M
m=1 αm

≡ µ̃. (S19)

According to the solution Eq. (S19), the stationary average state of individuals is equal to a weighted

average of the zealots. It is also possible to derive evolution equations for higher order moments,

but for the sake of concreteness we will only show the results for the variance σ2 =
〈
(x− ⟨x⟩)2

〉
=

∫
dx (x− ⟨x⟩)2 P (x, t). Integrating both sides of Eq. (S16)

∫
x2(. . . )dx we find

dσ2

dt
=

(
2⟨I⟩ − (1 + α0)⟨I2⟩

) (
σ2
st − σ2

)
, (S20)

whose solution is

σ2(t) = σ2
st +

(
σ2(0)− σ2

st

)
e−(2⟨I⟩−(1+α0)⟨I2⟩)t, (S21)

with stationary value

σ2
st =

(1− α0)⟨I2⟩
2⟨I⟩ − (1 + α0)⟨I2⟩

σ̃2, σ̃2 ≡
∑M

m=1 αm (Xm − µ̃)
2

∑M
m=1 αm

, (S22)

where ⟨In⟩ ≡
∫
f(I)IndI, and ⟨I⟩, ⟨I2⟩ are the first moments of the influence factor distribution. Accord-

ing to the stationary solution Eq. (S22) the state variance of individuals is equal to a weighted variance

of zealots times a scaling factor. The time dependent solutions Eqs. (S18, S21) are exponential decays

that reach a steady state (see Section S3.3.3) whose properties, time scales and stationary values ⟨x⟩st,
σ2
st, depend on the parameters of the model and the network. Equivalent evolution equations for ⟨x⟩(t)

and σ2(t) are obtained in Ref. [21] for general {αm}Mm=0, we additionally provide here the expressions for

heterogeneous networks. In the degree-based approach and assuming, as we do in the main text, that

λm ≡ λ for m = 1, . . . ,M the probabilities {αm}Mm=0 can be written as a function of λ and the degree

sequences as

α0 =

(
1 +

⟨kout/um⟩
⟨kout/uu⟩ λ

)−1

, αm = α0
⟨kout/um⟩
⟨kout/uu⟩

λk
in/um
m

M⟨kin/um⟩ . (S23)
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Using the proportionality relation of αm ∝ k
in/um
m we have that the weighted average µ̃ and variance σ̃2

can be written as

µ̃ =

∑M
m=1 k

in/um
m Xm∑M

m=1 k
in/um
m

, (S24)

σ̃2 ≡
∑M

m=1 k
in/um
m (Xm − µ̃)

2

∑M
m=1 k

in/um
m

, (S25)

which means that the weights can be replaced simply by the degrees k
in/um
m , i.e., the number of user

followers of MP m.

Summarizing, we found that the average and variance opinion of users evolve exponentially in time

and reach a steady state value. The time scale of the time evolution Eqs. (S18, S21) depend on the

parameters of the model: ⟨I⟩ for ⟨x⟩(t), ⟨I⟩ and ⟨I2⟩ for σ2(t), in addition to α0 which depends on λ and

the average out degree of users ⟨kout/um⟩ and ⟨kout/uu⟩. For the stationary average value ⟨x⟩st we found

that it does not depend on the parameters of the model, but it is simply equal to the degree weighted

average of the MPs (µ̃) Eq. (S24). The stationary variance σ2
st is equal to the degree weighted variance

of the MPs (σ̃2) Eq. (S25) times a scaling factor that depends on the parameters of the model ⟨I⟩, ⟨I2⟩
and α0.

General properties of the mean field solution

The relations Eqs. (S19, S22) relate the basic statistical properties of the states of the individuals (the

stationary average ⟨x⟩st and variance σ2
st) with the parameters of the model (α0, {αm}Mm=1 and f(I)) and

the statistics of the states of the zealots (the weighted moments µ̃, σ̃2). Note that in the degree-based

mean field the details of the network and the parameter λ are absorbed in the probabilities α0, {αm}Mm=1,

Eq. (S23). From these expressions we obtain valuable information about the behavior of the users and

what we can expect from the results of simulation on top of the real network. For example, we can

identify some general properties that the influence distribution f(I) has to fulfill in order to get a well

behaved solution. Using the expression for the stationary variance Eq. (S22) we find that the variance

is finite (which is equivalent to state that the distribution P (x, t) converges to a well defined function)

when the condition
1 + α0

2
⟨I2⟩ < ⟨I⟩, (S26)

is fulfilled. Another condition for the variance that we obtain from observation of the opinion statistics

of the data is that σ2/σ̃2 > 1 which leads to

⟨I2⟩ > ⟨I⟩. (S27)

This condition implies that the influence factor I has to take values beyond the interval I ∈ [0, 1], which

can be interpreted by noting that in the data the opinions of the individuals exceed the limits of the

opinions of the zealots, this corresponds in the model to an influence process with I < 0 or I > 1. Note

also that the conditions Eq. (S26) and Eq. (S27) are contradictory for α0 = 1, thus the two conditions

are fulfilled at the same time only for some values of the parameter α0. The dependence of the variance

σ2
st/σ̃

2 as a function of α0 strongly depends on the condition Eq. (S27). For ⟨I2⟩ < ⟨I⟩ we have that

σ2 is a monotonically decreasing function of α0, while for ⟨I2⟩ > ⟨I⟩ it is monotonically increasing and
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diverging for α0(max.) ≡ 2
⟨I⟩
⟨I2⟩ − 1. Thus if the condition Eq. (S27) is fulfilled by the model then

α0 < α0(max.), i.e., α0 is bounded.

S3.3 Results

S3.3.1 Fitting the parameters of the model and errors

The free parameters of the model are λ and the influence distribution f(I). For simplicity, and in

analogy with the experimental results in Ref. [21], we parameterize the influence distribution as f(I) =

pN (I; 0, σ2
K)+(1−p)N (I; 1, σ2

A), where N (x;µ, σ2) = 1
σ
√
2π

exp
[
− (x−µ)2

2σ2

]
is a normal distribution with

mean µ and variance σ2. Thus we take as f(I) two Gaussians, peaked around two prototypical behaviors:

Keep I = 0, when the individual does not change its opinion, and Adopt I = 1, when it copies the

opinion of its neighbor. Thus, the free parameters of the model are (p, σK , σA) which cannot be inferred

or measured directly from the data. In order to find an appropriate value for these parameters, we

carry out a fitting process using the results of the opinions of users v⃗i(t) = (xi(t), yi(t), zi(t), wi(t)) ∈ R4

coming from numerical simulations, and compare them with the data. For this purpose we maximize

the “Similarity”, defined between two distributions 1 and 2 as

Similarity = 1− 1

2

∫ xmax

xmin

∣∣ρ1(x)− ρ2(x)
∣∣dx ∈ [0, 1], (S28)

where ρ1,2(x) are the corresponding densities and xmin, xmax their limits, note that the similarity is equal

to 0 when ρ1(x), ρ2(x) are non-overlapping and equal to 1 when they are identical. The function of the

parameters that we choose for maximizing is the average similarity between data and model

〈
Similarity

〉
[λ, p, σK , σA] = 1− 1

2

∫ T

t0

dt

T − t0

∫ xmax

xmin

∣∣ρdata(x)− ρmodel(x, t)
∣∣dx, (S29)

over a sample of time steps of the model in the interval t0 ≤ t ≤ T , where t0 is the number of thermalizing

time steps after which the dynamics is assumed to have reached the stationary state. The density

ρdata(x) corresponds to the marginal distribution of the corresponding opinion dimension taking the

sample {xi}Ni=1 from the data, while ρmodel(x, t) is the density coming from the sample {xi(t)}Ni=1 of the

model, i.e., a snapshot of the opinions of the users from the simulations at time t. Due to the uncoupling

of the dynamics of the model between different opinion dimensions, we will carry out the fitting process

for each dimension separately, i.e., we will obtain the maximum of Eq. (S29) for (LR, NA, EU, AE).

Another important ingredient of the fitting is the limits (xmin, xmax) used to compute Eq. (S29) that

we extract from the data and that correspond to: LR (−0.48, 1.20), NA (−0.50, 1.40), EU (−0.65, 2.24),

and AE (−0.79, 1.25). For convenience of the fitting process we will impose an extra condition in the

model, that is a boundary condition such that: if during an influence process Eqs. (S4, S5) the opinion

of an individual would exceed the limits xi(t +∆t) < xmin or xi(t +∆t) > xmax that process is simply

discarded (does not occur). More information about the implications of this boundary conditions can be

found in the next Section S3.3.2.

The shape of the Similarity function Eq. (S29) is plotted in Fig. S10 for each opinion dimension (LR,

NA, EU, AE) as a function of the parameters (λ, p, σK , σA). The maximum of the similarity function is

shown in the same figure and the parameter values at the maximum are specified in Table S2.
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Table S2. Parameters of the best fit of the model.

Dim. λ p σK σA α0 ⟨I⟩ ⟨I2⟩
LR 140 0.80 0.13 0.58 0.12 0.20 0.28
NA 150 0.92 0.088 0.47 0.11 0.08 0.10
EU 140 0.89 0.084 0.46 0.12 0.11 0.14
AE 160 0.96 0.16 0.22 0.11 0.04 0.07

Note that we do not specify the errors of the parameters of the model, but they can be directly

inferred from the errorbars in Fig. S10 which come from the stochastic fluctuations of the model. More

than one (or two) significant figures in the parameters would not correspond to a realistic estimation of

the errors. Note also the asymmetry in Fig. S10 of the errors of some parameters, e.g., λ.
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Figure S10. Similarity, Eq. (S28), between the opinion distribution of the data and model as a function
of the parameters, i.e., λ, p, σK , σA. The color of the errorbars indicate the opinion dimension (LR,
NA, EU, AE) as specified in the subplots. The errorbars are calculated by means of a (thermalized)
sample of time steps (1000 steps, separated each 10 Monte Carlo steps and after t0 = 1000 thermalizing
steps) taken from the simulations (stochastic fluctuations): the boxes correspond to the first and third
quartiles, centered around the median (second quartile); while the whiskers extend to a value that lies
within 1.5 times the interquartile range. The solid light gray lines are the average similarity of the step
sample Eq. (S29), while the dashed (dark purple) lines cross at the maximum (average) similarity.
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S3.3.2 Importance of the opinion borders

During the fitting process, Section S3.3.1, we used a boundary condition in the model which amounts to

neglecting those influence processes that would result in the opinion of users going beyond some predefined

limits (xmin, xmax). The reason for this boundary condition is: first in the definition of Similarity Eq.

(S28), which assumes the existence of these limits, and in the fact that comparing distributions with

different limits would result in a worse fitting; and second that the boundary limits improve the model

and makes it more realistic. Note that we included in the model influence processes with I < 0 and

I > 1 which have some limitations in reality, especially for interactions of individuals with extreme

opinions. For example, an individual would hardly adopts the opinion of the most extreme individual in

the population, and even less overreact to it with I > 1, especially if their initial difference in opinions

is large [21, 23]. Thus, the boundary condition offers a convenient solution of this limitation in the

formulation of the model. In Fig. S11 we compare the stationary results of the best fit of the model,

Table S2, with and without boundary conditions altogether with the data. We observe that there is no

qualitative difference in the comparison between the model with and without boundary conditions and

the data. Note however how the model without boundary condition shows an exponential tail in the

opinion distribution that goes beyond the limits of the data.
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Figure S11. Results of the best fit of the model, Table S2, with and without boundary conditions
(bound/unbound) and its comparison with the data. Probability density function of the different opinion
variables of the users (LR, NA, EU and AE) in panels (a/e, b/f, c/g, d/h) in linear/logarithmic scale
for the vertical axis. The colored solid lines correspond to the values from the data, while the stationary
results of the model with boundary conditions are represented by black solid lines and without boundary
conditions by purple solid lines.

S3.3.3 Dynamics and stationary of the model

According to the mean field solution of the model Eqs. (S18, S21) the average and variance opinion of

the users evolves exponentially in time and reaches a steady state value. In Fig. S12 we check that this

is also the case in the simulations of the model with boundary conditions on top of the real network.

Additionally, note that in the same figure we present a comparison between the stationary average and

variance of the model and the results of the data, showing that the model is close to the data.
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Figure S12. Time evolution of the results of simulations of the model with boundary conditions and
its comparison with data for the different opinion dimension (LR, NA, EU and AE). The black solid
lines are the average value of the model ⟨x⟩(t) and the black dashed lines are the average plus/minus
the standard deviation ⟨x⟩(t) ± σ(t). The colored solid and dashed lines are the corresponding values
coming from the data.

S3.3.4 Results for communities

Up to this point we have compared the statistical properties of the opinions of users coming from the

model with the data at the global scale, i.e., the whole population. In this section we use the best

partition of the User ⇆ User network in four groups (α, β, γ, δ), as shown in the main text, to compare

the results of the model with the data. In Fig. S13 we show the opinion distributions of the different

groups computed using the stationary results of the model and the data. In general a good match between

model and data is displayed, with some small deviation in the shape of the density function and also in

the average values. The average group opinions in the data are farther away from each other than in

the model. This is a consequence of the limitations of the model in reproducing the behavior of extreme

individuals, as we discussed in detail in the main paper. These limitations and deviations of the model

are also observed in Fig. S14 when we evaluate the connectivity between groups as a function of the

opinion value of their individuals. Both in data and model the more extreme the opinion of an individual

is the more segregated it is in its group interconnectivity. However, this tendency is less pronounced in

the model, i.e., the fraction of outside links in Fig. S13 decays more smoothly as a function of the opinion

values of the individuals. Note also that the over-representation of extreme individuals in the model, see

Fig. S11, produces also some differences in the group interconnectivities of the model as compared to

the data.
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Figure S14. Average link ratio (vertical axis) in the User ⇆ User network between: the links whose
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