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Individuals of modern societies share ideas and participate in collective processes within a pervasive, variable,
and mostly hidden ecosystem of content filtering technologies that determine what information we see online.
Despite the impact of these algorithms on daily life and society, little is known about their effect on information
transfer and opinion formation. It is thus unclear to what extent algorithmic bias has a harmful influence on
collective decision-making, such as a tendency to polarize debate. Here we introduce a general theoretical
framework to systematically link models of opinion dynamics, social network structure, and content filtering.
We showcase the flexibility of our framework by exploring a family of binary-state opinion dynamics models
where information exchange lies in a spectrum from pairwise to group interactions. All models show an opinion
polarization regime driven by algorithmic bias and modular network structure. The role of content filtering is,
however, surprisingly nuanced; for pairwise interactions it leads to polarization, while for group interactions
it promotes coexistence of opinions. This allows us to pinpoint which social interactions are robust against
algorithmic bias, and which ones are susceptible to bias-enhanced opinion polarization. Our framework gives
theoretical ground for the development of heuristics to tackle harmful effects of online bias, such as information
bottlenecks, echo chambers, and opinion radicalization.
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I. INTRODUCTION

Information spreading, opinion formation, and other dy-
namical phenomena occurring on top of social networks have
long been studied via agent-based modeling within the frame-
work of statistical mechanics [1–3]. The main goal of these
stylized models is to discern how local mechanisms governing
the actions of individuals may lead to emergent collective
behavior at the societal level, such as the rise of consen-
sus of opinion within a group. The structure of society is
typically represented by a network [4–8], where nodes corre-
spond to individuals or groups thereof, and edges reflect the
varied interactions between them (e.g., sharing information
and opinions about political issues). Traditionally, information
spreading over social networks has been the result of face-to-
face or phone conversations and consumption of mass media
such as TV, radio, or newspapers. In recent years, however,
communication technologies have dramatically changed the
way people interact, with a larger portion of information ex-
change taking place in online social media platforms such as
Google, Twitter, and Facebook [9,10].

Online social networks tune their services to maximize
usage, rather than to serve accurate or balanced information.
In order to achieve their business goals, they control the in-
formation users receive by means of filtering algorithms that
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attempt to deliver relevant and engaging content [11]. These
algorithms collect personalized data on individual preferences
and use it to selectively expose users to material that is either
popular or similar to what they have consumed before [12,13].
Such filtering leads to algorithmic bias, the tendency to re-
ceive information individuals already agree with [14,15]. The
consequences of algorithmic bias at the societal scale are a
matter of recent debate [16–19], but likely include emergence
of the so-called filter bubbles or echo chambers, groups with
polarized views that reinforce their own opinions and rarely
communicate with each other [20,21]. Collective phenomena
such as fragmentation and polarization of opinion groups,
increasingly visible features of the current sociopolitical land-
scape worldwide, are partly the outcome of the interplay
between social behavior and algorithmic filtering happening
online.

Previous efforts to explore the effect of algorithmic bias
on information spreading [22] have considered bounded con-
fidence mechanisms with continuous opinion variables [23],
where individuals interact only if their opinions are similar
enough, and the degree of required similarity is related to the
intensity of filtering. Under bounded confidence, algorithmic
bias favors fragmentation and polarization, but slows down
opinion formation. Binary-state models [24], widely used to
study social interactions [1–3], have also been explored in the
context of algorithmic bias [25]. When filtering promotes con-
tent similar to the opinion of a user, structural correlations lead
to polarization, and network heterogeneity tends to decrease
it.
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While these results suggest that polarization arises from a
mix of social behavioral patterns and the online algorithms
constraining them, we still lack a general theoretical frame-
work systematically linking models of information spreading,
network structure, and algorithmic bias. This is particu-
larly relevant given the diversity of mechanisms arguably
driving the way people exchange information, including ho-
mophily [26,27] and social contagion [28,29], which may
in turn lead to radically different patterns of polariza-
tion. Here we propose such a formalism by extending the
theoretical description of binary-state dynamics, based on
mean-field [30,31], pair [32,33], and higher-order [24,34–36]
approximations, with a simple but flexible notion of algorith-
mic bias. Our formalism can be applied to a wide variety
of models of information spreading, social networks with
arbitrary degree distributions and modular structure, and im-
plementations of online content filtering.

We showcase the potential and flexibility of our frame-
work by focusing on a wide family of binary-state models
of opinion formation, where the nature of information ex-
change lies in a spectrum from pairwise to group interactions
in the presence of noise. In the extreme of pairwise in-
teractions, represented by the noisy voter model [37,38],
opinion switching depends on a herding or imitation mech-
anism where individuals copy the opinions of their neighbors.
In the extreme of group interactions, implemented by the
majority-vote model [39], individuals change opinion if most
of their neighbors have opposing views. We finally consider
the language model [40–45], a nonlinear extension of noisy
voter dynamics, which has a behavior interpolating between
the voter and the majority-vote model as a function of a
model parameter. When studied over networks, these models
exhibit a rich phenomenology ranging from continuous or
discontinuous coexistence-consensus-polarization transitions
to nontrivial scaling behavior [45] making them ideal ground
to explore the generic role of algorithmic bias on the dynamics
of information spreading.

The paper is organized as follows. In Sec. II we present the
studied binary-state models and summarize their known prop-
erties. We also introduce the notion of algorithmic bias and its
effect on the transition rates of the dynamics. In Sec. III we
derive mean-field rate equations of global opinion variables
for both homogeneous and modular networks. In Sec. IV we
analyze the stationary solutions of the mean-field equations
and their linear stability, focusing on a transition to polariza-
tion driven by the joint effects of content filtering and modular
structure. In Sec. V we gauge the accuracy of our theoreti-
cal results with numerical simulations on both synthetic and
real-world networks. Overall, we show that algorithmic bias
has opposite effects depending on the mechanism governing
information spreading: for pairwise interactions it leads to
polarization, while for group interactions it promotes coex-
istence.

II. MODEL

A. Binary-state dynamics

In order to characterize the dynamics of information
spreading in a networked population of N individuals, we take

FIG. 1. Schematic representation of dynamics of information
spreading with a minimal notion of algorithmic bias. With no bias
(b = 0; top plot), the central node (with degree k and m infected
neighbors) interacts with any of its neighbors with probability 1,
regardless of state (denoted by color and shading) and according to
transition rates Fk,m and Rk,m. With bias (b > 0; bottom plot), the
node interacts with any of its neighbors in the opposite state with
probability 1 − b, resulting in bias-dependent effective rates [F ∗

k,m(b)
and R∗

k,m(b)]. The dynamics is determined by noise Q and a parameter
α regulating pairwise and group interactions.

a binary-state approach where each individual i = 1, . . . , N
holds a variable si(t ) = 0, 1 at time t . The interpretation of
this state is varied and depends on the context and model
chosen [1,24,34], with s = 0 typically denoting a state of
susceptibility or inactivity, and s = 1 a state of infection or
activity. In the case of opinion dynamics, states encode the
tendency to agree with some binary opinion (s = 0) or its
opposite (s = 1). Individuals influence each other and may
eventually be convinced to change opinion. We consider a
social network with adjacency matrix Ai j , equal to 1 if i and
j are connected and 0 otherwise. The rate (probability per
unit time) at which node i changes state is a function of
network degree, ki = ∑N

j=1 Ai j , and the number of infected

neighbors (in state 1), mi = ∑N
j=1 Ai js j (Fig. 1). We define

the rates of infection (Fk,m) and recovery (Rk,m) as the rates of
state switching from s = 0 → 1 and from s = 1 → 0, respec-
tively. The functional form of these transition rates determines
how individuals behave collectively as a result of interactions
with their neighbors. The macroscopic, dynamical behavior
of the social system is encoded in the global opinion vari-
able ρ = N−1 ∑N

i=1 si ∈ [0, 1], i.e., the fraction of nodes in
state 1.

We focus our attention on binary-state dynamics with up-
down symmetry,

Rk,m = Fk,k−m, (1)

meaning the probability to change state is a function of
the number of neighbors in the opposite state, regardless of
state. From this family we consider three prototypical opinion
dynamics: the noisy voter, language, and majority-vote mod-
els (Table I). All models include the parameter Q ∈ [0, 1/2]
(with Q = Fk,0 = Rk,k), commonly interpreted as noise, so-
cial temperature, or independence [44,46,47], and equal to
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TABLE I. Models considered in this work, along with references, transition rates (Fk,m and Rk,m), and basic phenomenology of the
coexistence-consensus transition in the mean-field limit (complete graph).

Model Fk,m Rk,m Phenomenology

Noisy voter [37,38] Q + (1 − 2Q)
m

k
Q + (1 − 2Q)

k − m

k
No transition (Q > 0)

Language [40–45] Q + (1 − 2Q)
(m

k

)α

Q + (1 − 2Q)

(
k − m

k

)α No transition (α � 1)
Continuous transition (1 < α � 5)
Discontinuous transition (α > 5)

Majority-vote [39]

⎧⎨
⎩

Q if m < k/2
1/2 if m = k/2
1 − Q if m > k/2

⎧⎨
⎩

1 − Q if m < k/2
1/2 if m = k/2
Q if m > k/2

Continuous transition

the probability of changing state when all neighbors have
the same (opposite) opinion. The three models differ in their
infection rate Fk,m: (i) the noisy voter model has a linear
dependence on the fraction of infected neighbors m/k, corre-
sponding to a pairwise copying mechanism or blind imitation;
(ii) the majority-vote model considers that individuals copy
the majority state in their neighborhood; and (iii) the language
model introduces a nonlinear dependence (m/k)α regulated by
a tuning parameter α ∈ (0,∞). For integer α, the language
model is driven by group interactions between an individual
and α of its neighbors, and opinion unanimity in the group is
required to change state. This particular case is also known
as the q-voter model [41,43,47,48] (with q = α). For α = 1,
the language model recovers the noisy voter model and its
pairwise interactions.

In many cases the models show a symmetry-breaking
phase transition as a function of the noise parameter Q, usually
between stationary states of opinion consensus [ρ(t ) �= 1/2]
and coexistence [ρ(t ) = 1/2] for t → ∞ (see Table I). The
phenomenology of the transition depends on the model. We
differentiate between two general behaviors, voterlike and
majority-votelike [49], with the language model interpolating
between the two. For example, in the mean-field limit we can
tune α and move from voterlike behavior (low α � 1; pair-
wise interactions), to majority-votelike (high α � 5; group
interactions). In the regime α > 5 the transition is always
discontinuous. This classification, although qualitative, will
help us further understand the phenomenology of informa-
tion spreading for varying α in the presence of algorithmic
bias.

B. Algorithmic bias

Online platforms use content filtering algorithms, particu-
larly semantic and collaborative filtering [12,13], to preferably
display content similar to what an individual (or alike users)
have consumed before, leading to algorithmic bias [14,15]. In
the context of binary-state dynamics of information spreading
over social networks, we can minimally implement this bias
as a tunable preference to filter the interactions between an
individual and its neighbors, depending on their state. We
introduce the bias intensity b, defined as the probability that
a node does not interact with a neighbor in the opposite state
(due to content filtering by the platform). If the dynamics

is originally driven by rates Fk,m and Rk,m, bias leads to the
effective transition rates

F ∗
k,m(b) =

m∑
i=0

Bm,i(1 − b)Fk−m+i,i, (2)

R∗
k,m(b) =

k−m∑
s=0

Bk−m,s(1 − b)Rm+s,m, (3)

where Bm,i(1 − b) = (m
i

)
(1 − b)ibm−i is the binomial distri-

bution. Equations (2)–(3) are simply the average transition
rates after removing a number of randomly selected neighbors
in the opposite state with probability b. Within our frame-
work, the effects of algorithmic bias amount to a binary-state
dynamics driven by the effective rates F ∗

k,m(b) and R∗
k,m(b).

Note that this definition of bias respects up-down symmetry
[Eq. (1)], since R∗

k,m(b) = F ∗
k,k−m(b). In general, it is not pos-

sible to obtain a simple closed expression for the effective
rates of the models listed in Table I. In Fig. 2 we show a
schematic representation of the effect of algorithmic bias on
the considered models, together with the shape of the original
and effective transition rates as a function of the fraction of
infected neighbors m/k. In the presence of bias (b > 0), the
language model has effective rates similar to the original rates
for a higher value of α. Since algorithmic bias hides neighbors
in the opposite state, more such neighbors are needed for
an individual to change state (i.e., a higher α value in the
original dynamics). Overall we have F ∗

k,m(b) � Fk,m, meaning
bias impedes interactions between individuals that result in a
change of opinion. This property is valid for monotonically
increasing rates, as i/(k − m + i) � m/k for i = 0, . . . , m in
Eq. (2).

III. METHODS

A. Numerical simulations

The most direct implementation of our framework is by nu-
merical simulation of the stochastic rules described in Sec. II.
At time t of the simulation we perform the following steps:
(i) Select an individual i uniformly at random from all N
nodes, which has degree k and number of infected neigh-
bors m at time t . (ii) If si = 0 the individual switches state
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FIG. 2. Schematic representation of the considered binary-state dynamics of opinion formation, both in the absence [b = 0; (a)] and
presence [b > 0; (b)] of algorithmic bias. The central node interacts with a set of neighbors (shaded area), ranging from pairwise to group
interactions (top to bottom), leading to original or effective transition rates between states (denoted by numbers). In the presence of bias, some
neighbors in the opposite state are not considered (dashed links). In (c) we show the functional form of the original (Fk,m; top) and effective
[F ∗

k,m(b); bottom] infection rates as a function of the fraction of infected neighbors m/k for all models, with bias intensity b = 0 and b = 0.7,
respectively, degree k = 40 and Q = 0.1.

with probability F ∗
k,m, and if si = 1 with probability R∗

k,m.1

(iii) Time increases by �t = 1/N (i.e., the time unit is one
Monte Carlo step per node). This numerical method allows us
to obtain trajectories of the state variables {si(t )}i=1,...,N and
consequently the global state ρ(t ). We may then compute the
average 〈ρ(t )〉 over stochastic realizations of the same initial
conditions, as typically done in nonequilibrium ensembles (in
what follows we drop the average brackets for simplicity of
notation, unless otherwise stated).

B. Mean-field description

1. Homogeneous network structure

In the simplest analytical treatment of binary-state dynam-
ics, we assume that one dynamical variable is sufficient to
describe the state of the system: the global opinion (or fraction
of infected nodes) ρ(t ). Following the heterogeneous mean-
field approximation [24,31], we obtain a closed differential
equation for the dynamics by defining the average rate f of
switching state from 0 to 1. In the absence of algorithmic bias
(b = 0),

f [x] ≡
∑

k

Pkk

z

k∑
m=0

Fk,mBk,m(x), (4)

where Pk is the degree distribution of the network, z = ∑
k Pkk

is the average degree, and x is the probability of finding a

1Note that this requires that the max{F ∗
k,m, R∗

k,m} � 1 for all nodes
(all possible values of k and m). If that is not the case, we must rescale
the rates and time dividing by the maximum value max{F ∗

k,m, R∗
k,m}.

neighbor in state 1. If we consider a homogeneous, highly
connected network with z 
 1 (i.e., Pk peaks around a high
degree), then the binomial function Bk,m(x) is also highly
peaked around a large m = zx. Since the transition rates of
the models in Table I only depend on the fraction of infected
nodes m/k, we have f [m/k] ≈ Fk,m. As we approach the
mean-field limit, we replace the local (node) probability x
of finding a neighbor in state 1 by the fraction of infected
nodes in the network, ρ. In the presence of algorithmic bias
(b > 0), Eq. (2) and the assumption of a highly connected
network lead to F ∗

k,m ≈ Fk−bm,(1−b)m. The biased version of
Eq. (4) is then f ∗[x] = f [(1 − b)x/(1 − bx)], which reduces
to f ∗[x] = f [x] for b = 0.

Taking into account these approximations, we write a dif-
ferential equation for the average over realizations of the
global opinion ρ(t ),

dρ

dt
= (1 − ρ) f

[
(1 − b)ρ

1 − bρ

]
− ρ f

[
(1 − b)(1 − ρ)

1 − b(1 − ρ)

]
, (5)

where we assume that the probability x of finding a neighbor
in state 1 is just the fraction of infected nodes in the network.
Equation (5) can be thought of as a detailed balance condition:
the change in time of the fraction of infected nodes ρ is equal
to the probability of selecting a susceptible node (s = 0) times
the rate of switching from 0 to 1, minus the probability of
selecting an infected node (s = 1) times the rate of switching
from 1 to 0. A more detailed derivation of Eq. (5), and an
analysis of the accuracy of the highly connected approxima-
tion, can be found in the Supplemental Material (SM) [50],
Secs. S1.2.1 and S1.1.

Note that the accuracy of Eq. (5) depends on two assump-
tions: (i) a highly connected, homogeneous network with Pk
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FIG. 3. Schematic representation of a simple network with mod-
ular (community) structure. Groups 1 and 2 have sizes N1 and N2,
internal average degrees z1 and z2, are connected between them with
average degrees z12 and z21, and have fractions of infected nodes ρ1

and ρ2, respectively.

peaked around a large average degree z 
 1 (exactly valid
only in the case of a complete graph with z = N − 1); and
(ii) a negligible role of stochastic finite-size effects, with
〈ρ(t )n〉 ≈ 〈ρ(t )〉n for any n � 1 (valid in the thermodynamic
limit N → ∞).

2. Modular network structure

Beyond the degree distribution Pk , we expect the mod-
ular structure of the network to have a major impact on
opinion dynamics under the effect of algorithmic bias. In
the simplest modular setting, we consider two communities
(denoted 1 and 2) of sizes N1 and N2, respectively, with
N = N1 + N2, such that nodes i = 1, . . . , N1 are in group
1, and nodes i = N1 + 1, . . . , N belong to group 2. We de-
fine the internal average degree as the average number of
links of a node with others in the same community, z1 =
N−1

1

∑N1
i=1

∑N1
j=1 Ai j and z2 = N−1

2

∑N
i=N1+1

∑N
j=N1+1 Ai j . The

average degree of a node in group 1 with nodes in group
2 is z12 = N−1

1

∑N1
i=1

∑N
j=N1+1 Ai j , while the average de-

gree of a node in group 2 with nodes in group 1 is
z21 = N−1

2

∑N
i=N1+1

∑N1
j=1 Ai j . Since the network is undi-

rected and the adjacency matrix is symmetric (Ai j = Aji),
we have the constraint N1z12 = N2z21. Just as before, we
characterize the state of the system by the fraction of in-
fected nodes in each community, ρ1(t ) = N−1

1

∑N1
i=1 si(t ) and

ρ2(t ) = N−1
2

∑N
i=N1+1 si(t ), with ρ(t ) = N1

N
ρ1(t ) + N2

N
ρ2(t )

(see Fig. 3 for a schematic of these definitions and a simple
example).

If, at some instant of time, the system is in a nonhomoge-
neous state (ρ1 �= ρ2), the probabilities x1 and x2 of a node
in group 1 or 2 finding an infected neighbor (s = 1) are in
principle different and calculated as

x1 = N1z1ρ1 + N2z21ρ2

N1z1 + N2z21
= ρ1 + p1ρ2

1 + p1
, (6)

with p1 = N2z21/N1z1 = z12/z1, and equivalently for x2 by
exchanging the index 1 with 2, i.e., p2 = N1z12/N2z2 = z21/z2.

Equation (6) is the ratio of the number of links coming out of
infected nodes that end in community 1 to the total number of
links ending in community 1. In the homogeneous case where
ρ = ρ1 = ρ2 (i.e., p1 = p2 = 1), we recover x = x1 = x2 = ρ

as expected. We write the mean-field rate equations analogous
to Eq. (5) by considering the variables ρ1 and ρ2 and proba-
bilities x1 and x2,

dρ1

dt
= (1 − ρ1) f

[
(1 − b)(ρ1 + p1ρ2)

1 + p1 − b(ρ1 + p1ρ2)

]

− ρ1 f

[
(1 − b)[1 − ρ1 + p1(1 − ρ2)]

1 + p1 − b[1 − ρ1 + p1(1 − ρ2)]

]
, (7)

dρ2

dt
= (1 − ρ2) f

[
(1 − b)(ρ2 + p2ρ1)

1 + p2 − b(ρ2 + p2ρ1)

]

− ρ2 f

[
(1 − b)[1 − ρ2 + p2(1 − ρ1)]

1 + p2 − b[1 − ρ2 + p2(1 − ρ1)]

]
, (8)

which reduce to Eq. (5) in the homogeneous case (ρ1 = ρ2 =
ρ). A more detailed derivation of Eqs. (7)–(8) can be found in
the SM [50], Sec. S1.2.2.

The solutions ρ1(t ) and ρ2(t ) of the coupled system
in Eqs. (7)–(8) approximate the averages over realizations
〈ρ1(t )〉 and 〈ρ2(t )〉 obtained from numerical simulations (see
Sec. III A). We expect this approximation to be accurate for
highly connected networks and large system size N . As be-
fore, a large average degree is required by the mean-field
assumption, and the thermodynamic limit to avoid finite-size
effects. The study of Eqs. (7)–(8) will shed light on the dy-
namics of collective information spreading in the presence
of algorithmic bias and the phenomenology of the models
considered here.

The dynamics of ρ1(t ) and ρ2(t ) is completely determined
by the parameters (Q, α, b) and initial conditions ρ1(0) and
ρ2(0). In order to understand the macroscopic behavior of
the models for all parameter values, we build a phase dia-
gram, i.e., we divide the parameter space (Q, α, b) in regions
associated with different stable fixed points ρ1(t ) = ρst

1 and
ρ2(t ) = ρst

2 . The role of initial conditions can be determined
by a vector field or phase portrait, i.e., the right-hand side
of Eqs. (7)–(8) as a function of ρ1 and ρ2. The basin of
attraction of a stable fixed point delimits the region of initial
conditions that will be attracted to that point by the dynamics
after long times. Before analyzing the phase diagrams and
basins of attraction of all stable fixed points in Sec. IV, we
briefly discuss analytical approximations more accurate than
the mean-field limit.

C. Higher-order approximations

Higher-order descriptions of binary-state dynamics are
possible, at the expense of simplicity and tractability, by
considering a set of deterministic evolution equations larger
than Eq. (5) or Eqs. (7)–(8), see Sec. S2 of the SM [50]. In
the highly connected, infinite network size limit the results
of all approximations coincide. Higher-order approximations
involve evolution equations for random (uncorrelated) net-
works with an arbitrary degree distribution Pk , with degrees
in the range kmin � k � kmax, and include: (i) the pair ap-
proximation [32,48,51], with kmax − kmin + 2 variables, and

044312-5



PERALTA, NERI, KERTÉSZ, AND IÑIGUEZ PHYSICAL REVIEW E 104, 044312 (2021)

(ii) approximate master equations [2,24,29,34–36,52], with
(1 + kmax − kmin)(2 + kmax + kmin) variables. In the case of
a homogeneous (single community) network structure, the
methods developed in the references above can be directly
applied to any binary-state model with effective transition
rates F ∗

k,m and R∗
k,m [see Eqs. (2)–(3)]. In the case of modular

networks some modifications are needed, as described in the
SM [50], Sec. S2.2, where we develop a pair approximation
scheme for modular z-regular networks.

IV. THEORETICAL RESULTS

We now proceed with a detailed analysis of the fixed points
(steady states) of the dynamical mean-field Eqs. (7)–(8) and
their stability, in both the absence and presence of algorithmic
bias. We first discuss the homogeneous solution ρ = ρ1 = ρ2

(Sec. IV A and Sec. S3.1 in the SM [50]), where we focus
on the coexistence-consensus transition with order parameter
|ρ − 1/2|, and then turn our attention to the polarized so-
lutions ρ1 �= ρ2 (Sec. IV B and Sec. S3.2 in the SM [50]),
where we concentrate on a polarization transition with order
parameter P = |ρ1 − ρ2|.

A. Homogeneous solutions

The homogeneous condition ρ1(t ) = ρ2(t ) = ρ(t ) can be
satisfied by Eqs. (7)–(8). Among all possible homogeneous
solutions of Eq. (5), we highlight the state of opinion coex-
istence (ρ = 1/2), which is always present independently of
parameter values as a consequence of the up-down symmetry
in the transition rates [see Eq. (1)]. In order to understand the
effect algorithmic bias has on these homogeneous solutions,
we divide the following results in the cases b = 0 and b > 0.

1. No algorithmic bias (b = 0)

In the noisy voter model with Q > 0, the only stable
solution is coexistence (ρst = 1/2) [45,51]. In the majority-
vote model, however, there is a well-defined continuous
coexistence-consensus transition (supercritical pitchfork bi-
furcation) for a finite critical value of the noise Qc > 0: For
Q > Qc the coexistence state ρst = 1/2 is the only stable
solution, while for Q < Qc the coexistence state loses its sta-
bility and two symmetry-breaking, imperfect consensus states
appear as stable solutions, with |ρst − 1/2| ∝ (Qc − Q)1/2.

In the language model, for α � 1 there is no transi-
tion and the only stable state is coexistence (as in the
noisy voter model). For 1 < α < 5 there is a continuous
coexistence-consensus transition (supercritical pitchfork bi-
furcation, majority-votelike), while for α > 5 the transition
is discontinuous (subcritical pitchfork bifurcation). These
regimes are separated by a tricritical point at α = 5. For
the discontinuous case there are two transition lines at Q =
Qc, Qt . For Q > Qt the coexistence state is the only stable so-
lution. For Qc < Q < Qt both coexistence and consensus are
stable solutions (with a stationary state depending on initial
conditions), while for Q < Qc only consensus is possible. In
Fig. 4 we show the transition lines Q = Qc, Qt as a function
of α, as well as the stable solutions in the parameter regions
(Q, α) delimited by these transition lines (see Refs. [45,51]

FIG. 4. Phase diagram of homogeneous solutions for the lan-
guage model in parameter space (Q, α), both without bias [b = 0;
(a)] and for increasing bias in the range b ∈ [0, 1) (b). The solid line
in (a) and the different dashed lines in (b) denote the transition values
Qc(α, b), while the dashed line in (a) corresponds to Qt (α, b). The
tricritical points αt (0) = 5 and αt (b) [dot in (a) and dotted line in
(b), respectively] separate the continuous transition [1 < α < αt (b)]
from the discontinuous [α > αt (b)]. Symbols inside squares indi-
cate the global stable states that can be found inside the parameter
region delimited by the transition lines. Circle colors (shading in
grayscale) correspond to opinion states (s = 0, 1), while a single
circle represents a homogeneous system. There are two possible
global states: (i) coexistence (mixed-color circles) and (ii) consensus
(single-color circles). When more than one stable state is present in
a parameter region, the initial condition determines the final state.
Note that symmetric states (obtained by exchanging circle colors) are
always possible in the same parameter region. The method to obtain
the transition parameter values Qc, Qt is discussed in the SM [50],
Sec. S3.1.

for more details on the case without bias, and Table I for a
summary of the phenomenology).

2. Algorithmic bias (b > 0)

The presence of algorithmic bias (coded by a nonzero
intensity b) shifts the transition lines and changes their nature.
In Fig. 5 we plot the phase diagrams of the three models in
Table I as a function of b. For the noisy voter model, there is
always a well-defined continuous coexistence-consensus tran-
sition for b > 0. The critical value Qc increases as a function
of b up to a maximum at b = 2/3, after which it decreases
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FIG. 5. Phase diagrams in parameter space (Q, b) of the ho-
mogeneous solutions for the (a) noisy voter, (b) language, and
(c) majority-vote models under algorithmic bias (b > 0). For the
noisy voter and language models, the average rates used to obtain
the transition lines are calculated via Eq. (4) in the highly connected
limit (z → ∞), while for the majority-vote model we use a z-regular
network (Pk = δk,z with average degree z = 20). Terminology and
symbols are the same as in Fig. 4.

to Qc = 0 for b = 1. This means that for b < 2/3, algorith-
mic bias promotes consensus of opinions in the noisy voter
model.

In the majority-vote model, surprisingly, the opposite effect
takes place, i.e., the critical point Qc decreases as a function
of b. In other words, algorithmic bias promotes coexistence
of opinions. For high values of b the transition becomes dis-
continuous with the appearance of a tricritical point, similarly

to the phenomenology of the language model without bias
for α > 5 (see Fig. 5). The majority-vote model with high
bias thus behaves similarly to the language model with large
α > 5.

The language model, depending on whether α is small or
large, interpolates between the two behaviors described above,
i.e., algorithmic bias promotes consensus (low α) or opinion
coexistence (high α). With respect to the effect of bias, we
can distinguish between voterlike (low α) and majority-vote-
like (high α � 5) behavior. For α > 5 the transition is always
discontinuous with and without bias (see SM [50], Sec. S3.3
and Fig. S2). We also observe that for high enough bias the
transition becomes discontinuous for 1 < α < 5, so bias also
favors the discontinuity of the transition.

B. Polarized solutions

In order to understand the interplay between algorithmic
bias and modular network structure in binary dynamics of
information spreading, we relax the homogeneous condition
and allow ρ1 and ρ2 to vary freely. Solutions that do not fulfill
the condition ρ1 = ρ2 can be considered as polarized, since
groups have different average opinions. Extreme polarization
happens for ρ1 = 1 and ρ2 = 0 (or the other way around),
i.e., full consensus in community 1 and full consensus of the
opposite opinion in community 2. We measure the degree of
polarization in the social system with the order parameter P =
|ρ1 − ρ2| ∈ [0, 1], such that the homogeneous case (ρ1 = ρ2)
corresponds to P = 0, and extreme polarization to P = 1. Any
other value (0 < P < 1) represents polarization to a certain
degree.

Assuming communities of equal size (N1 = N2 = N/2)
and connectivity (z1 = z2, p = p1 = p2 = z12/z1 = z21/z2), it
is straightforward to show that a possible solution of Eqs. (7)–
(8) fulfills the condition ρ1(t ) + ρ2(t ) = 1, which we call the
polarization line. We are mainly interested in stationary solu-
tions across this line, but there are polarized solutions outside
of it. Note that even if we find a fixed point in the polarization
line, stability analysis needs to be performed in all directions,
not only across the line.

In all considered models, for particular values of the noise
Q, bias intensity b, and connectivity parameter p, we find a
transition to polarization. If we vary the noise Q and keep
other parameters fixed, there are two critical values: Qp and
Q∗

p with Qp < Q∗
p. For Q > Q∗

p, there are no fixed points
along the polarization line besides the trivial coexistence state
ρst

1 = ρst
2 = 1/2. For Qp < Q < Q∗

p two polarized fixed points
appear, stable along the polarization line and unstable in the
perpendicular direction (the homogeneous line), meaning they
are saddle points in (ρ1, ρ2) space. For Q < Qp the same
fixed points become stable in both directions, representing a
polarized state of opinion.

The polarization transition line Qp(α, b, p), or equivalently
bp(Q, α, p), is displayed in Fig. 6 for all models. In Fig. 7 we
show a schematic representation of the fixed points and their
stability analysis, i.e., the phase portrait, of all phases in Fig. 6.
We summarize the behavior of the polarization transition in
each model as follows.

In the noisy voter model, the polarization transition appears
for a fixed value of the bias intensity b > bp(0, 1, p), while
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FIG. 6. Phase diagrams, in noise-bias parameter space (Q, b), of homogeneous and polarized solutions for the language model with (a) low
α = 0.8, (b) noisy voter model, (c) language model with high α = 4, and (d) majority-vote model in the presence of algorithmic bias and
modular network structure (with fixed p = 0.1), where the order implies a gradual move from pairwise to group interactions. We observe two
polarized states: (i) standard polarization (circles of different color; delimited by a dash-dotted line), and (ii) partial polarization (circles with
mixed and full colors, delimited by a black dotted line). Symmetric states (obtained by exchanging colors) are always possible in the same
parameter region. The stationary state (t → ∞) in a parameter region with several possible stable states is determined by the initial condition
(see Fig. 7). For the noisy voter and language models, average rates used to obtain the transition lines are calculated via Eq. (4) in the highly
connected limit (z → ∞), while for the majority-vote model we use a z-regular network (Pk = δk,z with average degree z = 20). The method
to obtain the transition parameter values Q∗

p and Qp is described in the SM [50], Sec. S3.2.

for b < bp(0, 1, p) the polarized state disappears. This means
that polarization emerges as a consequence of algorithmic
bias. The noise value at the transition Qp(1, b, p) increases
as a function of b and has a maximum, similarly to the
homogeneous coexistence-consensus transition line. Overall,
polarization is induced and promoted by algorithmic bias in
the presence of pairwise interactions.

In the majority-vote model, polarization already exists
without bias (b = 0). As bias increases, the transition value Qp

changes slightly (the transition line is very flat as a function
of b) and may have a small maximum depending on p. For
high enough bias Qp(b, p) decreases, meaning that bias may
inhibit polarization, as opposed to the noisy voter model. For
large b a new stable polarized state appears, where one of
the groups has consensus and the other one coexistence. This
new state is possible because consensus and coexistence are
both stable in the homogeneous phase. In Fig. 6, inside the
consensus or coexistence region of the homogeneous phase,
we observe a smaller region where the new state is stable. In
Fig. 7 we show how these new states appear, together with the
stability analysis of all additional fixed points outside of the
polarization line.

The behavior of the language model depends on the value
of α, as before. For low values, we find similar behavior
as the noisy voter model with an emergence of polarization
for increasing bias. High values of α display the opposite
behavior, with polarization disappearing for large enough b,
similarly to the majority-vote model. Note that the previous
statements and the results of Fig. 6 correspond to a fixed value
of the connectivity parameter p. The polarization transition
lines strongly depend on the value of p. For example, the value
of α that separates (smoothly) voterlike and majority-votelike
behaviors increases with p. If the value of p is high enough,
but a polarized solution still exists despite the high degree
of mixing between groups, the polarization transition has a
maximum as function of b, even for large α (for more details
on the separation between α regimes see SM [50], Sec. S3.3
and Fig. S2).

V. COMPARISON WITH NUMERICAL SIMULATIONS

In Sec. IV we have derived analytical approximations for
binary-state dynamics with algorithmic bias (for both ho-
mogeneous and modular networks) in terms of mean-field
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FIG. 7. Schematic representation of the various fixed points, linear stability and shape of associated vector fields for Eqs. (7)–(8), a
mean-field approximation of binary-state dynamics of information spreading under algorithmic bias. We show all possible phases included in
Fig. 6, together with phase transitions that occur for fixed noise Q and varying bias intensity b (examples of the associated vectors fields for
given values of the parameters can be found in SM [50], Sec. S3.4).

equations, which allow us to characterize the behavior of
specific opinion formation models as a function of parameters
(Q, α, b, p). In what follows we validate these theoretical
results with numerical simulations in synthetic and real net-
works.

A. Synthetic networks

Synthetic networks with heterogeneous, uncorrelated de-
grees and modular structure can be generated by using the
configuration model [53], where we take as input degree
sequences and the community each node belongs to (see,
e.g., Fig. 3). We use the generated networks for numerical
simulations and compute the corresponding pair approxima-
tion (a more accurate analytical description developed in
SM [50], Sec. S2). In the case of homogeneous networks, we
also solve the associated approximate master equations [24]
numerically. We then compare these results with the mean-
field Eqs. (7)–(8) to test the validity of the highly connected
limit.

Comparing the pair approximation with the mean-field
results (see Fig. 6), we find the same qualitative behavior
in networks with finite average degrees z1, z12, z2, and z21,
with the same type of transitions. The transition lines shift,
however, and the critical values depend on the connectivity
parameters. In the pair approximation, the critical noise at the
transition is smaller than in the mean-field case, and the net-
work tends to destroy the discontinuous transition, reducing
the parameter region where it can be found. For networks with
z � 5, the discontinuous transition disappears completely.
Something similar happens with the polarization transition; a
network with finite connectivity reduces the parameter region
where the polarized state can be found, as compared to the
mean-field limit with the same p value. For extremely sparse
networks the polarized state disappears (see SM [50], Sec. S4
and Fig. S9 in the case z12 = 1 and z1 = 5, p = 0.2). In the
SM we show how the network affects the transition values Qc

and Qp for given model parameters and as a function of the
connectivity z1. Note that we vary the value of z1 but keep
p = z12/z1 (N1 = N2) constant so that the mean-field results
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are independent of z1. As shown in the SM [50], Sec. S4,
Fig. S9 and Fig. S11, the pair approximation is very accurate
for the language model with α = 2 as compared to numerical
simulations on z-regular networks with community structure,
and we recover the mean-field limit for z1 → ∞. In this case,
the transition parameter values predicted by the pair approx-
imation fall within error bars of computer simulations, thus
validating our analytical results.

While the accuracy of the pair approximation is remark-
able in most cases of interest, some discrepancies appear for
high α � z, for extremely sparse networks (z ≈ 2), and for
the majority-vote model with large bias (see SM [50], Fig.
S10 and Fig. S12). These discrepancies are corrected by the
approximate master equations, which predict the transition
values within the error range of numerical simulations for all
parameter values and models considered.

B. Real-world social networks

Apart from heterogeneous degrees and a potentially styl-
ized modular structure, real-world networks display higher-
order (e.g., degree-degree) correlations and other mesoscopic
properties not considered in the mean-field limit. We check
the validity of our theoretical results by performing numer-
ical simulations of the dynamics (see Sec. III A) on top of
an empirical network structure, confirming that the effect of
algorithmic bias on the transitions between coexistence, con-
sensus, and polarization is qualitatively the same even in the
presence of more involved structural features.

We take the political blogs network [27,54], where nodes
represent liberal and conservative blogs around the time of
the 2004 US presidential election. Links exist between blogs
that refer to each other often, implying a strong interaction
between blogs, i.e., the potential for information spreading.
Based on existing metadata, the population can be divided in
two groups of sizes N1 = 450 (liberals) and N2 = 523 (con-
servatives), with N = N1 + N2 = 973 (after removing nodes
with less than three links). Average degrees inside groups
are z1 = 31.74 and z2 = 29.37, and between groups z12 =
3.42 and z21 = 2.94. Thus, the conservative community is
larger but less connected than the liberal group. Since av-
erage degrees are relatively large, we expect the mean-field
Eqs. (7)–(8) (with connectivity parameters p1 = 0.11 and
p2 = 0.10) to provide accurate results for the dynamics and
stationary states of the social system. Note that the values of
parameters p1 and p2 indicate that an individual in group 1
(liberal) is (slightly) more likely to be convinced by an indi-
vidual in group 2 (conservative) than the other way around,
suggesting that opinion dynamics might be driven by the
conservative group.

We perform numerical simulations of the stochastic opin-
ion dynamics using the noisy voter model with noise value
Q = 0.01 and a high bias intensity (b = 0.8), which is close
to the polarization maximum (see Fig. 6). According to the
mean-field theory there are two (symmetric and stable) po-
larized states with ρst

1 = 0.09, ρst
2 = 0.92, and global opinion

ρst = 0.54 (or ρst
1 = 0.91, ρst

2 = 0.08, and global opinion
ρst = 0.46). Note that opinion consensus in group 1 is always
weaker than in group 2, a consequence of the asymme-
try in group size and connectivity. Linear stability analysis

determines that the polarized state is stable with eigenvalues
and eigenvectors λ1 = −0.16, v1 = [0.86

0.51], and λ2 = −0.24,

v2 = [−0.55
0.84 ]. There is a slow and a fast eigendirection, which

means that the approach to the polarized state happens first
in group 2 [ρ2(t ) → ρst

2 ], and afterwards in group 1 [ρ1(t ) →
ρst

1 ]. This also implies that group 1 is less resilient and more
vulnerable to perturbations, dynamical fluctuations in the slow
eigendirection will have a larger amplitude, and thus opinions
will vary more in time.

In Fig. 8 we compare the vector field of the mean-field
theory [coming from Eqs. (7)–(8)] to single trajectories ρ1(t ),
ρ2(t ) of numerical simulations with several initial conditions,
as well as to restricted averages over realizations that end up in
the same final state 〈ρ1(t )〉, 〈ρ2(t )〉. Numerical average values
agree considerably well with the vector field of the theory,
and also converge to the predicted final state, indicating that
in the case of the political blogs network, a simple mean-field
description is sufficient to describe the dynamical and station-
ary properties of binary-state information spreading under the
effect of bias.

VI. DISCUSSION

Algorithmic bias, an unexpected consequence of the con-
tent filtering tools behind most popular social media platforms
used today, affects the dynamics of opinion formation and
information spreading arising from digital interactions in
nontrivial ways, ultimately leading to undesired collective
phenomena such as group polarization and opinion radical-
ization [20,21]. While the role of algorithmic bias has been
recently modeled in an array of concrete scenarios [18,22,25],
a general theoretical framework systematically linking so-
cial dynamics, network structure and algorithmic filtering
has been missing so far. Here we have put forward such a
formalism by extending previous work on binary-state dy-
namics [2,24,29,34–36,45] with a notion of bias and applying
it to synthetic and real-world social networks. While our
formalism applies to any binary-state dynamics, we have
showcased its flexibility by focusing on the noisy voter, lan-
guage, and majority-vote models, which consider a (pairwise
or group-based) copying or herding mechanism, alongside
random or idiosyncratic changes of opinion.

We derived a set of deterministic, nonlinear rate equations
describing the macroscopic dynamics of the system with in-
creasing levels of accuracy: mean-field, pair approximation,
and approximate master equations. From these equations we
determined the possible stationary states of the dynamics and
their stability. We observed a rich phenomenology with re-
spect to various parameters (bias intensity b, noise Q, model
tuning parameter α, and intergroup connectivity p), including
continuous and discontinuous phase transitions between sta-
tionary states of consensus, coexistence, and polarization.

Algorithmic bias plays a crucial role in the shape of
the associated phase diagram. It promotes consensus (in
homogeneous networks) and polarization of opinions (in mod-
ular networks) when pairwise interactions are predominant
(the noisy voter and language models with low α). When
the dynamics is driven instead by group-based interactions
(majority-vote and language models with high α), algorithmic
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FIG. 8. Mean-field vector fields Eqs. (7)–(8) together with (c) single trajectories and (d) average values over realizations (solid lines)
coming from numerical simulations of the noisy voter model in the political blogs network [27,54] with noise Q = 0.01 and bias intensity
b = 0.8. Smaller dots are initial conditions, larger filled dots stable fixed points, empty dots unstable fixed points, and half-filled dots saddle
points. Dashed lines in (d) delimit the basin of attraction of the polarization and consensus states. The dash-dotted line in (d) is a particular
trajectory for which we show the (a) average initial and (b) final states of the simulated opinion dynamics over the empirical network. Node
positions are calculated with the Louvain method of community detection.

bias promotes coexistence of opinions. The role of algorithmic
bias on the coexistence-consensus transition has an intuitive
interpretation: For pairwise interactions, bias makes it harder
for individuals to copy opposing states, thus favoring con-
sensus and polarization of opinions. For group interactions,
however, opinion unanimity within a group is necessary for an
individual to change state. Under algorithmic bias, the opinion
of part of the group is hidden due to content filtering, making
majorities harder to form. Fewer state changes due to copying
mechanisms and an increasing role of noise leads to coex-
istence. The separation between pairwise and group-based
behaviors depends on the specific details of the rates of the
model; for the language model the transition occurs smoothly
for an intermediate value α ≈ 2, see Sec. S3.3 and Fig. S2 of
the SM [50] for more details. For other binary-state models
well described by local transition rates we expect such a sepa-
ration to exist (see Ref. [55] where these results are extended
for asymmetric rates, and pair and group-based behaviors are
discussed in detail). We leave as further work the extension of
our analysis to other opinion formation mechanisms beyond
voterlike dynamics.

When algorithmic bias is strong, the coexistence-
consensus transition becomes discontinuous. In addition to a
standard polarized state (where each group is close to con-
sensus in opposite states), for large b and α we observed an
additional, half-polarized state where one group has opinion
coexistence and the other one consensus. Note that a wide
variety of other unstable or saddle points also exist depending
on parameter values and initial conditions, regulating transient
states in the dynamics. In most cases, the mean-field approx-
imation presented here gives a good qualitative description
of the phase diagram under the effect of algorithmic bias.
Using higher-order approximations (pair and approximate
master equations) gradually improves accuracy with respect
to simulation results. We also explored the role of algorithmic
bias in models of opinion dynamics over a real-world social
network with strong modular structure, the political blogs
network [54]. In the parameter region where the polarized
state is stable according to the mean-field approximation,
numerical simulations converge to a polarization of opinions
that corresponds to the structural segregation of the network,
provided the initial condition is in the basin of attraction of
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the associated fixed point. We expect our mean-field results to
work similarly well in other empirical networks that are link
dense or modular.

Our formalism provides a flexible way to parametrize a
combination of algorithmic filters and mechanisms of social
interactions in terms of transition rates. As such, it may help
identify the features of algorithms that promote dynamical
and structural polarization in online platforms arguably driven
by a mixture of social processes, from homophily [26,27]
to social contagion [28,29]. This will require a validation of
our theoretical framework by either fitting observational data
with specific models, using automatic model selection [56,57]
and statistical inference techniques [58], or uncovering causal
relationships with controlled experiments of online social be-
havior [59,60].

The minimal implementation of algorithmic bias explored
here can be extended to include more realistic traits of current
online media platforms, such as an asymmetry in the state
favored by bias, correlations between bias and individual traits
(such as network degree), a combination of potentially com-
peting filtering algorithms, and the presence of algorithms that
react adaptively to changes in human behavior. While we have
focused on binary-state dynamics of opinion formation due to
the simplicity of the related approximations and relevance to
online platforms, we expect our framework to be straightfor-
wardly generalized to models with more than two states or
even continuous dynamical variables.

A key limitation of our framework is the consideration of
static networks only. Real-world online social networks are
instead temporal [61], with both nodes and links changing
in time due to a variety of mechanisms and external factors
influencing how people use media platforms and choose their
acquaintances. If extended to temporal networks [29], our
framework will potentially describe a feedback loop between
algorithmic content filtering, network and state dynamics that
segregates the social network into groups of similarly-minded

people (as suggested by recent studies [62]), further promot-
ing the polarization effect we already see in static networks.
Even if our results focus on binary-state dynamics over simple
networks, the rate-equation-based framework is flexible and
can be extended to other dynamical descriptions, such as non-
linear dynamical systems with continuous variables [63,64]
and higher-order network models [65].

The theoretical understanding of the dynamical feedback
processes between filters, information transfer and network
evolution provided by our framework can suggest heuristic
techniques to correct bias. For example, promoting group-
based information exchange in a platform dominated by
pairwise contacts may decrease polarization and allow for
coexistence. Such strategies can improve the chances of a
population self-identifying the onset of processes that may
reduce their robustness to undesired behavior, such as the
political swaying and polarization promoted by adversarial
agents and social bots in online discussion forums [66,67].
We trust our results will be part of a larger trend providing
scientific background for beneficial regulation and rules of
practice in online social ecosystems.
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