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Abstract

In the bounded-confidence-model (BC-model, for short) as we presented it in
Hegselmann and Krause [2002], each agent averages, period by period, all opinions
that are no further away from their actual opinion than a given distance ϵ, their ‘bound
of confidence’. With the benefit of hindsight, it is clear that we completely overlooked
a crucial feature of our model back in 2002: For increasing values of ϵ, our analysis
suggested smooth transitions in the model’s behavior. But in fact, the transitions are
wild, chaotic, and non-monotonic—as discovered and described by Jan Lorenz in his
article [2006]. The most dramatic example of such effects is a consensus that falls apart
for larger values of ϵ.

The core of this article is a rather fundamental new approach to the analysis of
the BC-model. The new approach makes the non-monotonicities unmissable. To
understand the new approach, we start with the question: How many different BC-
processes can we initiate with a given start distribution? The answer to this question
is: Almost certainly for all possible start distributions, and certainly in all cases analysed
in this article, it is always a finite number of ϵ-values that make a difference for the
processes we start. Moreover, there is an algorithm that finds, for any start distribution,
the complete list of ϵ-values that make a difference. Using this list, we can go directly
through all the BC-processes that are possible given the start distribution. We can
check them for non-monotonicity of any kind—and we will find them all.

This good news comes with bad news: The algorithm that inevitably and without
exception finds all the ϵ-values that matter requires absolutely exact arithmetic, without
any rounding anywhere and without even the slightest rounding error. As a con-
sequence, we have to abandon the usual floating-point arithmetic used in today’s
computers and programming languages. What we need to use instead is absolutely
exact fractional arithmetic with integers of arbitrary length. This numerical approach
is feasible on all modern computers.

The new analytical approach and results are likely to have implications for many
applications of the BC-model.
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I hope I’ve learnt something with the years.

Alfred Jules Ayer’s final remark 1978
in the BBC-Television series Men of Ideas.

Ayer was interviewed by Brian Magee;
cf. [Magee, 1982, 109].

1 Introduction

The very essence of what now is known as the bounded confidence model (BC-model, for short)
is simple: Period by period, all agents average over all opinions that are not further away
from their actual opinion than a given distance ϵ, their ‘bound of confidence’. The model
was described for the first time in Krause [1997, 47ff.], an article published in German.
To refer to the model, the term bounded confidence was used for the first time by Krause
in 1998, namely in a conference presentation in Warzaw, published as [Krause, 2000, cf.
231]. A first comprehensive analytical and computational analysis of the BC-model was
given more than two decades ago in Hegselmann and Krause [2002].1 The model has
a very close relative, namely the model in Deffuant et al. [2000]. The main difference
regards the updating procedure: In Hegselmann and Krause [2002] the updating happens
simultaneously while Deffuant et al. [2000] use a pairwise sequential procedure.2 Soon it
became a common practice to refer to both models as BC-models and to distinguish two
variants: the Hegselmann-Krause model (HK-model for short) and the Deffuant-Weisbuch
model (DW-model for short).

In terms of its definition, the BC-model is easy to understand—and it ‘invites’ all sorts
of objections. But it is often easy to modify the model so that it covers the objection. This
combination of features has made the model a kind of platform from which new projects
can be started. And this probably explains, at least in part, why the model is highly cited
(and still increasingly so). It is now even difficult to keep track of the survey articles in
which the BC-model, its extensions, modifications or newly discovered analytical features
are an important component.3

In the following, I will focus exclusively on the basics of the BC-model and our analysis
of it back then in Hegselmann and Krause [2002]. The retrospective diagnosis is: We com-
pletely overlooked a crucial feature of our model. For increasing values of the confidence
level ϵ, our analysis at the time suggests smooth transitions in the model’s behaviour. But
in fact the transitions are wild, chaotic and non-monotonic. For example, we thought that for
increasing values of ϵ, the number of opinion clusters surviving after stabilisation would
decrease monotonically. But this is wrong—it may well be the case that a larger ϵ leads to
more final clusters. The most dramatic example of such an effect is a consensus that falls
apart for larger values of ϵ (remember: the initial distribution is held constant). What is
more, for increasing values of ϵ such effects can occur many times.

1For the history of the BC model and its systematic classification in the broader field of related or alternative
modelling of opinion dynamics, see sections 1-3 of Hegselmann and Krause [2002]. For a more recent
overarching classification and generalisation to high dimensional opinion spaces see the book [Krause, 2015];
cf. [Hegselmann and Krause, 2019].

2For a detailed and careful comparison of the HK- and the DW-model see [Urbig et al., 2008].
3For overviews on models of opinion dynamics, differences and relationships between them, see [Lorenz,

2007], [Xia et al., 2011], [Sîrbu et al., 2017], [Flache et al., 2017], [Proskurnikov and Tempo, 2017, 2018],
[Noorazar, 2020], [Noorazar et al., 2020].
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Similarly, it is wrong to think that for a constant start distribution of opinions the width
of the final stable opinion profile decreases monotonically as ϵ increases. Again, for one
and the same start distribution an increasing final profile width can occur many times. In
Hegselmann and Krause [2002] we did not explicitly state what turned out to be wrong.
But we did not write it down just because we thought it was obvious—the false belief was
suggested in a very natural way by the way we were analysing at the time. Later in this
article it will become clear how this could happen, and some lessons will become clear that
can be taken away.

Jan Lorenz was the first to discover the wild, chaotic, and non-monotonic transitions.
In his equally ingenious and insightful article Consensus Strikes Back in the Hegselmann-Krause
Model of Continuous Opinion Dynamics Under Bounded Confidence [Lorenz, 2006], he mentions
and demonstrates all the non-monotonicities that I mentioned above. The title of his article
hints at perhaps the most dramatic effect of this kind.4 My article focuses on all the non-
monotonicities in BC-processes that Lorenz discovered. And in a sense, I also want to
cover those that are still waiting to be discovered. To this end, I present a new and rather
fundamental approach to the analysis of the BC-model. In the new approach, the non-
monotonicities that we overlooked at the time become directly obvious; in a sense, they
are even unmissable.

The new approach starts from the following simple, but fundamental question: Given a
certain start distribution of opinions, where all opinions are real-valued numbers from the
interval [0, 1], we can run the BC-dynamics for that start distribution with any of all the
possible confidence levels ϵ ∈ [0, 1]. This set of possible ϵ-values is an uncountable infinity.
Given all this, when we ‘play around’ with possible confidence levels, how many different
BC-processes can we initiate with the given start distribution? The answer to the question is:
Almost certainly for all possible start distributions, and certainly in all cases analysed below,
it is always a finite number of ϵ-values that make a difference for the processes that we start. Moreover,
there is an algorithm that finds for any start distributions the complete list of ϵ-values that make
a difference. Such a list is invaluable. With it, we can directly go through all BC-processes
that are possible given the start distribution. We can check them for non-monotonicities
of any kind—and we will find them all.

This is obviously very good news. But it comes with some bad news: The algorithm
that, inevitably and without exception, finds all ϵ-values that matter, requires absolutly exact
arithmetic without any rounding anywhere and without even the very slightest rounding
error. As a consequence, we have to abandon the usual floating-point arithmetic as it is
normally used in today’s computers and programming languages. What we have to use
instead is an absolutely exact fractional arithmetic with integers of arbitrary length. This
numerical approach is feasible on all modern computers (details later). But it comes at a
high cost in terms of speed.

In what follows, I have put together a number of arguments that may seem unrelated
at first. However, later on they merge into a common thread. The next section 2 deals
with the basics of BC-processes. I introduce some notational conventions and definitions. We
will go through some application contexts and reflect on their status. I then describe the

4[Lorenz, 2006] inspired the more rigorous mathematical analyses in [Wedin, 2021]; cf. Wedin’s [2022].
The non-monotonic decrease in the number of stable clusters is also noted and highlighted in [Proskurnikov
and Tempo, 2018, 7f. and Table 1] and [Srivastava et al., 2023, 588f. and Fig. 2].
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kind of dual visualisation of BC-processes that is used throughout the article. It is dual in
the sense that it shows BC-processes simultaneously as a dynamical system with its traject-
ories evolving over time, and as a dynamical network with links emerging or disappearing
over time. The new type of visualisation is a significant improvement on the old one in
Hegselmann and Krause [2002], which did not show network structures.

Section 3 deals with the worst enemy of the BC-model. It is an enemy within, namely
the ordinary floating-point arithmetic. I am afraid that no model is more susceptible to
errors inherent in floating-point arithmetic than the BC-model. In the computation of
BC-processes, it can easily happen that representational or operational floating-point errors
(their order of magnitude is 10–17) cause subsequent errors of 16 orders of magnitude higher
in the next period. We discuss four strategies for dealing with these numerical difficulties.

Section 4 introduces a concept that is key for our new type of analysis of BC-processes,
namely ϵ-switches (often called switches for short). They turn out to be the ϵ-values that
make a difference for BC-processes with a given constant start distribution. We apply
the concept to an example and describe the algorithm that finds all ϵ-switches for any
start distribution. Based upon the discussion in section 3, it is clear that the algorithm
requires absolut numerical accuracy which floating-point arithmetic is inherently incapable
of providing. There is no other choice but to abandon the usual floating-point arithmetic
and to resort to an absolutely exact fractional arithmetic throughout.

To gain more general insights about switches beyond our simple example, we apply the
search algorithm to a larger class of start distributions, each with n opinions equidistantly
spaced in the unit interval [0, 1]. Since we know all of their ϵ-switches from the algorithmic
search, we look at their total number, and then focus on non-monotonicities, in particiular
consents that fall apart again under the next larger ϵ-switch.

In section 5 we introduce a new graphical research tool, namely ϵ-switch diagrams. Since
we know all the ϵ-values that make a difference, we can focus on these and only these
values (i.e. the ϵ-switches) and directly visualise the final cluster structure they produce.
Such ϵ-switch diagrams make it (well, almost) impossible to miss anything that we missed
back in Hegselmann and Krause [2002].

In the final section 6 we draw together some of the strands of argument and insights
that have emerged along the way (some of them incidentally and by the way).

There are three appendices to this article. The purpose of these appendices is to keep
the main text, which is already very long, free of very technical and advanced details that
are not essential for understanding the central line of argument. The core of Appendix I is a
series of numbered Analytical Notes which, stated in a more formal and technical language,
consider central properties of ϵ-switches in general. Appendix II focuses both on universal
properties of equidistant start distributions, presented as Analytical Notes as in Appendix I,
and on figures showing additional universal properties not covered by the figures in the main
text. Many properties of floating-point arithmetic play an important role in this article. I
have included only the most important in the main body of the article. When working
with the BC-model, modifying and extending it, one needs to know more. Therefore,
there is an Appendix III which, in my opinion, contains the minimum of what (at least, but
better not only) BC-modelers should know about floating-point arithmetic.
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2 BC-processes: Definition, application, visualisation

2.1 Notation and definitions

In a first step we introduce some terminology that finally will allow us to state precisely
what we mean by a BC-process (or, equivalently, BC-dynamics):

1. There is a set I of n agents; i, j = 1, . . . , n; i, j ∈ I.

2. Time is discrete; t = 0, 1, 2, . . . .

3. Each individual starts at t = 0 with a certain opinion, given by a real number from
the unit interval; xi(0) ∈ [0, 1].

4. The profile of opinions at time t is

X(t) = x1(t), . . . , xi(t), . . . , xj(t), . . . , xn(t).

5. Each agent i takes into account agents j whose opinions are not too far away, i.e. for
which |xi(t) – xj(t)| ≤ ϵ, where ϵ is the confidence level.5 That level determines the size
of i’s confidence interval [xi – ϵ, xi + ϵ].6

6. The set of all agents j that i ‘takes seriously’ at time t (and given ϵ) is:

I
(
i,X(t), ϵ

)
= {j||xi(t) – xj(t)| ≤ ϵ}, [1]

i.e., the set of all agents in i’s confidence interval. For short, we will often refer to
I
(
i,X(t), ϵ

)
as the set of i’s ϵ-insiders. Correspondingly, the set of i’s ϵ-outsiders is the

complimentary set of I
(
i,X(t), ϵ

)
, namely

O
(
i,X(t), ϵ

)
= I

(
i,X(t), ϵ

)C
= {j||xi(t) – xj(t)| > ϵ}. [2]

7. The updated opinion of agent i is the arithmetic mean of all opinions xj(t) for which
j ∈ I

(
i,X(t), ϵ

)
:

xi(t + 1) =
1

|I
(
i,X(t), ϵ

)
|

∑
j∈I
(
i,X(t),ϵ

) xj(t). [3]

Based upon (1)-(7), we can now define: A sequence of opinion profiles is a BC-process if
and only if it is generated by the updating rule [3]. Obviously, a BC-process is uniquely
characterised by the start distribution X(0) together with a confidence level ϵ. Therefore, in
the following we will often refer to a BC-process simply by the ordered pair ⟨X(0), ϵ⟩.7
Formally, the process is an n-dimensional dynamical system.

5At this point, it is possible to individualise the confidence level by introducing agent-specific ϵi-values.
However, since this type of heterogeneity does not play a role in the following and would only complicate
the notation, I will not do so.

6If the boundaries of the confidence interval are outside the unit interval [0, 1], then the confidence
interval is empty in these areas since a BC-process can never lead to opinions outside [0, 1]. It is therefore
not necessary to exclude confidence intervals that are too wide.

7The number n of agents is implicitly given by the number of components of X(0).
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Some second-order reflection upon the syntactical and semantical status of (1)-(7) helps
to avoid major confusions and misunderstandings: The very heart of the characterisation
of BC-processes is given in [3]. The preceding introduction of the set I, the discrete time
t etc., that is all the preparatory provision of terms that are used in [3]. As such, [3] is a
mathematical formalism only. However, by a preceding sentence like “There is a set I of
n agents; i, j ∈ I.”, we give the formalism an interpretation that, if only in a sketchy way,
hints at an intended type of applications—an application on what we normally call ‘agents’.
Another provision says that the components of a profile X(t) should be understood as opin-
ions. Additionally, a time sequence is assumed. As a consequence, we can read equation
[3] as an exactly specified interaction process of agents and their opinions over time.8 Al-
together, we thus obtain by (1)-(7) all that we need for a syntactically and semantically
sufficiently clear definition of the predicate “... is a BC-process”. This definition expli-
citly introduces a new predicate. Whoever understands a predicate, understands a concept as
the meaning of that predicate—and that is something that is the same in all the concrete,
written or spoken occurrences of the predicate somewhere in time and space, including
occurrences as a synonymous term in different languages. But, then, what is exactly meant
by the term “BC-model”? Throughout this article, I use the expression “BC-model” as a
(meta-language) name for the (object-language) predicate “... is a BC-process”.

One should also be clear that predicates (as well as the concepts that constitute their
meaning), are not the kind of entities that can be said to be true or false—and that holds for
a primitive predicate like “... is green” as well as for our less primitive predicate “... is a BC-
process”. Empirical truth or empirical falsity comes into play by a claim that a particular
real-world process is an instance of a predicate (or falls under the concept that constitutes the
meaning of this predicate). Such assertion sentences express propositions, and only they,
the propositions, are capable of being true or false. Given the definition and the whole
mathematical apparatus logically connected with it, logical-mathematical propositions can
also be formulated and possibly proved. However, these are logical-mathematical truths,
not empirical truths.

2.2 Some application contexts

As far as the types of representable opinions are concerned, the BC-model is more general
than one might think at first: It could be about the putative probabilities, which themselves
may concern qualitative, comparative, or quantitative issues. The opinions may concern any
real-valued quantitative problem, provided that one can reasonably normalize the range of
possible opinions to the unit interval. The opinions could concern, for example, the length
of a river or the lifetime of a car. Opinions could express the intensity or importance of a
desire.9 They could be opinions about moral desirability (0: extremely bad; 0.5: neutral;
1: extremely good). Or the opinions could concern a desirable budget share. On the other
hand, non-continuous opinions, e.g., discretized or binary opinions, are not covered.

Apart from the different types of opinions, there are quite different contexts of possible

8This is not necessarily so. In principle, the same formalism could be applied to interacting atoms or
molecules, where equation 3 is concerned with changes in some physical property. For the view that models
consist of a formalism and an interpretation see as a classical reference Gibbard and Varian [1978].

9But note that a BC-process, applied to such opinions, makes sense only under the condition of intersub-
jective comparability of intensities.
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applications. Here some (not mutually exclusive) examples:

1. Compromise contexts: There is a group of people that exchange their views. For
reasons such as uncertainty, interest in compromise, a preference for conformity, or
even some social pressure, everyone is willing to move into the direction of the others’
opinions. However, there are limits to the willingness to compromise: An individual
i with view xi(t) is willing to compromise with individuals with opinions that are not
too far away—and over them is averaged.

2. Social media contexts: There is a digital platform with a central algorithmic coordina-
tion that matches user i with users j whose opinions xj(t) are not too far away from
i’s opinion xi(t). User i then averages over these opinions. In such a context, ϵ is
the distance tolerance of a centrally organized filter bubble. Another social media
variant would be a digital platform that allows all users j to send their opinions xj(t)
to all other users i. As a recipient, however, user i only takes note of opinions that are
not too far removed from his or her opinion. The average is then formed over these
values. In this variant, ϵ is the distance tolerance of a decentralised echo chamber.10

3. Expert-disagreement contexts: There is a group of experts on something. Each expert
has a well-considered opinion about the problem in question. Nevertheless, they dis-
agree. And then what? In social epistemology, a much-discussed resolution proposal
is “Split the difference!” [cf. Douven and Riegler, 2010, 148]. But what does that
mean, and where does it lead to? The BC-model can be seen as a formal specification
of the conflict resolution advise. In that perspective, the BC-model becomes a tool
to answer normative or technical questions in the now blossoming field of (computa-
tional) social epistemology: The qualitative advise “Split the difference!” becomes
a quantitative advise with regard to bounds of confidence, i.e. ϵ-values. Their very
different effects can be precisely computed and, then, evaluated from the point of
view of their epistemic desirability.

With regard to the first two contexts, the BC-model could be seen as a direct idealising
definition of a mechanism that is likely to play a greater role in these contexts. The mech-
anism could explain how, under certain conditions, effects often described or explained by
terms such as homophily, conformity or confirmation bias occur.

Another way of looking at the BC-model would be to see the model itself as a more
precise, specified, and metric re-definition of what is addressed by broad and qualitative con-
cepts such as homophily, confirmation or conformity bias, which themselves summarily
‘conceptualize’ findings from countless empirical studies. The re-definition is tailored to
dynamical contexts, continuous opinions as the subject matter, and circumstances in which
homophily, confirmation or conformity effects come in degrees and with limits. What we
do is a kind of conceptual engineering and very similar to what Rudolf Carnap (1891–1990)

10There are now hundreds of books and thousands of articles on mechanisms and effects of social media.
Revealing analyses are, for example, [Pariser, 2011] and [Sunstein, 2018]; both books received a very wide
attention and response. In recent years, numerous attempts have been made to better understand the effects
and mechanisms of social media through modeling and simulation; cf. the highly instructive overview [Flache
et al., 2017]. The works [Keijzer et al., 2018], [Keijzer and Mäs, 2021, 2022], and [Keijzer, 2022] are very
thoughtful and successful examples of such efforts. They also contain very informative overview sections.
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called an explication.11 He describes the procedure in chapter one of his Logical Foundations
of Probability [Carnap, 1950, 1-18].12 In Carnap’s view, an explication transforms a more
or less ambiguous, prescientific concept, the explicandum, into an improved concept, the
explicatum. Carnap formulates four adequacy conditions:

A concept must fulfill the following requirements in order to be an ad-
equate explicatum for a given explicandum: (1) similarity to the explicandum,
(2) exactness, (3) fruitfulness, (4) simplicity [1950, 5].

In Carnap’s case, the prescientific terms are ‘confirming evidence’, ‘degree of confirmation’
or ‘probability’; cf. [1950, 21]. His explicatum is the precise concept ‘degree of confirma-
tion’. We can look at ‘homophily’, ‘confirmation bias’ or ‘conformity bias’ as explicanda,
and consider the definition of BC-processes as their explicatum. Carnap’s four adequacy
conditions are relevant in our case as well. But then there may be a difference: Carnap calls
the explicandum a prescientific concept [cf. 1950, 1 et passim]. With regard to my explic-
anda, I do not want to talk like that. Rather, it is simply that the very broad and qualitative
concepts of homophily, confirmation or conformity bias are specified, made more precise,
and quantified through their explication. The explicandum gets transformed, but not with
the intention to replace it in all contexts.

Obviously, the broad and qualitative concepts of homophily, confirmation or conform-
ity bias can be explicated in other ways than through the BC-model. One could think of
non-real-valued opinions, continuous time or non-simultaneous updating. Thus, even as a
mere explication of ‘homophily’, ‘confirmation bias’ or ‘conformity bias’, the-BC model
does not have any claim to exclusivity.

In terms of content, the BC-model describes a mechanism: certain parts, namely agents
with certain opinions, interact in a precisely defined way and thereby cause certain phenom-
ena to occur. In opinion formation processes, however, there are also plausible mechanisms
of a quite different kind, for example those in which the distance |xi –xj| is irrelevant. Each
agent i could assign a weight wij to each other agent j and also to himself, which expresses
the power, authority, competence et cetera assumed by i in j. Let the sum of the weights
that i assigns always be 1, and let the assignment of weights be constant over time. The
updating is then done as a weighted averaging:

xi(t + 1) =
∑
j∈I

wij · xj(t) with 0 ≤ wij ≤ 1 and
∑
j∈I

wij = 1. [4]

The mechanism characterised in this way can be traced back to French Jr [1956], Harary
[1959] and DeGroot [1974]. Today it is often referred to as the DeGroot model. I will do
the same and refer to it as the DG-model or DG-processes. There are other mechanisms that
can lead to a repulsive drifting apart of opinions.

In real-world opinion-formation processes of groups or even entire societies, a mul-
titude of different mechanisms are likely to be at play, both individually and collectively.
This does not bode well for realistic agent-based models. Precisely this could be a reason

11For a concise description of Carnap’s work see [Leitgeb and Carus, 2023].
12For a very detailed and comprehensive analysis of Carnap’s understanding of explication, its development

and its embedding in current discussions in philosophy of science, see the article [Brun, 2016]; see as well
section 1.1 and the supplement “D. Methodology” in [Leitgeb and Carus, 2023].
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to rely on a completely different kind of modelling, namely machine learning based on
gigantic data sets (big data). Technically, however, the modelling is then only implicit, i.e.
hidden in a neural network, and thus largely opaque to humans; in any case, massive prob-
lems arise with regard to transparency, interpretability and explainability of what the model
actually does.13 However, even without explicit human understanding of such a model, it
might still be possible to make extremely good predictions with the model. This creates
an entirely new epistemic situation which, together with other breakthroughs in AI that
are equally disruptive to the intellectual position of the homo sapiens, requires a fundamental
rethinking and redefinition of desirable epistemic ideals for beings like us.

Be that as it may, the BC-model is in any case epistemically old-fashioned: it aims at ex-
plicit understanding14, is deliberately kept simple, and precisely defines a certain mechanism,
which is then examined in isolation and with conscious disregard of all other influences.15

It is clear from the outset that countless other mechanisms may be at play in actual opinion
formation processes. With regard to what can be achieved with the model in descriptive
terms, epistemic modesty is called for: The BC-model tells us something about what happens
in a context in which it describes the predominant mechanism. Depending on the accur-
acy with which one knows the initial conditions in such a context, one can then describe,
explain or predict accordingly. However, all of this is only possible under the condition
that the mechanism in the given context is actually predominant. But this condition may
not be fulfilled. Other mechanisms could be predominant, there could be an interplay of
different mechanisms. The BC-model is therefore not the universally applicable opinion
formation model, but merely one of many.16

Different from the first two contexts of application, in the expert-disagreement context

13For these problems cf. Roscher et al. [2020].
14In philosophy of science, a lively discussion has developed in the last 15 years about what understand-

ing actually is, or what could be meant by the term; cf. on this [Grimm et al., 2016], [Baumberger and
Brun, 2016], [De Regt, 2017]. Of particular interest is the connection between understanding and having
explanations. Previously, the discussion in philosophy of science had concentrated only on the concept of
explanation; for a summary see [Salmon, 2006].

15For this approach see Mäki [1992, 2011]. Helpful and clarifying in this context are the analyses of ceteris
absentibus, ceteris neglectis, and ceteris paribus conditions in Boumans and Morgan [2001].

16This view on opinion formation models is similar to the one Rodrik [2015] takes with regard to models
in economics:

…simple models of the type that economists construct are absolutely essential to under-
standing the working of society. Their simplicitiy, formalism, and neglect of many facets of
the real world are precisely what make them valuable. They are a feature, not a bug. What
makes a model useful is that it captures an aspect of reality. What makes it indispensable is
that it captures the most relevant aspect of reality in a given context. Different contexts—different
markets, social settings, countries, time periods, and so on—require different models. And
this is where economists typically get into trouble. They often discard their professions’s most
valuable contribution—the multiplicity of models tailored to a variety of settings—in favor of
the search for the one and only universal model [Rodrik, 2015, 11].

Rodrik believes that attempts to develop an all-encompassing large-scale model are misguided. He writes:

…efforts to construct large-scale economic models have been singularly unproductive to
date. To put it even more strongly, I cannot think of an important economic insight that has
come out of such models [Rodrik, 2015, 39].

For a discussion and (partial) critique of Rodrik from a philosophy of science perspective, see [Mäki, 2018].
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(the third context listed above), the issue is no longer descriptive, explanatory or predictive—
at least not in the first place. The paradigmatic problem is that of a group of experts, each
of whom has a subjective assessment of an unknown probability, but who then have to act
as a team; or, alternatively, a single decision-maker who has to decide on the basis of the
different assessments of a group of experts. In both cases, the question is: are there ways to
aggregate the divergent opinions into a single, reasonable, consensual assessment?

This problem already inspired the development of formal models in the 1950s and 1960s.
The models defined—or better: designed—mechanisms to form consent out of dissent in
a somehow reasonable manner. Winkler [1968] gives an early, very precise overview and
calls the problem “the consensus problem” [1968, B63].17 The very simple solution via
the arithmetic mean is ruled out, since this would give all experts the same weight [cf.
Winkler, 1968, B63ff.]. But only in very rare cases are the members of expert groups likely
to consider themselves equally good and therefore willing to aggregate their opinions with
equal weight. The same will analogously apply to an individual decision-maker with regard
to the experts advising him or her. But then what?

In the mid-1960s, in a different context and from a different perspective, there was
a second, very different variant of a consensus problem. It was succinctly formulated by
Robert P. Abelson (1928-2005) in his article Mathematical Models of the Distribution of At-
titudes Under Controversy [Abelson, 1964]. At that time there was already a whole range of
mathematically precisely formulated opinion dynamics. These included, for example, the
DG-model defined above by equation 4. In practically all of these models, the same holds as
in the DG-model: even under very weak conditions, a final consensus is inevitable. On the
other hand, numerous empirical studies had shown that bimodal distributions, polarisation,
and community cleavage were quite common real-world outcomes. With this situation in
mind, Abelson then writes:

Since universal ultimate agreement is an ubiquitous outcome of a very
broad class of mathematical models, we are naturally led to inquire what on
earth one must assume in order to generate the bimodal outcome of com-
munity cleavage studies [Abelson, 1964, 153].

So the first consensus problem is too little consensus among experts, the second too much
consensus as a result of models.

The BC-processes defined above were originally primarily conceived by Krause and
myself as a stylised procedure for analysing and perhaps partially solving the consensus prob-
lem of the first type.18 But in addition, as a kind of side effect, it would also solve the second
consensus problem. Regarding this second consensus problem, it is clear that the BC-model
produces polarisation in a certain range of ϵ-values (details and complications later). With
regard to the first consensus problem: Couldn’t a consensus be reached by experts who,
when iteratively updating their opinions, only take into account those other experts who
are within a certain ϵ of their own opinion, but who otherwise know nothing about the
others? The abstract communication structure (iteration, anonymity) thus corresponds to

17Winkler’s central focus is on subjective probability distributions with unknown parameters, but not on
point probabilities.

18Cf. the very first motivating introduction of the BC-model in Krause [1997, 47ff.], Krause [2000, section
1], and Hegselmann and Krause [2002, sections 1 and 2].
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the Delphi study format developed in the 1950s within the RAND cooperation, which
serves the goal “to obtain the most reliable consensus of opinion of a group of experts”
[Dalkey and Helmer, 1963, 458].19

The much older DG-model has been considered and analysed as a possible solution to
the consensus problem much earlier, at the latest in the 1960s: What would have to be the
case with regard to the mutually attributed weights wij for a DG-process to eventually lead to
a consensus among experts? While French Jr [1956] and Harary [1959] had empirical and
descriptive applications in mind, DeGroot [1974] clearly envisages a consensus technology
in the DG-processes.20 Lehrer and Wagner then even upgraded DG-processes to the unique
rational solution of the consensus problem.21

In the third application context considered here, there is obviously a very fundamental
change of perspective. It is now about the design of a mechanism that could be suitable to
achieve a certain goal, namely the consensual aggregation of expert opinions. In such a
perspective, neither the actual use nor the actual value of the confidence level ϵ (or the
weights wij) is a matter of fact, but rather a matter of individual or collective choice. More
generally, in the third type of applications we take a normative or technical stance: Given
certain epistemic goals, the model is used to develop efficient epistemic policies.22

19The first Delphi study concerned a secret US Air Force project on the question of an optimal selection of
industrial American targets from the point of view of a Soviet strategic planner, in order to reduce munitions
production by a given percentage. In particular, the number of atomic bombs required was to be estimated
[cf. Dalkey and Helmer, 1963, 458]. For security reasons, this new study format was not reported for the
first time until ten years later. For the subsequent development and use of the Delphi format over the last 60
years, see Khodyakov et al. [2023].

20DeGroot [1974] is entitled Reaching Consensus. In his Conclusions, DeGroot explicitly discusses the
relationship of the DG-processes to the abstract communication structure of the Delphi format. He explicitly
points out that the DG-mechanism—unlike the Delphi format—does require knowledge of the identity of
the others because of the assignment of weights wij. This is not necessary for BC-processes. One only needs
to know the opinions of the others.

21See [Lehrer, 1975, 1976; Wagner, 1978; Lehrer and Wagner, 1981]. It is noteworthy that Lehrer and
Wagner do not conceive of the DG-process as an exchange process that takes place in time, but rather as an
iteration process that is started after the end of the discussion process and that can also be left to a machine.
Their starting point is a “dialectical equilibrium” i.e. a situation after “the group has engaged in extended
discussion of the issue so that all empirical data and theoretical ratiocination has been communicated. ... the
discussion has sufficiently exhausted the scientific information available so that further discussion would not
change the opinion of any member of the group” [Lehrer and Wagner, 1981, 19]. The multiplication of a
weight matrix with a column of probabilities is then iterated. Under relatively weak requirements for the
entries in the weight matrix, this leads to consensual weights for t → ∞ and a corresponding consensual
probability estimate [cf. Lehrer and Wagner, 1981, 21ff.].

22In a series of articles Igor Douven, together with different coauthors, has used the BC-model to find
efficient epistemic policies for groups that encounter certain research problems, e.g. finding the probability
p of a Bernoulli process, or the best explanation for a given explanandum; cf. [Douven and Riegler, 2010],
[Douven, 2010], [Douven and Kelp, 2011], [Douven and Wenmackers, 2017] and [Douven and Hegselmann,
2022]. The articles draw on the extended BC-model as it was published in Hegselmann and Krause [2006,
2009]; see also the discussion in [Hegselmann and Krause, 2015, section 6]. The extended BC-model is
explicitly meant to capture, in a formalised and stylised way, a fundamental truth about human learning,
namely, that it is an interplay of learning from others and learning from the world. In Hegselmann and
Krause [2006, 2009] all the details of the learning from the world were put into a black box. The articles of
Douven et al. demonstrate that the black box can be opened. See also [Douven and Hegselmann, 2021]. For
a strictly technical application, see also [Hegselmann et al., 2015].
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(a) Start with 50 agents, equidistantly spaced in [0, 1]. x1(0) = 0, x50(0) = 1. The
confidence level is ϵ = 0.2.
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(b) Start with 50 agents, even random start distribution; ϵ = 0.2.

Figure 1: Single BC-processes and our general style to visualise them: In horizontal direction,
the grey lines are the trajectories of the opinions. The colored circles indicate the net pull on
an opinion: upward (shades of blue) or downward (shades of red). Circles with black borders
mean a net pull of zero. Vertical black lines between neighboring opinions link agents that
mutually influence each other since their opinion distance is not greater than ϵ.
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2.3 Visualising a dual nature: BC-processes as dynamical systems and
dynamical networks

Figure 1 shows two visualisations of BC-processes. The visualisations are done in a specific
style that will be used throughout in this article: Grey lines are the pure trajectories of
the opinions over time t (x-axis). In each period, each trajectory is marked by a filled,
colored or light grey circle of a certain size. The colors inform about the net balance of
upward and downward directed forces that act on an opinion xi(t). Acting forces in an
BC-process are the opinions xj(t) within i’s confidence interval. Upward directed forces are
exerted by opinions above xi(t); the opinions below xi(t) pull in downward direction. As
a consequence, the net pull on an opinion xi(t) is simply xi(t + 1) – xi(t). And that is what
we color according to the legend to the left of the diagram. Thus, shades of red indicate a
downward net pull, shades of blue an upward net pull. Darker shades mean stronger pulls.
A net pull of zero is marked specifically: We border the circle (filled with a very light grey)
with an outer black line.

The size of the colored or grey circles indicates cluster size. A cluster is a group of agents
that have the same opinion. A ‘lonely’ agent whose opinion nobody shares, is considered
as a cluster of size one. Increasing circle size, means increasing cluster size.

Then there are vertical black lines. For an accurate understanding of the way they work,
we introduce some terminology: A profile X(t) is an ordered profile iff

x1(t) ≤ x2(t) · · · ≤ xi(t) ≤ xi+1(t) · · · ≤ xn(t) [5]

X(t) is a strictly ordered profile iff

x1(t) < x2(t) · · · < xi(t) < xi+1(t) · · · < xn(t) [6]

In the following we will always start with profiles X(0) that are strictly ordered. BC-
processes that start strictly ordered, always lead to ordered profiles, but these are usually no
longer strictly ordered.

Now back to the black vertical lines. Suppose an ordered profile. Then the vertical lines
are drawn between neighboring opinions xi(t) and xi+1(t) step by step if and only if their
distance is not greater than ϵ. Thus, a vertical black line between two opinions indicates
that they mutually influence each other.23

There are graphical issues: In an ordered profile, graphically, opinions that are the same,
get piled up on top of each other. From the stacked opinions, we see only the top one.
But we know that all the opinions below have exactly the same properties as the top one,
for instance the same cluster size or the same ϵ-insiders and outsiders. The consequence
is: As long as we see an uninterrupted vertical line, there is a network in which – directly
or indirectly – all agents are connected to each other. The vertical line guarantees the
existence of the corresponding network paths. Thus, the visual impression is completely
right—despite the fact that, technically, the vertical lines are drawn stepwise, following the
indices in the ordered profile. However, there is often a problem with distinct, but very
close opinions. They may be that close (and thereby mutually being among their ϵ-insiders)
that one can’t see any more the black vertical connections between them. In Figure 1a we

23As to the position of the y-axis’ ticks and labels on the right side of the coordinate system, I follow the
data presentation style of the Economist.
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have this problem in some densely populated, outer regions of the profiles. In this case, we
have to correct the graphical impression by what we know.

The grey horizontal lines visualise trajectories and thereby take the dynamical system
perspective. The black vertical lines take a network perspective: They are links between agents
that mutually influence each other. Whoever is an agent on a continuous vertical black line,
is a member of the same network. Both BC-processes in Figure 1 start as one network. But
BC-processes are dynamical networks in which the links change over time: As the missing
black line indicates, the network in Figure 1a falls apart in period t = 6; in Figure 1b the
same happens already in t = 2.

To describe phenomena as the ones we see in Figure 1, let’s introduce explicitly two
additional concepts that will prove useful later: An ordered profile X(t) is an ϵ-profile (at
time t) iff

|xi+1(t) – xi(t)| ≤ ϵ, for i = 1, . . . , (n – 1). [7]

If |xi+1(t) – xi(t)| > ϵ, then there is (at time t) an ϵ-split between xi(t) and xi+1(t). Speaking
in that language, the BC-processes in Figure 1 start as ϵ-profiles that later split.

Without going here very much into details, one can see in the Figures 1a and 1b some
typical phenomena of BC-processes: Extreme opinions are under a one-sided influence
and move direction center. Therefore, the range of the profile starts to shrink. At the
extremes of the shrinking (sub-)profiles, the opinions condense. Condensed regions attract
opinions from less populated areas within their ϵ-reach. In the center some opinions are
pulled upwards, while others are pulled downwards. At some point t, the network falls
apart, the profile splits. The split sub-profiles, the two networks respectively, constitute
different ‘opinion worlds’, i.e. two communities without any influence on each other. In
the two split off sub-profiles opinions contract. At some point in time, in the two sub-
profiles all opinions have all opinions within their confidence interval. In the next period
all opinions merge into one. The consequence is stability. (Already in Hegselmann and
Krause [2002] we proved that a BC-process always stabilises in finite time t̄ in the usual
sense of X(̄t – 1) = X(̄t).)

Our approach to the visualisation of BC-processes allows a two-dimensional represent-
ation of the network dynamics, whereas normally already the representation of the network
for a certain time t requires two-dimensionality. As a consequence, the network dynamics
itself can then only be visualised as a sequence of two-dimensional representations. Ob-
viously, for the visualisation of BC-processes, we can manage with one dimension less.
Ultimately, this is possible because all agents who have exactly the same opinion, then also
have the same properties, such as their respective cluster size, links to other agents, and so
on. In contrast to what is usually the case, we can therefore also stack agents that have the
same opinion on top of each other without any problems: Although one then actually only
sees the visualised properties of the topmost agent, one knows that all the agents below
have the same properties. Figure 2 shows, how this approach can easily be used in order to
visualise network (centrality) measures. As an example, Figure 2 visualises the agents’ total
number of links to others.
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Figure 2: Taking the network perspective, the colored circles now show the number of the
agents’ links to other agents. The number of links is indicated by both color and size of the
circle. In a similar way (color, shape and size of markers) other network centrality measures
can be visualised as well.
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3 The BC-model’s worst enemy: Floating-point arith-
metic

To compute a BC-process requires to decide over and over again on sets of ϵ-insiders and
ϵ-outsiders: Is |xi(t) – xj(t)| ≤ ϵ, that is the decisive question. Back then in 2002 (and even
quite a few years later), we considered that as a simple question, no problem for a computer.
This turned out to be wrong.

3.1 Some examples of numerical disasters

Figure 3a, top illustrates a case where the computer miscalculates the set of ϵ-insiders. For
X(0) we assume what we will call a regular start profile. In such a profile n opinions are
equidistantly distributed in the unit interval [0, 1] according

xi(0) =
i – 1
n – 1

, for i = 1, . . . , n. [8]

Our example is n = 6 and, thus, X(0) = ⟨0, 0.2, 0.4, 0.6, 0.8, 1⟩.24 The confidence level
is ϵ = 0.2, which is exactly the distance between neighbouring opinions in X(0). As a
consequence, X(0) is an ϵ-profile as defined above, and any two neighbouring opinions are
for t = 0 mutually members of their sets of ϵ-insiders. The red arrow in figure 3, top points
to a segment in the profile where something went wrong: The computer miscalculates
the distance between agent4 (in ascending order, the fourth agent in the start profile) and
agent5, and takes the two agents that obviously are mutually ϵ-insiders as ϵ-outsiders. As a
consequence, from t = 1 onwards, the whole BC-process is numerically corrupted. The
correct computation is shown in figure 3b.

The computations that lead to the obvious mistake were done by a NETLOGO pro-
gram. For the subtraction 0.8–0.6 one gets the faulty result 0.20000000000000007 instead
of 0.2. The program gets it wrong by a tiny margin: 2–53, 10–17 respectively, that is the
magnitude of the error. But that is sufficient to miss one element in two agents’ insider
sets, which, then, causes follow-up errors that are 16 decimal magnitudes higher.25

What we see here, is not a problem specific to NETLOGO; it is simply an effect of the
IEEE 754 standard for floating-point arithmetic, and that is the arithmetic that computers use
by default.26 Floating-point arithmetic is an arithmetic with engineered numbers, often
simply called floats, that approximate the uncountably infinite set of real numbers by a huge
but finite set of numbers that are represented by a bit string of a predefined length, today
usually 64 bits. As a consequence, almost all real numbers can’t be represented exactly,

24Figure 1a above is a regular start profile with n = 50.
25After the initial subtraction error, NETLOGO produces different versions of the dynamics thereafter,

though there isn’t any random component in the definition of the dynamics. However, if one keeps the seed
for the random generator constant, one always gets the same miscalculations. The strange effect is probably
due to some internal randomness as to the sequence in which the additions are done, together with the fact
that the usual laws of commutativity and associativity do not hold in full generality in the floating-point
arithmetic. As a consequence, results become numerically path dependent.

26The articles [Polhill and Izquierdo, 2005], [Polhill et al., 2006] , [Izquierdo and Polhill, 2006] is an
extremely helpful series of articles on floating-point arithmetic in general and all the sorts of damages that it
can cause especially in agent-based models.
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and rounding to the nearest representable number becomes ubiquitous. That, then, has
consequences as we see them in figure 3a.

One might think that the computational error in Figure 3a is a somehow artificial
and rare event. Figure 4 destroys such an impression: For n = 51, we set up a regu-
lar start distribution according to equation [8]. Thus, our start opinions are the decimals
0, 0.02, 0.04, . . . , 1. Then we compute the resulting dynamics for the decimal ϵ-values
0, 0.01, 0.02, . . . , 0.4. Each process is computed until it is stabilised. Then we display the
results as a diagram that we call ϵ-diagram: Along the x-axis we have the increasing ϵ-values,
the y-axis displays for each ϵ-value the final stable profile X(̄t).

Given that setting, we know two things in advance: First, whatever the ϵ-value, since
the start profile is regular, there has to be a mirror symmetry along the line y = 0.5 in all finally
stabilised profiles X(̄t). Second, there is one agent, namely agent26, whose opinion should
never ever change: For all ϵ-values, and for all periods t = 0, 1, . . . , t̄, given the symmetry
of the start distribution, the opinion value of agent26 should always be 0.5—a centrist with
the centrist position (and for whom, trivially, the upward and downward pull is always
balanced to zero). That is how it obviously should be. Any violation of the symmetry, any
aberration of x26(̄t) = 0.5, is a guarantee that numerically something went wrong. (But
note, and keep in mind: This kind of symmetry is only a necessary, not a sufficient condition
of numerical correctness.)

Figure 4 shows what floating-point arithmetic in our setting does—and it is a numerical
catastrophy: In horizontal direction, as a kind of pseudo trajectory, light grey lines connect
the final positions of the ith opinion for the stepwise increasing ϵ-values. The thick black
line is the ‘trajectory’ of the centrist agent26, whose opinion in numerically correct calcu-
lations will always be 0.5, but now—except for very small and very large ϵ-values—almost
never is. Additionally, a numerically correct computation is mirror-symmetric with regard
to y = 0.5. But a visual inspection reveals symmetry violations all over. For ϵ = 0.02, the
stabilised opinion of agent26 seems to be computed correctly, but other elements of X(̄t) are
not: The small filled black circle indicates a ‘cluster’ of just one agent, a black circle with
a white dot inside, is a cluster of two agents. Scaled grey circles indicate cluster sizes of
clusters ≥ 3 (for the scaling see the legend of figure 3). For ϵ = 0.02, the cluster structure
above and below agent26 is completely different. It is easy to extend the list of symmetry
violations. In short: Figure 4 documents a major numerical disaster.27

3.2 Four computational strategies to escape numerical disaster

How to get out of the mess? There are at least four different options, three of them risky,
but cheap; one of them completely safe, but costly:

27BC-processes are numerically vulnerable also in other respects. Here two other examples: We use the
standard definition of stability, namely X(t – 1) = X(t). But the floating point arithmetic almost always detects
by far too late that in a BC-process two profiles are equal. That happens even in perfectly clear cases of a
consent that is reached since some periods. A second example is the detection of clusters. In our context,
it is very natural to consider as a cluster sets of agents with exactly the same opinion. But the floating-point
arithmetic will detect’ tiny differences (again 10–17 is the order of magnitude) where there are no differences
under exact computation. In both cases, often visual inspection together with a little numerical reflection is
completely sufficient to see that the computer gets it wrong. With regard to both stability checks and cluster
identification it helps to introduce a tiny tolerance for being equal.
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(a) The usual floating-point arithmetic miscalculates the dynamics: The red arrow points at agent5 (in as-
cending order, the fifth agent of the start profile). Since |x5(0) – x4(0)| ≤ ϵ, in t = 0 the ϵ-insiders of agent5
are agent4, agent5, and agent6. As a consequence, agent5 should not move at all.

(b) The correct dynamics. The calculation uses a trick: We added to ϵ a tiny amount, namely ∆ϵ = 10–12.

Figure 3: The miscalculated and the correctly calculated BC-process for ϵ = 0.2 (regular start
distribution).
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Figure 4: ϵ-diagram: The thick black line shows the centrist agent26. A small filled black
circle is just one agent. A black circle with a white dot inside, is a cluster of two agents.
Scaled grey circles indicate the cluster size for clusters ≥ 3 (for the scaling see the legend of
Figure 3). In a correctly computed ϵ-diagram, the centrist agent26 would always end up with
the opinion x26( t̄ ) = 0.5, as everything would be mirror symmetric with regard to the line
y = 0.5.

1. We stick to the floating-point arithmetic, but try to avoid numerical constellations
that may cause numerical disasters, namely opinion values xi, xj with |xi –xj| = ϵ. We
can try to avoid such constellations by an exclusive use of random start distributions:
For such a distribution, the probability that there are opinion values xi(0), xj(0) with
|xi(0) – xj(0)| = ϵ, equals zero. Exclusive use of random start distributions was the
computational strategy in Hegselmann and Krause [2002]. The approach avoids a
numerical disaster in the very first updating step. However, that is no guarantee
that in later periods the ϵ-insider/outsider distinction is always correctly computed.
Because of the random start, we will never see any violated asymmetries that indicate
miscalculations. But indetectability does not mean non-existence. As a consequence,
we get a kind of unintended and uncontrolled noise.

2. We use the floating-point arithmetic even together with equidistant start distributions,
but try again to avoid the critical constellations, i.e. opinions xi, xj, such that |xi –
xj| = ϵ. That was our computational strategy in Hegselmann and Krause [2015].
There we used a very special equidistant start distribution, that we called expected
value start distribution. The expected value start distribution idealises directly and
‘deterministically’ a uniform random start distribution over the range [0, 1]: the ith

opinion is exactly the value, that we would get as the average of the ith opinion over
infinitely repeated and then ordered uniform random start distributions of n opinions.
An expected value distribution of n opinions starts with

xi(0) =
i

n + 1
, for i = 1, . . . , n. [9]
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Working with an expected value start distribution instead of repeated randomly star-
ted runs, is sometimes a fruitful methodological approach: It minimises the danger
to blurr interesting effects by averaging. Additionally, if there is an effect that needs
explanation, one can directly study the unique single runs that produced the effect.
In Hegselmann and Krause [2015] we applied that approach (as we think successfully)
and used a start distribution according to equation [9] with n = 50. As a consequence,
the distance between neighbouring opinions is always 1/51 = 0.0196078431372549.
Given that distance, none of the 50 opinions in X(0) is for any ϵ = 0.01, 0.02, ..., 0.4
at the bounds of confidence of any other opinion. As to the very first updating step,
we are therefore computing on safe ground. And as to the later periods, there is some
evidence for justified hope: If we calculate an ϵ-diagram as the one in figure 4, but
now for an expected value start distribution with n = 50, then we get a diagram that
is completely mirror symmetric [cf. 2015, 487]. As said, however, symmetry is only
a necessary, not a sufficient condition for numerical correctness. Additionally, the
symmetry check is a check by visual inspection only, and there may be asymmetries
that are too small to catch the eye.28

3. The problem in the dynamics in figure 3 is that an ϵ-insider is mistaken as an outsider;
the problem is not that an ϵ-outsider is mistaken as an insider. This asymmetry is
typical and suggests a numerical trick: We stick to floating-point arithmetic, but as a
precaution we always add a tiny amount ∆ϵ to ϵ—sufficiently much to get the set of
ϵ-insiders right. The precaution works astonishingly well. In the last years, in many
contexts and almost routinely, we used a ∆ϵ = 10–12. The (correct) process in figure
3, bottom is calculated by a NETLOGO program that uses the trick.29 That the trick
works, can be checked by a safe method that does not use the trick. The method will
be described below. But here and in general we would like to know (and often have
to know) why, when and for which ∆ϵ-values the trick works without producing
the complimentary mistake: taking an ϵ-outsider for an insider. It is a trivial task,
to calculate for a process ⟨X(0), ϵ⟩ a value for ∆ϵ that would numerically corrupt
the process right from the start. If X(0) is an equidistant start distribution, it might
even happen that the numerical corruption that is caused by a too large ∆ϵ, works
symmetrically and, therefore, is practically undetectable.

4. We abandon floating-point arithmetic altogether, and resort to an exact alternative:
fractional arithmetic that restricts itself to the exclusive use of rational numbers as frac-
tions of integers. Such numbers can always be exactly represented. All computations
are then done as fractional operations. In the computation of a BC-process that eas-
ily leads to numerators and denominators in the hundreds of millions—an expression
swell (a well known general problem of the exact fractional approach) that requires
a permanent and complicated search for expression simplifications. To avoid neces-

28A different and more precise symmetry check is the following: In an equidistant start profile (regular or
expected value), each agent i has a mirror agent j with the index j = n – (i – 1). Both have exactly the same
absolut distance to 0.5. For any pair i and j of mirror agents, in a numerically correct computation it holds
at any time t: The set of mirror agents of the elements in i’s insider set, equals the set of j’s insider set et vice
versa. This type of mirror symmetry of insider sets of mirror agents can be checked and visualised.

29Both the working and the limitations of the trick based upon certain choices of ∆ϵ can be studied by
systematic symmetry checks as described in footnote 28.
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sities for rounding since otherwise numerators and denominators become too big to
be representable by a bit string of predefined length (for instance the usual 64 bits
format), we need to be able to use integers of arbitrary length.

Such a fractional approach with integers of arbitrary length is technically possible.
With fractional arithmetic, we operate numerically on completely safe ground. But
the solution comes at a cost in terms of computation speed: Fractional arithmetic is
comparatively slow and takes much more time than floating-point arithmetic. For
tasks that can reasonably be done by both methods, the safe fractional method may
easily need one or two orders of magnitudes more time. MATHEMATICA and
JULIA allow computations in fractional arithmetic. NETLOGO does not.

In the next section we will turn to the non-monotonicities that we overlooked in Hegsel-
mann and Krause [2002]. Soon it will become clear, that analysis and understanding of the
non-monotonicities requires computationally a fractional approach.

4 A new key concept: ϵ-Switches

The best way to understand the wild behavior of BC-processes ⟨X(0), ϵ⟩ in detail, is to start
with very simple (and seemingly unrelated) questions: Given a certain start distribution
X(0), how many different processes ⟨X(0), ϵ⟩ exist? How many values of ϵ are there that
make a difference? Is it a finite number, an infinite number? And how can we find them
all, or at least some of them?

4.1 The example X(0) = ⟨0, 0.18, 0.36, 0.68, 1.0⟩
As an example, let us take the start distribution X(0) = ⟨0, 0.18, 0.36, 0.68, 1.0⟩.30 For
ϵ = 0, simply nothing will happen. Since X(0) = X(1), the dynamics is stable in t = 1.
Now we start to increase the value of ϵ. What is the smallest value of ϵ that makes a
difference? An ϵ = 0.1 would not make any difference––still, nothing would happen, the
same sets of ϵ-insiders, the same trajectories as for ϵ = 0. Obviously, the very first strictly
positive ϵ-value that really makes a difference, is an ϵ-value that equals the distance to a
nearest ϵ-outsider in the profile X(0). In our example that is the distance 0.18. We find this
distance between two pairs, namely for |x2(0)–x1(0)| and |x3(0)–x2(0)|. Figure 5a shows the
dynamics for ϵ = 0.18. Compared to the situation for ϵ = 0, the value ϵ∗ = 0.18 is a kind
of switch for the given start distribution: Once ϵ reaches that value, the insider/outsider
composition and thereby the network structure changes. At least one new link between
two agents is established that was not there before. As a consequence, we get, compared to
the process ⟨X(0), ϵ = 0⟩, a different BC-process, namely the one in Figure 5a.

By inspection of Figure 5a it is clear, that a further increase of ϵ to ϵ = 0.2, would
not make any difference—we would get exactly the same process that we see already in
Figure 5a, the process that is generated by the first switch. The next and nearest larger ϵ

30Soon it will become clear that this seemingly ‘innocent’ start distribution generates surprising non-
monotonicity effects. The start distribution was originally found by Malte Sieveking in a general analytical
way and then adapted to the framework with opinion values in the unit interval. Malte Sieveking and Ulrich
Krause intend to present a type of analysis that is different from mine. I will come back to their approach
later in footnote 38.
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(a) Run with ϵ∗1 = 9/50 = 0.18. We find the nearest distance to an ϵ-outsider (i.e.
ϵ∗2 ) in t = 0 between two pairs of neighboring agents: agents3/4 and agents4/5.
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n = 5,  ϵ = 0.32, example start distribution

(b) Run with ϵ∗2 = 8/25 = 0.32. We find the nearest distance to an ϵ-outsider in
t = 3. That distance is the next switch, i.e. ϵ∗3 .

Figure 5: Runs with the first two switches of our example start distribution. Green vertical
lines connect the agents that in the run are the nearest ϵ-outsiders. Additionally, the upward
and downward green triangles mark the period, in which we find the nearest outsiders.
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that again changes the process, is the one that is equal to the distance to the nearest ϵ-
outsider that we can find in the entire process ⟨X(0), ϵ = 0.18⟩ of figure 5a. Such an ϵ is
a second switch, that again establishes a new link that did not exist before. By inspection
of Figure 5a, it is clear which ϵ-value that is: It is an ϵ that equals the distance between
agent3 and agent4 and the distance between the agent4 and agent5 right at the start, namely
|x5(0) – x4(0)| = |x5(0) – x4(0)| = 0.32. The green vertical lines in Figure 5a show the two
distances to nearest ϵ-outsiders. We make this value our new starting point for finding the
nearest larger ϵ-value that makes a difference, and so forth.

More precisely, the next and nearest ϵ-outsider we are looking for, is the minimum
element in the set of all distances to ϵ-outsiders of all agents over all periods t for the BC-
process ⟨X(0), ϵ⟩. To that minimum element we will refer as δout

min

(
X(0), ϵ

)
. In formal terms:

δout
min

(
X(0), ϵ

)
= min

{
|xi(t) – xj(t)|

∣∣∣ t = 0, 1, . . . , t̄ ; i = 1, . . . , n; j ∈ O
(
i,X(t), ϵ

)}
[10]

The analytical reflections above show that an ϵ∗ = δout
min

(
X(0), ϵ

)
works and functions as a

kind of switch: It is the smallest confidence level larger than ϵ that at some point in time
changes the network structures of the process ⟨X(0), ϵ⟩: it establishes at least one link that
did not exist beforehand. In the following we will refer to such an ϵ∗ as an ϵ-switch.

4.2 Search for ϵ-switches: The algorithm that finds them all

At this point, probably inevitably, one gets the idea of an algorithmic search for minimal
distances to ϵ outsiders. For a given start distribution X(0) we start with ϵ = 0, and then
search for δout

min, the distance to a nearest ϵ-outsider. Doing that, we find ϵ∗1, the first switch
that, compared to the process ⟨X(0), ϵ = 0⟩, makes a difference. For our start distribution
we find ϵ∗1 = 0.18. That is the start of a loop. Now we search δout

min in ⟨X(0), ϵ∗1⟩ and thereby
find the second switch ϵ∗2 = 0.32. This second switch generates the BC-process ⟨X(0), ϵ∗2⟩
shown in figure 5b. If we go, period by period, through all the distances to ϵ-outsiders, we
will find (marked by the green vertical line) the distance to the nearest ϵ-outsider in t = 3,
namely the distance between x5(3) and x3(3). That distance is the third switch ϵ∗3. We use
that switch to compute the process ⟨X(0), ϵ∗3⟩, in which, then, we search for δout

min = ϵ∗4, and
so the loop goes on.

As we know directly from X(0) the first switch, so we know directly from X(0) the largest
switch, namely the distance xn(0) – x1(0), the width of the start profile. For ϵ∗ =

(
xn(0) –

x1(0)
)
, all agents are linked to all agents already in t = 0. In t = 1 they have all the same

opinion, and the process is stable in t = 2. All ϵ > ϵ∗ have the same effect, and can’t make
any further difference. Therefore, the search algorithm can stop once ϵ∗ =

(
xn(0) – x1(0)

)
is reached. The flowchart in Figure 6 visualises the algorithm.

Here we should stop immediately because of flashing red lights: In section 3.1 we saw,
that the most numerically dangerous situation is a constellation in which opinions lie exactly
on the bounds of confidence of other opinions. But obviously our search algorithm creates
exactly this type of situation over and over again: Each switch generates a BC-process in
which at least two agents have opinions that are exactly and mutually at the upper or lower
bounds of their confidence interval. In other words: Without precautions, our algorithm
is a recipe for a numerical disaster.
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Start

X(0), the start distribution

ϵ ← 0

compute process ⟨X(0), ϵ⟩

find δout
min in process ⟨X(0), ϵ⟩

ϵ ← δout
min

write ϵ to list

ϵ =
(
xn(0) – x1(0)

)

Stop

no

yes

Figure 6: Basic structure of the search algorithm that, by finding the nearest ϵ-outsiders,
finds all ϵ-switches, i.e. the ϵ-values that make a difference in the sense of changing the
network structure. δoutmin is the minimum distance to an ϵ-outsider that one finds in the whole
process X(0),X(1),X(2), . . . ,X( t̄ ) with respect to all j ∈ O

(
i,X(t), ϵ

)
} for i = 1, . . . , n. See

equations [2] and [10] above.

Table 1: Fractional arithmetic at work: The 7 profiles of the BC-process for the switch
ϵ∗2 = 8/25 (= 0.32) as graphically shown in Figure 5b. Going through all the profiles, the
search algorithm finds the minimum distance to an ϵ-outsider in t = 3 between agent3 and
agent5 (both colored red). The distance is 631/900 – 573/1600 = 4939/14400. That value
is the third switch ϵ∗3 of the example start distribution.

agent t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1 0/1 9/100 203/900 569/2160 63307/172800 1669/3840 1669/3840
2 9/50 9/50 203/900 569/2160 63307/172800 1669/3840 1669/3840
3 9/25 61/150 407/1200 573/1600 63307/172800 1669/3840 1669/3840
4 17/25 17/25 289/450 6269/10800 18719/43200 1669/3840 1669/3840
5 1/1 21/25 19/25 631/900 13841/21600 1669/3840 1669/3840
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Table 2: The 13 ϵ-switches of the start distribution X(0) = ⟨0, 0.18, 0.36, 0.68, 1.0⟩. The
table displays the exact rational values and their decimal representation as floating-point num-
bers (64 bits).

switch exact float64

ϵ∗1 9/50 0.18
ϵ∗2 8/25 0.32
ϵ∗3 4939/14400 0, 342986111111111
ϵ∗4 9/25 0.36
ϵ∗5 3/8 0.375
ϵ∗6 29/75 0.386666666666667
ϵ∗7 339/800 0.42375
ϵ∗8 1/2 0.5
ϵ∗9 107/200 0.535
ϵ∗10 16/25 0.64
ϵ∗11 17/25 0.68
ϵ∗12 41/50 0.82
ϵ∗13 1/1 1.0

What to do? Of the four options we discussed as possible solutions in section 3.2, the
first two are not applicable: By design and for good reason, our algorithm creates the con-
stellation that the two options try to avoid. The third option adds a tiny amount ∆ϵ to ϵ
to avoid the error of missing an ϵ-insider. But this can lead to a complementary problem,
namely mistaking an ϵ-outsider for an ϵ-insider—and we simply do not know what ∆ϵ

would be too much. Consequently, there is no other option than the costly solution of
option four: All computations of our algorithm have to be done as fractional arithmetic,
and it has to be done with integers of arbitrary length. This is exactly what we are going to
do. And it is also what we have already done without mentioning it in the calculation of the
processes in Figure 5 above. Otherwise we would be heading for numerical disaster with
the second switch: Looking at 5a, we see that the second switch equals 0.32. But when us-
ing floating-point arithmetic, the computer get’s it wrong. For |1.0–0.68|, i.e. the distance
between agent5 and agent4 in t = 0, we get 0.31999999999999995; for |0.68–0.36|, i.e. the
distance between agent4 and agent3, we get 0.32000000000000006. Both results are obvi-
ously wrong. Since the first distance is smaller than the second, the algorithm would return
ϵ∗2 = 0.31999999999999995. In the next step we would get ϵ∗3 = 0.32000000000000006—
and we have a completely corrupted list of switches right from the start.

Therefore, from now on, we will compute consistently on numerically safe ground:
fractional arithmetic, and nothing else. Table 1 gives an example. It shows all exact fractional
results for the BC-process that starts with our example start distribution and an ϵ-value that
equals 0.32, in fractional terms 8/25, a value that we already identified as ϵ∗2, the second
switch for the given start distribution.

When we run the algorithmic search for the ϵ-switches of our example start distribution
X(0), we get a total of 13 switches. They are listed in Table 2. The table displays the exact
rational values and their decimal representation as floating-point numbers (64 bits). The 13
switches allow to initialise 13 different BC-processes. The first two are shown in Figure 5.
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Figures 7 and 8 show the remaining 11 possible BC-processes. The 13 processes exhaust all
possibilities for BC-processes that start with X(0) = ⟨0, 0.18, 0.36, 0.68, 1.0⟩––nothing else
is possible.

Comparing the 13 possible processes, the probably most surprising phenomenon regards
the switches ϵ∗3, ϵ

∗
4, and ϵ

∗
5 (cf. Figures 7a, 7b, and 7c): For ϵ∗3 the process reaches a consensus.

But for the larger ϵ∗4 the consensus is breaking up—a clear cut case of a counter intuitive non-
monotonicity. For the next switch ϵ∗5 we get consensus again. Though in a less spectacular
way, all 13 switches make a difference for the trajectories of the BC-processes that they
generate. Going through the 13 runs in Figures 5, 7, and 8, we see a huge variety of
differences:

• The number of final clusters may decrease (ϵ∗1 → ϵ∗2, ϵ
∗
4 → ϵ∗5) or increase (ϵ∗3 → ϵ∗4).

• The width of the final cluster structure, i.e. xn(̄t) – x1(̄t), may decrease (ϵ∗1 → ϵ∗2,
ϵ∗4 → ϵ∗5) or increase (ϵ∗3 → ϵ∗4).

• The exact position of a consensus in [0, 1] may change (for instance ϵ∗5 → ϵ∗6, ϵ
∗
11 →

ϵ∗12).

• For some t < t̄, the width of X(t), i.e. xn(t)–x1(t), may decrease (for instance ϵ∗2 → ϵ∗3
for t = 4) or increase (for instance ϵ∗3 → ϵ∗4 for t = 3).

• A profile X(t) that was an ϵ-profile beforehand, may get an ϵ-split (for instance ϵ∗3 →
ϵ∗4 for t = 1); a profile that had an ϵ-split, may become an ϵ-profile (for instance
ϵ∗4 → ϵ∗5 for t = 1).

• The time to stabilisation may decrease (ϵ∗3 → ϵ∗4, ϵ
∗
5 → ϵ∗6, ϵ

∗
7 → ϵ∗8, ϵ

∗
9 → ϵ∗10,

ϵ∗12 → ϵ∗13) or increase (ϵ∗1 → ϵ∗2, ϵ
∗
4 → ϵ∗5).

The observed differences in the trajectories are not mutually exclusive, and probably there
are more differences than the ones that I listed.

28



ne
t p

ull
 =

x i(
t+

1)
−

x i(
t)

-0.1

0.0

0.1

period t
0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n = 5,  ϵ = 0.3429861111, example start distribution

(a) ϵ∗3 = 4939/14400 = 0, 342986111111111
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n = 5,  ϵ = 0.36, example start distribution

(b) ϵ∗4 = 9/25 = 0.36
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n = 5,  ϵ = 0.375, example start distribution

(c) ϵ∗5 = 3/8 = 0.375
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n = 5,  ϵ = 0.3866666666, example start distribution

(d) ϵ∗6 = 29/75 = 0.386666666666667
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n = 5,  ϵ = 0.42375, example start distribution

(e) ϵ∗7 = 339/800 = 0.42375
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n = 5,  ϵ = 0.5, example start distribution

(f) ϵ∗8 = 1/2 = 0.5
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n = 5,  ϵ = 0.535, example start distributio

(g) ϵ∗9 = 107/200 = 0.535
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n = 5,  ϵ = 0.64, example start distribution

(h) ϵ∗10 = 16/25 = 0.64

Figure 7: The BC-processes for the ϵ-switches ϵ∗3, . . . , ϵ
∗
10. Green vertical lines connect

agents that (for the given ϵ∗-value) are mutually nearest ϵ-outsiders. Their distance is the
next switch. Cf. Figure 5 for ϵ∗1 and ϵ∗2; cf. Figure 8 for the last three switches.

29



ne
t p

ull
 =

x i(
t+

1)
−

x i(
t)

-0.2

0.0

0.2

period t
0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n = 5,  ϵ = 0.68, example start distribution

(a) ϵ∗11 = 17/25 = 0.68
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n = 5,  ϵ = 0.8199999999, example start distribution

(b) ϵ∗12 = 41/50 = 0.82
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n = 5,  ϵ = 1.0, example start distribution

(c) ϵ∗13 = 1/1 = 1.0

Figure 8: The BC-processes for the last three switches ϵ∗11, ϵ
∗
12, and ϵ∗13. Green vertical lines

connect agents that (for the given ϵ∗-value) are mutually nearest ϵ-outsiders. Their distance
is the next switch. Cf. Figures 5 and Figures 7.
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4.3 Beyond the example: General observations and conjectures on
ϵ-switches

The algorithm that finds the ϵ-values that make a difference in our example start distribution
can be applied to any start distribution. I have applied it to countless start distributions—
random, regular, expected value, lots and lots of start distributions I had found interesting for
some reason. Result: the algorithm always listed finitely many increasingly large switches,
and then stopped. As analytical reflections already showed for the example in section 4.1,
the first switch equals the smallest distance between neighbouring opinions in the (strictly
ordered) start profile. The last switch found and at the same time the largest switch equals
the width xn(0) – x1(0) of the start profile. The fact that the algorithm stops, and thereby
leads to a finite list of switches, is not self-evident (at least not for me): perhaps there could
be an infinite number of switches between a smallest and a largest switch. However, in
none of my computational experiments was this the case. But I have no proof that the
number of switches is always finite.

The finite list of strictly increasing ϵ-switches that the algorithm finds, leads to a com-
plete segmentation of [0, 1] by the following sequence of intervals (right-open except for
the last one):

⟨ [0, ϵ∗1) , [ϵ∗1, ϵ
∗
2) , . . . , [ϵ∗s–1, ϵ

∗
s ) , [ϵ∗s , 1] ⟩ with 0 < ϵ∗1 < ϵ∗2, . . . , ϵ

∗
s ≤ 1. [11]

The list of ϵ-switches yields a gapless sequence of segments [ϵ∗k , ϵ
∗
k+1). In what follows, we

will often speak of predecessor or successor switches. That then refers to the switch ϵ∗k–1 or
ϵ∗k+1 that in the ordered list of switches precedes or succeeds ϵ∗k .

For any given start distribution, all ϵ-values from the same segment lead to exactly
the same BC-process; processes with ϵ-values from different segments, on the other hand,
are never the same. Overall, for any given start distribution, it is possible to get a complete
overview of which BC-processes are possible at all. We can, switch by switch, go through
all possible processes and look for properties that interest us:

• Is a consensus being destroyed again?

• Is the number of final clusters increasing again?

• Is the final profile width increasing again?

• How long does it take to stabilise?

• Which switch produces the first consensus that is not destroyed by any subsequent
switch?

• In which period was the next switch found?

The answers to all these questions can be generalised in a precise sense: Assuming that the
kth switch ϵ∗k of a start distribution X(0) = x1(0), . . . , xi(0), . . . , xn(0) destroys a consensus,
then this is also true for the kth ϵ-switch of a start distribution X⋄(0), which we get from
X(0) by a transformation of the form

x⋄i (0) = α · xi(0) + β, with α > 0 and α, β ∈ R [12]

31



applied to all n components of X(0). The same applies to the other properties of the
switches addressed in the questions above, for instance the times to stabilisation: In the
infinite number of start distributions that we can generate from X(0) by transformations
according to equation 12, its kth switch will always lead to exactly the same stabilisation
time as for ϵ∗k of X(0). For this effect it does not matter at all that such transformations can
lead to opinions far outside the unit interval, which in turn leads to the algorithm searching
for the switches also finding distances to the nearest ϵ-outsiders that also far exceed the unit
interval. Central properties of BC-processes are invariant with regard to transformations
of the type in equation 12. Or in other words: BC-processes are robust with regard to
the assumed opinion space, be it the unit interval or something else much larger or even
very much smaller. However, there is one thing that is different in the transformed start
distributions: If ϵ∗k is the kth switch of X(0), then α · ϵ∗k is the kth switch of the transformed
start distribution X⋄(0). Appendix I compiles these and some other findings in a more formal
and technical language in the form of numbered Analytical Notes. (What follows here in
the main text can be understood without reading Appendix I.)

In our example above in section 4.1, only once a consensus is destroyed by the next
larger switch. There are much wilder BC-processes: For the same start distribution, it may
happen several times that a consensus is destroyed again by a successor switch. There are
several ways to demonstrate that, for instance by the analysis of a major set of random start
distributions. Here in this article I will use another strategy: We will look at all regular start
distributions for n = 2, . . . , 50. Throughout the text, a regular start profile with n agents
will be occasionally referred to as Xr,n(0). In a first step, Figure 9 shows their respective
number of ϵ-switches. The x-axis shows the n-values, the y-axis the number of ϵ-switches
that our algorithm finds for a regular start distribution with the respective n. As shown and
motivated in Appendix II: Universal characteristics of equidistant start distributions, the number
of switches is universal: Whatever the specific equidistance c, whatever the range of the
profile, any equidistant start profile with n agents has the same number of switches. And
even more: For all equidistant start distributions with a given n, the properties of the kth

of the s switches are always the same.31 Thus for a example, what we see in Figure 9 also
holds for an expected value start distribution as it would for a start distribution with an
equidistance of c = 1, thereby leaving the unit interval as our opinion space.32

In Figure 9 the blue graph connects the numbers of ϵ-switches for consecutive even
numbers of n; the red graph does that for odd numbers. The grey graph connects directly
the y-values for consecutive values of n. For n = 49 the algorithm finds 624 switches, for
n = 50 there are 607. By inspection of Figure 9 we see: For increasing even values of n, and
as well – but separately – for increasing odd values of n, the number of switches increases
monotonically. And in both cases the increase is more than linear.

In Figure 10, we start focusing on the ‘wild’ behavior of BC-processes: We look for
switches that break up a consensus and turn the consensus into strict polarisation (i.e. a
final stable cluster structure with exactly two clusters). Figure 10 shows how many such
switches there are. As in Figure 9, the x-axis shows the increasing values n = 2, . . . , 50
of the regular start distributions that the algorithm searches for such switches. The y-axis
shows the results. Again, via the colors blue and red, we distinguish even and odd values

31See in Appendix I Analytical Note 10.)
32Wedin and Hegarty [2015] use equidistant start distributions with an equidistance c = 1.
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Figure 9: The total number of ϵ-switches that the search algorithm finds for regular start
distributions with n = 2, . . . , 50. The blue graph connects the numbers of ϵ-switches for
consecutive even numbers of n; the red graph does that for odd numbers. The grey graph
connects the y-values for consecutive values of n.
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Figure 10: The total number of ϵ-switches that destroy a consensus and lead to a strict
polarisation (i.e., exactly two clusters). The blue graph connects the numbers of such switches
for consecutive even numbers of n; the red graph does that for odd numbers. The grey graph
connects the y-values for consecutive values of n.
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Figure 11: The number of switches that destroy a consensus and lead to three final clusters.
The blue graph connects the numbers of such switches for consecutive even numbers of n; the
red graph does that for odd numbers. The grey graph connects the y-values for consecutive
values of n.

of n. If you look at Figure 10, two things immediately jump to the eye: For even values
of n there are quite a lot of destroyed consents; for odd values there is none. As to the
even n-values, for n = 40 and n = 46 it is six times each that a consecutive switch leads to
polarisation while the predecessor switches generated consensus. And, by extrapolation, it
looks as if (though stepwise) for increasing (even) values of n there are higher numbers of
such cases.

Why are there no such cases for odd values of n? The explanation is closely related
to our earlier discussion of symmetrical start profiles (cf. section 3): If we start with a
regular profile, and n being an odd value, then there is always a centrist agent exactly in the
middle of the opinion profile (possibly as a member of a centrist cluster > 1). Whatever
the confidence level ϵ, the centrist agent will always stay in the center. As a consequence,
a constellation with an empty center, as required for a strict polarisation, is not possible.

Figure 11 focuses on a second, somehow even more dramatic type of destroyed consent:
The consecutive switch generates three final clusters. Now the odd values of n seem to be
much better in producing such a structure. For even n-values < 26 it never occurs that after
a consent the next switch generates a final structure of three clusters. However, for n = 42
it happens six times. Based upon our perfect and complete knowledge of all switches, we
can also look for switches that turn a consent into a final cluster structure with more than
three clusters. (But so far I never found such a case in any regular start distribution.)

The Figures 9 to 11 show for regular start profiles (n = 2, 3, . . . , 50) the number of
their ϵ-switches and how many of them destroy consents. But the figures do not give any
information about the exact positions of the switches in the interval [0, 1]. Figure 12 shows
by a new type of diagram all sorts of non-monotonicities together with the positions of the
switches that are generating them. On the x-axis of Figure 12 we have the complete range
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Figure 12: General overview on the positions of switches for regular start profiles with
n = 2, . . . , 40. Colors indicate the number of final clusters. Grey circles indicate con-
sent. They are drawn last. The small upward directed triangles mark switches that generate
non-monotonicities. Black: the number of final clusters increases. Orange: from consent to
3 clusters. Red: from consent to 2 clusters.
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of possible ϵ∗-values, i.e. [0, 1]. The y-axis shows the increasing values of the number n
of agents in a regular start profile Xn,r(0). Thus, each switch is a certain point ⟨x, y⟩ in the
coordinate system thus given.

At this point, we place a colored circle that indicates by its color the specific feature
that we want to visualise with the diagram, namely the final number of clusters. As the y-axis
represents the n values, all the switches of a start distribution for a given n are lined up
horizontally. The colormap together with legends (both to the left) give the information
how to read the specific diagram. A bit above the often overlapping, horizontally lined up
circles, there are very small black dots. The dots indicate the exact position of the switch
directly below. Due to the minimal size of the black dots, they overlap much less (if at all)
than the colored circles. As a consequence, we get a sense for the different densities with
which the switches are distributed in the interval [0, 1].

In Figures 9 to 11 we looked at regular start profiles with n = 2, 3, . . . , 50; in Figure
12 we reduce the range to n = 2, 3, . . . , 40. The reason is better visibility and readability
of details. (Admittedly, even after the range reduction the graphics is a bit packed.)

Already a cursory glance at Figure 12 shows that the positional structure of the switches
clearly has a pattern. For each n, the very first switch has an x-axis position at ϵ∗1 = 1/(n +
1), i.e., the characteristic equidistance of the regular start distribution with n agents (cf.
equations [8] and [14]). That equidistance is, obviously, at the same time the minimum
distance to an ϵ-outsider in all processes ⟨X(0), ϵ = 0⟩. As a consequence, for increasing
values of n, the first switch gets smaller and smaller, moves left direction 0, and, thereby,
produces a convex-shaped curve with regard to the positions of the very first switches. As
well trivial is the position of the largest switch: from our analytical reflections above we
know that the largest switch of a regular start distribution is always 1. What stands out
most clearly, is a certain positional pattern in between the first and the last switch: At the
beginning the positions of the switches look chaotically distributed. But, as we get farther
right, the positional distribution becomes completely regular. At least for n ≥ 10, a first
type of positional regularity starts for switches greater ≈ 0.4: There the distance between
consecutive switches becomes equidistant, and the size of the equidistance seems to depend
upon n, namely decreasing with n. A second type of regularity then starts a bit farther right,
namely for switches greater than 0.5: Consecutive switches are positioned equidistantly,
but with (about?) twice the size of the equidistance that we see to the left of 0.5. Again,
the size of the equidistance seems to decrease with n. And finally, whatever the value of
n, ϵ = 0.5, i.e. the middle of the range of opinions for a regular start profiles, is always
a switch. In terms of their density, the switches are very much concentrated in the initial
range of possible values between 1/(n + 1) and ≈ 0.35. At the same time, in that region
their positional distribution does not seem to follow any type of a regular pattern.

Figure 12 focuses on the final number of clusters that the switches generate. That number
is indicated by a color according to the colormap to the left. Consents, i.e. the cases of
just one final cluster, get a special treatment: They are indicated by grey circles that are
also a little bit smaller than the other colored circles. And the grey circles are drawn last,
after all other circles are already drawn. That makes consents more easily visible. Then
there are upwards directed triangles in Figure 12. They mark switches that produce specific
non-monotonicities: Black triangles hint to switches that lead to final cluster structures with
more clusters than the predecessor switch did. An orange triangle marks the switches that,
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after a consent under the predecessor switch, lead to three clusters. A red triangle hints
to a switch that, after a consensus, leads to strict polarisation, i.e. two clusters. The black
triangles are always drawn first. As a consequence (and on purpose), they are overdrawn by
orange or red triangles in cases of destroyed consents. Thus, the markers of these cases are
always visible.

A careful inspection of figure 12 makes it very clear: For all n, there is always a switch
that leads to a consensus that is final in the sense: No successor switch destroys the consent.33

However, the transition from a final plurality (i.e. a major number) of clusters to a final
consensus (just one cluster) is wild, chaotic, and non-monotonic. Only for a few values of n, the
first consensus switch is also the final one. Normally, from switch to switch, many times
the number of final clusters decreases and increases again. The most dramatic cases of this
type are the many cases of a back-and-forth of consensus and dissent (the latter in the sense
of polarisation or a final structure with three clusters). And there is a difference between
even and odd values of n: For odd values the final consensus switch comes for significantly
smaller ϵ-values.

Separate from the main text, Appendix II summarises, in a more formal and technical
language, analytical notes and observations on universal characteristics of equidistant start
distributions. The appendix also contains additional figures. In the style of Figures 9 to 11:
(a) the number of switches that lead to more final clusters than under the respective prede-
cessor switch; (b) the number of switches that lead to final profile widths that are greater
than under the predecessor switch. Three further figures, similar in style and structure to
Figure 12, show for all switches (a) the final profile widths, (b) the times to stabilisation,
and (c) the period in which the switch was found. (Again, what follows in the main text
will be understandable without a reading of the appendix.)

5 A new BC-research tool: ϵ-Switch diagrams

Figure 12 gives a general overview: We see the positions of switches and get to know
especially the ones that are responsible for certain non-monotonicity effects. But we do not
see in detail where exactly the final clusters are located or what the width of a final profile
is. For that we need another type of diagram.

5.1 From ϵ-diagrams to ϵ-switch-diagrams

Above, in Figure 4 we used a so called ϵ-diagram: For stepwise increasing ϵ-values (x-axis,
step size is 0.1) it shows the final cluster structure (y-axis). Given what we know now, an
improved version of this diagram could show the details much more to the point (even in
a very literal sense): By our search algorithm we get perfect knowledge of all ϵ-switches,
and we can compute such a list for any profile X(0). But then we should also show the
final cluster structure solely and exclusively for the ϵ-switches, i.e. the ϵ-values that make a
difference. We will call the improved diagram an ϵ-switch diagram (for short switch diagram).
Figure 13 is an example.

33In Figure 12, it is always the first consensus-switch (grey circle) after the last non-monotonicity marker
that leads to the first consensus that is not destroyed any more.
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Figure 13: ϵ-switch diagram for a regular start distribution with n = 24. The diagram shows
all 135 switches with ϵ∗ ≤ 0.3. The total number of switches for X24,r(0) is 166.

The thin vertical lines indicate the positions of switches. Colored circles show the
position and the relative size of the final clusters. A consensus cluster is colored grey and
drawn last. Tiny black dots in the centre of the circles mark the exact position of the
respective cluster. At the same time the dots help to distinguish and separate clusters even
if their circles overlap. The dots are drawn last. The diagram only shows the switches
≤ 0.3. Here that regards 135 of a total of 166 switches. From Figure 12 we know that with
ϵ∗ ≤ 0.3 we are already behind the final consensus switch.

In Figure 13, upward and downward triangles support the visual detection of non-
monotonicities. The upward directed triangles are used in the same way as in Figure 12:
Black triangles mark switches that generate structures with more final clusters than the
predecessor does. An orange triangle marks switches that, after a consent, lead to three
clusters. A red triangle hints to a switch that turns consent into strict polarisation. Again,
the black triangles are drawn first. The smaller, downward directed triangles along the upper
end of the coordinate system mark switches that, compared to their predecessors, generate
an increasing width of the final profile. All in all, ϵ-switch diagrams are the more accurate
successors of the 3-dimensional frequency distribution that we used in [Hegselmann and
Krause, 2002] (Figure 3, page 11).34

34Lorenz [2006, 5.4; cf. his figures 10, 11 and 13] calls this type of diagrams bifurcation diagrams, following
a terminology that is often used in dynamical systems theory. As he frankly states, his use of floating-point
arithmetic causes asymmetries in his diagrams that do not exist for theoretical reasons [cf. ibid. 5.7]; cf. in this
context our detailed discussion of symmetry problems in section 3.1 above. The problems are exactly the ones
that we illustrated by our Figure 4. Note also that, if the computations are done by floating-point arithmetic,
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Figure 14: ϵ-switch diagram for a regular start distribution with n = 25. The diagram shows
all 151 switches with ϵ∗ ≤ 0.3. The total number of switches for X25,r(0) is 184.

It is a direct consequence of the definition of an ϵ-switch that on the x-axis to the right
of ϵ = 0 there is an empty region without any switch: By definition, there is no switch
smaller than the equidistance of X24,r(0), and that is 1/(n+1) = 1/25 = ϵ∗1. For an expected
value start distribution with 24 agents we would get the same diagram, except for a left
shift of all switches by the factor 23/25.35

Figure 13 is a switch diagram for a regular X(0) with 24 agents. Figure 14 is the same
type of diagram, but now for 25 agents. By a comparison of the two figures, we see now

symmetry does not guarantee numerical correctness—the errors could have been made in a symmetrical way.
Symmetry is only a necessary, but not a sufficient condition for numerical correctness. Since Figure 13 top
in [Lorenz, 2006] can’t be numerically correct, it is almost certain that Figure 13 bottom (the figure shows
the convergence time) is not correct as well; it is just that one cannot detect the numerical incorrectness in
this diagram by visual inspection. Since they are based upon exact arithmetic, all that will never happen with
ϵ-switch diagrams. The main structural difference between ϵ-switch diagrams and the bifurcation diagrams
in Lorenz [2006] is the following: ϵ-switch diagrams show the cluster structure for all and only the ϵ-values
that really make a difference. If, on the other hand, the ϵ-values on the x-axis increase with a constant step
size, then it is a matter of luck that an ϵ-value is also an ϵ-switch. As a consequence, it may well be the
case, that consecutive ϵ-values belong to the same segment, or, that there is no ϵ-value that falls into an
existing segment of the segmentation (understood in the sense of equation [11] ). Central details are then
missed or not visible in full precision. Basically the same applies to the numerical approach to get Figure 2
in [Srivastava et al., 2023, 589]. The authors describe clearly the numerical problems and then use a fixed
precision for all their computations. However, this does not lead to correct calculations, but at best to the fact
that calculation errors, such as those shown above in Figure 4, are no longer noticeable because they occur
themselves symmetrically.

35See Analytical Note 10.
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more in detail the typical difference between even and odd values of n: In the even case,
the final consensus switch comes much later than in the odd case. And, second, the phase
in which there normally are two big outer clusters, is much longer in the even case. We
postpone an answer to the questions: How comes?

5.2 From ϵ-switch-diagrams to ϵ-switch-movies

Switch diagrams are an extremely helpful tool to better understand BC-processes. An
important next step is to produce for n = 2, 3, . . . a sequence of switch diagrams. By a
careful inspection of such a sequence, we can directly see the effects of an increasing number
of agents. Already the global overview in Figure 12, and, as well, the switch diagrams of
Figures 13 and 14 suggest to distinguish between even and odd values of n. Therefore we
computed two sequences, the ‘even’ switch diagram sequence for n = 2, 4, . . . , 80; and the
‘odd’ sequence for n = 3, 5, . . . , 79.

HERE A LINK TO THE EVEN SWITCH DIAGRAM SEQUENCE
HERE A LINK TO THE ODD SWITCH DIAGRAM SEQUENCE
Instruction: Download the two files and open them with QuickTime Player. Use the

full screen. Go through the sequence via the left and right arrow keys on your keyboard.
Warning: If one clicks on the screen the button to start a movie, the speed is by far to high
for any inspection.

Going slowly through the consecutive switch diagrams (n-value by n-value, doing it
back and forth), the most prominent phenomena seem to be:

1. Overall, by and large, for all n (even or odd) there is a non-monotonic tendency to a
decreasing number of final stable clusters, a decreasing profile width, a non-monotonic
transition from plurality (or fragmentation) to polarisation, and finally consensus. But
this overall tendency is really ‘wild’: It is, with few exceptions, completely normal,
that subsequent switches lead again to increasing profile widths, increasing numbers
of clusters, destroy a consensus, thereby producing a strict polarisation with an empty
centre (for even values of n), or, less strict, a constellation with two big outer clusters
and a small centre cluster (for odd n-values).

2. As to polarisation, there is another difference between strict polarisation in the even
case, and the less strict polarisation in the case of odd n-values: For odd n-values,
the ϵ-range in which polarisation occurs is much smaller than for even numbers of
agents.

3. As n increases there is a certain evolutionary pattern with regard to the final cluster
structure that the switches generate. The working of this pattern can be observed
step by step in the two sequences of switch diagrams. Additionally, Figures 15 and 16
illustrate the pattern in a static way: Trivially, centre clusters are lined up along the
path y = 0.5. But looking at the positions of outer clusters, we see that the positions
of the clusters are lined up on an increasing number of increasingly steep paths towards
the centre. Figures 15 and 16 show only even values, but – as the movie shows – the
observation holds for odd values of n as well.

4. There are strange singularities: Switches generate clusters in areas of the opinion
space, where one normally finds none—a kind of ‘off-the-path’ clusters. For even
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(a) n = 20

(b) n = 40

Figure 15: ϵ-switch diagrams for a regular start distributions with n = 20 and n = 40.
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(a) n = 60

(b) n = 80

Figure 16: ϵ-switch diagrams for a regular start distributions with n = 60 and n = 80.
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values of n, that occurs for n = 26, 46, 60, 62, 74, 76. The underlined n-value
is the paradigmatic example. For odd n-values such singularities occur for n =
27, 29, 41, 45, 47, 61, 63.

Some of the phenomena are astonishing and raise “How comes?”-questions.

5.3 Understanding made easy: Switch by switch analysis
of single runs

To answer such questions, we can exploit an advantage of our global approach: For all
values of n, and for each switch ϵ∗, there is a unique single run that produced the final stable
structure that a switch diagram shows for ϵ∗. Thus, to find explanations, we can directly
go into the details of the involved single runs—no statistics involved. And we can do that
switch by switch: in their consecutive order, we follow our list of ϵ-values that make a
difference. Compared to the ‘traditional’ approach that compares single runs for which
their ϵ-value increases with a constant step size, the new approach has a major advantage:
With the traditional approach it is a matter of luck that an ϵ-value is also an ϵ-switch.
As a consequence, it may well be the case that consecutive ϵ-values belong to the same
segment, or, that there is no ϵ-value that falls into an existing segment of the segmentation
(understood in the sense of equation [11] ). Central details are then missed or not visible in
full precision.36 With a switch-by-switch approach it is different: We have the guarantee
that we never miss an ϵ-value that makes a difference, while, at the same time, we study only
ϵ-values that make a difference (for a BC-process with a given start distribution).

Here in this article we can illustrate this approach only by an example—doing it for
all central findings is too much. We will focus on the wild transition from polarisation to
consensus. Above, in Figure 11, we saw for n = 42 a very high number of switches (namely
six), that destroy a consent by generating structures with three final clusters. The switch
diagram in Figure 17a shows that the relevant switches are in the range between ≈ 0.165
and ≈ 0.195. Figure 17b is a switch diagram for that range only. Now details become
visible that in Figure 17a are hidden by overlapping: Obviously, from left to right, the
outer clusters become bigger and bigger, while the centre cluster, if it is not a consensus,
becomes smaller and smaller. Additionally, now we can clearly see and distinguish the six
switches that (though n is even!) turn a consent into a polarisation with two big outer
clusters and one small centre cluster.

How comes? For an answer we exploit that we know perfectly well all the switches
in the critical range of ϵ-values. That allows to produce a sequence of unique single run
visualisations of all possible BC-processes ⟨X42,r(0), ϵ∗⟩ in that range. As a result we get this
movie:

HERE A LINK TO THE SEQUENCE WITH THE SINGLE RUNS.
Instruction: Download the file and open the file with QuickTime Player. Use the

full screen. Go through the sequence via the left and right arrow keys on your keyboard.
Warning: If one clicks on the screen the the start button, the speed is by far to high for any
inspection.

It is revealing and eye-opening to go switch by switch, back and forth, through the
sequence of BC-processes, carefully studying the changes in the trajectories. As an example,

36See footnote 34.
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Switch diagram: Final cluster size, non-monotonicities,
regular start with 42 agents (401 of 462 switches)
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(a) The diagram shows all 401 switches with ϵ∗ ≤ 0.3. The total number of switches for X42,r(0) is
462. Six times a switch turns a consent into a final structure with three clusters. The last two of such
switches are that close, that it is almost impossible to distinguish them by their orange markers.
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Switch diagram: Final cluster size, non-monotonicities,
regular start with 42 agents (64 of 462 switches)
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(b) A detail of figure 17a above: It shows only the switches 0.165 ≤ ϵ∗ ≤ 0.195 (that are 64 switches).
Now much becomes visible that above in Figure 17a is hidden by overlapping.

Figure 17: ϵ-switch diagrams for ⟨X42,r(0)⟩.

44



ne
t p

ull
 =

x i(
t+

1)
−

x i(
t)

-0.05

0.00

0.05

period t
0 1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
n = 42,  ϵ = 0.1691850054, regular start

(a) First of three consecutive switches. ϵ ≈ 0.1691850054.
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(b) Second of three consecutive switches. ϵ ≈ 0.1704933689.
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(c) Third of three consecutive switches. ϵ ≈ 0.1707317073.

Figure 18: Three BC-processes ⟨X42,r(0), ϵ∗⟩ for three consecutive switches.
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here in this article, we will focus on a sequence of three consecutive switches that regard
the first wild transition polarisation, consent, polarisation again. In the sequence, that are the
pictures 8 to 10. Figure 18 shows a static version.

1. In the first process (Figure 18a) until t = 5, all profiles X(t) are what we called ϵ-
profiles (cf. equation [7] ). But in t = 6 the profile splits twice. In t = 8 the process is
stable. The final structure is a 3-cluster-structure with two outer clusters (17 agents
each), and one centre cluster (8 agents).

2. The next switch, which is only slightly larger (the difference is ≈ 0.00131)), changes
the situation dramatically (see Figure 18b): The agent that moved upwards on a steep
trajectory in Figure 18a and joins the upper cluster at t = 7 is still moving upwards,
but the agent remains within the ϵ-reach of the central cluster. As a bridge between
the centre and the outer cluster, the agent prevents the network from falling apart.
The same is true for its mirror agent in the lower half of the process. As the dark
red color of the outer cluster at t = 27 (indirectly) indicates, the bridge is no longer
necessary: From this time on, the outer cluster itself is within the ϵ-reach of the
centre. As a consequence, the bridge and the outer cluster merge at t = 28. In
the next period, the two outer clusters come into mutual ϵ-reach (again indirectly
indicated by the dark red color). As a consequence we get consensus at t = 30 and
stability in the next period.

3. The next switch in Figure 18c is again only a tiny bit larger than its predecessor (the
difference is ≈ 0.00024). But again, the consequences are dramatic: The two agents
that acted as bridges between the centre and the two outer clusters in Figure 18b
start moving towards the emerging outer clusters at t = 4. Without bridges between
the centre and the outer clusters, the profile splits at t = 6. The process ends as it
ended under the first switch: A 3-cluster polarisation in the same period with the
same size of all clusters. However, there is a difference to the first switch: Under the
third switch, the width of the final stable profile is smaller (but the next switch will
generate a non-monotonicity with respect to this; see Figure 17b).

Obviously, in our example, the emerging or non-emerging of bridges between outer
and central clusters plays the crucial role in the back and forth of consent and a 3-cluster
polarisation. In the example given here, the bridges consist of just one agent that, for some
periods t, is critical: Without the agent the network would fall apart, while with the agent,
in a slow process, an outer cluster is pulled direction center. If one goes switch by switch
through the processes in the animation, it becomes clear that what one sees in this example
also applies in general: Network bridges that emerge for certain switches, but—due to tiny
changes in the local balance of upward or downward pulls—do not evolve for successor
switches, are the decisive causes for the non-monotonicities with regard to the final cluster
structure. The images of the BC-processes generated by the switch sequence also show that
the bridges keeping the network together and, at the same time, contracting it, can have a
more complicated structure than in Figure 18b. And the bridges work slowly: In one of
these processes, it takes 43 periods to reach a stable consensus.37

37The articles [Hegselmann and Krause, 2015] and [Hegselmann, 2020] examine the role of network
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This section has used BC-processes with the start distribution X42,r(0) as an example of
how to achieve an understanding of the processes through a switch-by-switch analysis. By
its nature, this type of analysis can be applied to any start distribution and the finite set of
BC-processes that it can initiate.

6 Conclusions and concluding remarks

The entire new analysis of the BC-model begins with a straightforward observation: A
BC-process ⟨X(0), ϵ⟩ generates a sequence of network structures. An ϵ∗ > ϵ can change
these network structures as they evolve from one period to the next if and only if, for at least
one agent, the set of ϵ-insiders (and hence the complementary set of ϵ-outsiders) changes
in at least one period. The next larger ϵ∗ for which this is the case, is an ϵ∗ whose value
equals the minimum distance to an ϵ-outsider with regard to the entire process ⟨X(0), ϵ⟩.
Formally, this is expressed as: ϵ∗ = δout

min

(
X(0), ϵ

)
(cf. equation [10] ).

Such an ϵ∗ makes a difference, and we therefore called it an ϵ-switch. This concept led
to the possibility of using an algorithm to search step by step for all switches of a given
start distribution, beginning with the smallest distance to an ϵ-outsider in ⟨X(0), ϵ = 0⟩.
This algorithm yielded a complete and finite list of all switches. From this list we obtain
a complete segmentation of [0, 1] into right-open intervals. In each segment, all ϵ-values
lead to the same BC-process.

In mathematical contexts, it is not uncommon to indirectly prove the existence of some-
thing without being able to explicitly present what has been proven to exist. Our approach
stands in contrast to this: For any start distribution, we can effectively present all ϵ-values
that create a difference. That, then, made it possible to study all switches and their con-
sequences, such as whether they generate particular non-monotonicities. The presentation
of this approach used as an example a simple irregular start distribution. Subsequently, we
conducted a systematic analysis of regular start distributions, wherein n agents are distrib-
uted equidistantly in the opinion space [0, 1].38 The core findings of our new approach can
be summarized as follows:

• Non-Monotonicity: BC-processes ⟨X(0), ϵ∗⟩ often result in non-monotonic changes
within certain ranges of ϵ-values. This manifests in several ways, such as:

– A consensus may be disrupted multiple times by subsequent switches.

– The number of final clusters and the final profile widths may increase with the
next switch.

bridges in the context of radicalisation processes. Both articles were written without an understanding of
the role of ϵ-switches. It was shown that there are wild regions in the parameter space where very small
differences in the initial conditions (be it the confidence level ϵ or the number of radicals) lead to certain
bridge structures emerging or not—with massively different consequences for the overall radicalisation effects
that occur. These older analyses could become much more precise if they were based on the complete list of
the ϵ-switches specific to the respective dynamics.

38In my approach, I first identify all ϵ-values that make a difference at all. Only after that those switches
are filtered out which destroy a consensus. Ulrich Krause and Malte Sieveking, on the other hand, are
looking for a direct way to characterise those ϵ-values that destroy consents. They will give a mathematical
(topological) analysis in a forthcoming paper Consensus may be destroyed by increasing confidence: Phase transitions
in the BC-model. Cf. footnote 30.
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– Subsequent switches may lead to significantly longer stabilization times for the
same initial distribution.

• Transition to Consensus: There is always an ϵ-switch beyond which there is only con-
sensus, or the final profile widths and stabilization times decrease monotonically.
However, this transition is neither smooth nor gradual but rather wild and chaotic.

Why did we miss this in [Hegselmann and Krause, 2002]? That the BC-processes for
a given start distribution depend on the confidence level ϵ, is trivial. But we did not even
suspect that there could be a switch structure, already implicit in the start distribution,
which divides the parameter space of ϵ into finitely many segments within which the BC-
processes are identical. Not suspecting this, it seemed reasonable, first, to increase ϵ with
constant step size (the step size was 0.01), and, second, to compute for each step a certain
number of BC-processes with random start distributions, and then, finally, to average over
the number of final clusters [cf. 2002, 11ff. and 20ff.]. In this averaging, the wildness and
chaotic nature of the transition plurality→ polarization→ consensus then vanished.

However, we could have been warned: In our papers [Hegselmann, 2004] and [Heg-
selmann and Krause, 2005], one also finds the coefficients of variation (relative standard
deviations) to the means for the respective ϵ-values.39 In certain ϵ-regions, namely those in
which, as we know now, polarisation and consensus fluctuated, this coefficient spiked sig-
nificantly. Such a pattern should have prompted further inquiry, yet we failed to recognize
its significance at the time.40

In the analysis of BC-processes presented here, equidistant start distributions play an
important role. Because it is probably the easiest to capture among the infinitely many
equidistant start distributions, we have repeatedly used the so-called regular start distribu-
tion. It distributes n agents in the opinion space [0, 1] (with the value 0 for the first, and the
value 1 for the last agent). There is every reason to take the regular start distribution as the
mother of all equidistant starting distributions: If one knows the properties of the mother
(e.g. the number of switches) for a certain number n of agents, then one knows directly
the properties of all equidistant starting distributions for the same n; or else one can obtain
these properties by very simple transformations (so with the exact position of the switches).
This is then, of course, also true for a very special equidistant start distribution, which we
have called expected value start distribution. It is a deterministic idealisation of infinitely
many uniform random start distributions: In their ascending ordering, the ith opinion is
exactly there, where it will be at the average over infinitely repeated draws of n opinions
that are uniformly distributed on the unit interval.

If, back in 2002, instead of a larger number of random start distributions with 625
agents each, we had simply used one and the same expected value start distribution with
n = 50, then some experimentation with the step size with which ϵ increases, would have
revealed dramatic and unmistakable non-monotonies: At a step size of 0.01, one would
have seen the first non-monotonies only if one looked very closely; at a step size of 0.0025,

39See in [Hegselmann, 2004, 24], Figure 3a and 3b. See in [Hegselmann and Krause, 2005], page 392,
Figure 4 and then on page 393 Figure 5; in both figures look at the graphics top left for the arithmetic mean.

40Very aptly, Wedin and Hegarty write about the BC-model: “The update rule ... is certainly simple to
formulate, though the simplicity is deceptive” [2015, 2416]. At the time, the update rule in equation [3]
deceived me as well.
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the oscillation between consensus and dissent would have been strikingly evident.41 Even
without the switch-concept, a subsequent inspection of the individual BC-processes for an
increasing ϵ (with constant step size) would have led to an early form of the type of analysis
presented in section 5.3. This would have made the importance of bridges between outer
clusters and a cluster in the centre of the opinion space unmistakably clear.

The plea for single-run analyses in the style of section 5.3 does not mean that, from
now on, we should forget about iterated runs based upon random start distributions. Both
approaches have complementary strengths and weaknesses: An analysis that always starts with
the same expected value start distribution and then runs a switch by switch inspection of
the generated processes, makes it easy to discover generic effects and to understand the
mechanisms that produce them. At the same time, however, the approach blinds us to
effects that are due to the fact that for random start distributions the distances of neigh-
boring opinions are not equal to the expected value of this distance. And even more, the
expected value approach can produce artifacts.42 Here is an example: For odd values of
n, in all BC-processes starting with an expected value distribution, under conditions of a
homogeneous and constant ϵ, there is always a centrist opinion x = 0.5 that never moves.43

Thus, in principle, the center can never be completely dissolved and torn apart (while at
the same time, at least over a few periods and for some agents, there exists a force that pulls
them direction center). This will be true in this form for practically no random starting
distribution. As a heuristics, one is therefore well advised to use expected value start distri-
butions with even values of n: only they allow for a complete destruction of the center.44

Overall, it seems that we can say: Our old work in Hegselmann and Krause [2002] is an
instructive example of how the study of BC-processes by an analysis of large numbers of
random start distributions can easily obscure the view for crucial details. The best strategy
seems to be to combine both the switch-based expected-value approach and the random
approach.45

Our analysis of ϵ-switches yields an interesting by-catch. It is related to the third option
in dealing with the systemic inaccuracies of floating-point arithmetic: Stick to floating-
point arithmetic, but, as a precaution, always add a tiny amount ∆ϵ to ϵ (cf. section 3.2).
That was meant to avoid missing an ϵ-insider. We mentioned that, as a matter of fact, we
had done so, successfully it seems, by always adding ∆ϵ = 10–12. Now we are in a position
to understand, first, why that normally works, and, second, why it was ex ante too risky for
the switch analysis in this paper.

As we have seen, the switches for a start distribution X(0) lead to a complete segment-
ation of the unit interval into segments of right open intervals (cf. equation 11). That the
segments are right-open, has an important consequence: Whatever the value of ϵ, there is

41See the Figures 9.2 and 9.3 in [Hegselmann, 2020, 205ff.].
42The artifact is structurally similar to the artifact studied in [Hegselmann, 1996, 222ff.]. There an even

or odd length of a 2-dimensional cellular automata matters for the evolution of cooperation.
43Cf. our discussion in section 3.1. There we used that fact to identify BC-processes that are corrupted

by numerical errors of the floating-point arithmetic.
44Another problem, which I cannot discuss here, concerns the magnitude of n. It must not be too small,

because, as we have seen above, expected value start distributions for quite small n-values, have very special
features. On the other hand, n should not be too large, because then one would not be able to see any details
in the visualisation of the individual processes. I suspect that an n between 50 and 100 is a good choice for
most purposes.

45To some degree that is done in [Hegselmann, 2020, 224ff.].
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always some clearance for adding a tiny bit to ϵ without changing the process. This effect is
what we exploit with our correction mechanism. In Figure 3 we can see how and why it
works: By adding ∆ϵ = 10–12 to ϵ we get the consequences of a representational floating-
point error corrected, and the ϵ-insider sets are now correct. But how do we know that our
correction measure did not result in the complimentary error, namely taking an ϵ-outsider
as an insider? Well, from our perfect knowledge of all switches of the start profile X(0) in
Figure 3, it is clear that all distances between consecutive switches are considerably larger
than the ∆ϵ added.46 These considerations yield a general lesson: As long as we add to ϵ an
∆ϵ that is smaller than the distance to the next switch, we can be sure not to mistake an ϵ-
outsider for an insider. Thus, if we had let our algorithm search switches using floating-point
arithmetic, but doing that with our precautionary measure, this would have been numerically
fine as long as no switches appeared whose distance was smaller than ∆ϵ.

Fortunately, about this matter we now know a lot: Figures 15 and 16 make it visually
very clear that with an increasing n, the density of switches increases dramatically. In Figure
16b, in some regions the switches are that close to each other that it becomes difficult
to even tell them apart. Luckily, when we compute the switches for a profile Xn,r(0), it
takes only a few lines of code to compute the minimal distance between switches. In all
the regular start distributions for the values n = 2, 3, . . . , 50, the minimal distance of two
consecutive switches is 3125/69117192732672 ≈ 4.521306315328398 × 10–11. That is
still about 45 times larger than ∆ϵ = 10–12. And that means: Yes, for n ≤ 50 we could
have done our switch structure analysis of regular start distributions using floating-point
arithmetic, if combined with our precaution measure—numerically, it would have worked.47

But we know that only ex post, namely after an analysis that used exact fractional arithmetic
with integers of arbitrary length.

For n-values much bigger than 50, our precaution will not work any longer. There is
probably some clearance for a refinement of our precaution: We could reduce our ∆ϵ by
some orders of magnitude. But with the increasingly dense distribution of switches, ∆ϵ

will have to become so small that it will no longer be large enough to prevent ϵ-insiders
from being mistaken as outsiders. Then we are left with exact fractional arithmetic—costly
as it is in terms of computation time.

It is easy to underestimate the importance of integers of arbitrary length, but they are
absolutely necessary. For example, among the switches for the start profile X36,r(0) we find

ϵ∗250 = 16258104217541909608839193 / 96402696684456210048000000.

The denominator of the fraction is about 107 times larger than the largest integer value
that can be represented as a 64-bit integer. Converted into a 64-bit float, we get ϵ∗250 =
0.16864781563899275. For X36,r(0) that is also the first switch that leads to a consent. For
X47,r(0) the first switch behind which all switches lead to consent, can no longer be displayed

46We know by the search algorithm that the next larger ϵ-switch is 79/360. All BC-processes with an
ϵ-value from the right-open interval [1/5, 79/360) are the same. Thus, with ϵ = 1/5 + 10–12 we are clearly
in the same segment, far distant from the (open) right border of the segment. As a consequence, we can
definitely exclude that we mistook an outsider as an insider.

47At the same time, we can exclude that ∆ϵ = 10–12 is too small: What we are adding is several orders of
magnitude larger than the representational and operational errors that we can expect under our conditions;
see the Appendix III on floating-point arithmetic.
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in one line of text (given our font size). The exact denominator of that switch (it is ϵ∗417) is

1716162143883950154581321932800000000 (≈ 1.7× 1036).

The denominator is about 1.8 × 1017 times larger than the largest integer that can be rep-
resented in the 64-bit format. And the number is astronomical in a fairly literal sense—it
corresponds to roughly half the estimated number of atoms in the universe.

There is a major issue in my analysis: For central claims and results, I basically have only
computational evidence, but not the rigorous proofs. There are at least three analytical
tasks:

1. The algorithm that finds the switches always reached the largest switch (known in
advance) and then stopped. So the list of switches was always finite. But for very large
values of n, e.g. 5000 agents, I did not even try to compute the switches, because
already for higher two-digit values of n, computation times in the range of one hour
were needed.48

2. If ϵ∗ is the ϵ-switch of the process ⟨X(0), ϵ⟩, then, trivially, for ϵ∗-values from the
right-open interval [ϵ, ϵ∗), the network structure (given by the sets of ϵ∗-insiders)
is unchanged. Thus, for ϵ-values from this interval, the trajectories cannot change
either. By definition, however, ϵ∗ then changes the network structure. Consistent
computational evidence suggests that this always leads to some kind of change in
the trajectories: If the switch ϵ∗ was found in period t of the process ⟨X(0), ϵ⟩, then
trajectories of the process ⟨X(0), ϵ∗⟩ will be the same as those of the process ⟨X(0), ϵ⟩
up to period t, but diverge thereafter.49

3. In computational experiments with different equidistant start distributions that had
the same number n of agents, all start distributions had the same total number of ϵ-
switches; switches with the same index, had the same number of final clusters, the
same time to stabilisation, and were found in the same period t. And more generally,
all fundamental characteristics of BC-processes remain unchanged under positive-affine

48However, my JULIA program is certainly far from minimizing computation times. For example, I did
not use one of the great strengths of JULIA at all, namely the simple possibilities for parallelisation. But the
search for switches can be parallelised: For a given start distribution X(0), the available processors could search
for switches in parallel in specific sections of [0, 1]. We get the final switch list by merging the partial results.
This kind of parallelisation is possible because for the computing of ϵ∗ as the ϵ-switch of the process ⟨X(0), ϵ⟩,
one does not need to know the value of the predecessor switch of ϵ∗—one simply searches from the given ϵ
to the right.

49That the interplay of the trajectories and the changing network structures is key for an understanding of
BC-processes is clearly seen in Wedin and Hegarty [2015]. They write:

Associated to a given configuration ... of opinions is a receptivity graph G ..., whose nodes
are the N agents and where an edge is placed between agents i and j whenever ... they interact
with one another. The transition in the configuration from time t to time t + 1 is determined
by this graph at time t. However, it is clear ... that the dynamics will affect the graph, which
in turn affects the dynamics. This feedback is the basic reason why many beautiful conjectures
about the HK-model remain unresolved ... [2015, 2416].

And that is also the reason why above in section 2.3, we directly introduced methods to visualise the dual
nature of BC-processes as dynamical systems and dynamical networks.
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transformations of the start distribution. The initialisation may be equidistant or ran-
domly generated. Its placement within the unit interval or somewhere else in the
continuum of real numbers is irrelevant. The properties of the resulting BC-processes
remain constant; only the switches require a transformation in the same manner. The
geometric structure of the trajectories and the network structures indicated by the
vertical lines remain constant, only varying in size.

In all three cases, it will be possible to provide rigorous proofs. However, I guess that the
missing proofs will need to be found by someone else.

Finally, the question naturally arises as to the relevance of the results presented here.
First of all, it should be noted that the wild, chaotic and non-monotonic behaviour of the
BC-model only occurs over a limited range of ϵ-values. On a larger scale, we have only
studied equidistant start distributions here. For even and odd numbers of agents, the wild
range of ϵ-values is different in size: for even numbers, it is significantly larger. In both
cases, however, the wild behaviour ceases to exist in the range ϵ > ≈ 0.35. The results
show that as ϵ increases, there is a tendency towards Plurality → Polarisation → Consensus
with respect to the stable final cluster structure. But it is only a tendency, not a monotonic
transition. And the same applies to the final profile widths, the final number of clusters,
and the stabilisation times.

Random start distributions were not studied at all in this article. Compared to equidistant
start distributions, they naturally have many more of the switches that can be found at
t = 0.50 It is certain that the non-montonic effects also occur with random start distri-
butions. My few experiments so far with random start distributions also suggest that the
wild behaviour of BC-processes occurs in a similar range of ϵ-values as for equidistant dis-
tributions. However, how often non-monotonies occur will have to be determined by
computational experiments. For example, one might assume that the symmetries of the
forces pulling up or down due to the equidistant start favour the decay of consensuses un-
der the next larger switch. With random start distributions, this type of non-monotonicity
would become rarer. Other types may be more common.

In this context, the search for exotic initial distributions could become interesting: In
the very many experiments with equidistant start distributions, I have never come across a
start distribution for which there would have been an ϵ-switch that would have led to a final
cluster structure with more than three clusters after a consensus under its predecessor switch.
In my relatively few experiments with random start distributions, I have never encountered
the case where the next larger switch after a consensus leads to a final structure with three
clusters. Do such cases not exist at all? If so, why not? And if they exist, why are they so
rare?

In the BC-processes examined in this article, both ϵ-insiders and ϵ-outsiders are detected
with impeccable precision, devoid of any calculation errors, no matter how minute (not
even those permissible by today’s computing standards, such as the IEEE 754 standard).
This level of accuracy surpasses human capabilities. Consequently, real-world BC-processes
will invariably exhibit some level of noise (even if implemented in a normative-technical
manner). This noise could profoundly impact BC-processes, potentially smoothing out
non-monotonicities. However, to truly comprehend the ramifications of noise, it is essential

50Cf. Appendix I, the comments on Analytical Notes 3 and 4.
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to discern its effects on the intrinsic noise-free BC-processes. Understanding these processes
is paramount—–and hopefully we now have achieved that.
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Appendix I: Analytical Notes on central properties
of ϵ-switches

In Appendix I we state explicitly some Analytical Notes. They are partially mathematical
observations, important to note, but easy to prove. Some are short summaries or direct
logical consequences of our definitions. Others are conjectures, suggested by experimental
computations in exact arithmetic, possibly hard to prove. For ease of reference we number
the Analytical Notes.

Analytical Note 1. A BC-process ⟨X(0), ϵ⟩ generates changing network structures that are given
by the sets I

(
i,X(t), ϵ

)
, for all i ∈ I and t = 0, 1, . . . , t̄ (cf. equation [1]). For any BC-process

⟨X(0), ϵ⟩ with an ϵ that is strictly smaller than the profile width of X(0),51 there exists a smallest
ϵ∗ > ϵ that changes somewhere the network structures. ϵ∗ equals the minimum distance to an ϵ-outsider
that can be found somewhere in the BC-process ⟨X(0), ϵ⟩. More precisely: ϵ∗ = δout

min

(
X(0), ϵ

)
=

min{|xi(t) – xj(t)|| for t = 0, 1, . . . , t̄, i = 1, . . . , n and all j ∈ O
(
i,X(t), ϵ

)
}. Such an ϵ∗ is

called an ϵ-switch.

Analytical Note 2. If ϵ∗ is a switch for the BC-process ⟨X(0), ϵ⟩, then at some point in time, at least
two agents, that beforehand were ϵ-outsiders become ϵ-insiders. If ϵ∗ was found in period t of ⟨X(0), ϵ⟩,
then the trajectories of the BC-processes ⟨X(0), ϵ⟩ and ⟨X(0), ϵ∗⟩ start to differ from (t + 1) onwards.

According to Analytical Note 1 and by definition, switches cause a change in the sets of
ϵ-insiders and ϵ-outsiders. These sets characterise the network structure at time t. Analytical
Note 2 claims a corresponding change in the trajectories of the two processes ⟨X(0), ϵ⟩ and
⟨X(0), ϵ∗⟩: Given ϵ∗ is a switch for the BC-process ⟨X(0), ϵ⟩ that was found in period t, the
claim is that then

⟨X(t + 1), ϵ⟩ ̸= ⟨X(t + 1), ϵ∗⟩.

In all our computations of switches we have checked whether or not that is the case. It
always was the case. But why? So far, we do not have a proof.

Analytical Note 3. For any start distribution X(0), we can systematically search for ϵ-switches.
The first and smallest switch ϵ∗1 is the minimum distance between two opinions in X(0). Trivially,
that minimum is a distance between neighboring opinions in the start profile; ϵ∗1 changes in t = 1 the
network structure of the BC-process ⟨X(0), 0⟩.

Analytical Note 4. For any start distribution X(0), there is always a largest switch that somewhere
changes the network structure, namely ϵ∗ = xn(0) – x1(0). No ϵ value larger than that switch, can
lead to different network structures. The largest switch is the last switch that the algorithm finds. Its
value equals the width of the start profile.

Both the smallest and the largest switch can be directly found in the start profile X(0).
We will call such switches primary ϵ-switches. There are more. Upon reflection, all absolute
distances |xi(0) – xj(0)| with i ̸= j, must necessarily be primary switches. Taking into account
that |xi(0) – xj(0)| = |xj(0) – xi(0)|, we get the maximum number of different distances by
adding up the number of distances of agent1 to the agents with the indices 2, . . . , n plus the
number of distances of agent2 to the agents with the indices 3, . . . , n, and so forth, until we

51The proviso excludes that ϵ itself is already the largest switch; cf. below Analytical Note 4.
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get to agentn who has no distance to any agent with a higher index. Thus, the maximum
number of different distances is

n–1∑
i=1

i =
n (n – 1)

2
.

A strictly ordered start profile has also a certain minimum number of primary switches: In
a strictly ordered profile, we have for sure the (n – 1) different distances of agent1 to the
agents with the indices 2, . . . , n. If the start profile is equidistant in the sense that there is a
constant c = xi+1(0) – xi(0) for i = 1, . . . , (n – 1), then we will not find any additional different
distance. Thus, the minimum number is simply (n – 1).

Analytical Note 5. A strictly ordered start profile X(0) with n opinions has at least (n – 1) and at
most n(n – 1)/2 primary switches. Start profiles with the minimum number of primary switches are
equidistant. With an increasing n, the minimum number of primary switches grows linearly, while the
maximum number increases polynomially. Trivially, the number of primary switches is always finite.

Above in section 4.1, in our example with n = 5, the maximum number of primary
switches is therefore 10. Due to the special structure of our example in which several
distances between opinions are the same, we have two primary switches less than in principal
are possible.

Analytical Note 6. The search for switches can be done by the algorithm described in Figure 6.
That algorithm came to an end and stopped whenever it was used. In other words: Whatever the start
distribution X(0) that we searched for their switches, we always found a finite list of switches. As it
seems, the number of switches of all start distributions is always finite.

What we here conjecture is by no means trivially so. Why is it that there are no regions
in [0, 1] with an infinite number of switches? So far, all algorithmic searches came to an
end, and, thereby, stopped with a finite switch list. The largest switch was always the width
of the start profile. That suggests that there is always a finite number of switches. But that
is not a proof.

Analytical Note 7. The finite list of strictly increasing ϵ-switches that the algorithm finds, gives a
complete and exhaustive segmentation of [0, 1] by the following sequence of intervals (equation 11 in
the main text):

⟨ [0, ϵ∗1) , [ϵ∗1, ϵ
∗
2) , . . . , [ϵ∗s–1, ϵ

∗
s ) , [ϵ∗s , 1] ⟩ with 0 < ϵ∗1 < ϵ∗2, . . . , ϵ

∗
s ≤ 1.

The segments are right-open intervals except for the last one. For all ϵ-values in the same seg-
ment, the whole process ⟨X(0), ϵ⟩ = X(0),X(1), . . . , X(̄t) is always the same. The s processes
⟨X(0), ϵ∗1⟩, . . . , ⟨X(0), ϵ∗s ⟩ are all different. Together they exhaust all possible BC-processes with
the start profile X(0).

There is a surprising by-catch of our approach: In the usual BC-process, j’s membership
in i’s ϵ-insider set at time t, is defined by the condition that |xi(t) – xj(t)| ≤ ϵ (cf., equation
[1]). But—under a robustness perspective—one might ask: What happens, if we modify the
condition to |xi(t) – xj(t)| < ϵ ? For an answer we go back to our example start distribution
X(0) = ⟨0, 0.18, 0.36, 0.68, 1.0⟩. Our search algorithm finds as the first minimal ϵ-outsider
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distance δout
min = 9/50. In the modified process opinions exactly on the border are no insiders

any longer. For all ϵ-values up to and including 9/50, it holds that ‘nothing happens’; the
process is stable in t = 1. Thus, the first segment of exactly the same processes is now the
closed interval [0, 9/50]. The second segment in which all processes are the same, is now
the left-open interval (9/50, 8/25]. And so it goes on.

Analytical Note 8. If we modify the ϵ-insider condition of equation 1 of the original BC-process
to |xi(t) – xj(t)| < ϵ, then we get again a complete and exhaustive segmentation of [0, 1] by the list
of switches found by the algorithm. But now the sequence of intervals is left-open except for the first
interval, namely

⟨ [0, ϵ∗1] , (ϵ∗1, ϵ
∗
2] , . . . , (ϵ∗s–1, ϵ

∗
s ] , (ϵ∗s , 1] ⟩ with 0 < ϵ∗1 < ϵ∗2, . . . , ϵ

∗
s ≤ 1. [13]

Again, the segmentation exhausts all possibilities of the modified process.

Thus, what the modification does, is simply a ‘less than tiny’ right shift of the same
sequence of dynamical patterns—a very strong robustness with regard to the modification.
Note that the search algorithm described in Figure 6 does not need to be modified: The
point is to find the distances to nearest ϵ-outsiders. Once one knows for a certain process
⟨X(0), ϵ⟩ the distance δout

min, one knows the smallest larger ϵ-value ϵ∗ = δout
min that changes the

sequence of network structures in such a way that at least one link is created that was not
there before. From that fact we infer for the original BC-process that all processes in the
segment that start with ϵ∗, are the same, while in the modified process the segment starts
left-open to the right of ϵ∗.

Analytical Note 9. Let X(0) = x1(0), . . . , xi(0), . . . , xn(0) be an arbitrary start distribution with
the ϵ-switches

ϵ∗1, . . . , ϵ
∗
k , . . . , ϵ

∗
s ,

and let X⋄(0) be a start distribution obtained from X(0) by the positive-affine transformations

x⋄i (0) = α · xi(0) + β with α > 0; α, β ∈ R; for i = 1, . . . , n.

The ϵ-switches of X⋄(0) are then simply multiplicative transformations of the s switches of X(0),
namely

α · ϵ∗1, . . . ,α · ϵ∗k , . . . ,α · ϵ∗s .

For all switches of X⋄(0) holds: The kth switch α · ϵ∗k of X⋄(0) has, apart from its transformed value,
exactly the same properties as the kth switch ϵ∗k of X(0).

According to Analytical Note 9, the properties of the ϵ-switches of a start distribu-
tion X(0) remain unaffected by positive-affine transformations of the components of the
start distribution. For instance, the stabilization times, final cluster structures, and all non-
monotonicities remain the same. And the opinion space in which the BC-processes take
place is irrelevant. It could be the unit interval or something different.
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Appendix II: Universal characteristics of equidistant start
distributions

A strictly ordered start distribution X(0) is equidistant (or equally spaced) if and only if(
xi+1(0) – xi(0)

)
= constant c, for i = 1, . . . , (n – 1). [14]

In the article, we encountered two different equidistant start profiles. The first was the
regular start distribution according to [8]. That is a start profile of equally spaced opinions
that starts with x1(0) = 0 and ends (in the ascending order) with xn(0) = 1. The second,
the expected value start distribution according [9], is a very special, namely representative start
profile: The ith opinion is directly the average ith opinion over infinitely repeated draws of n
opinions that are uniformly distributed and then sorted in their ascending order. It is a kind
of unique deterministic idealization of repeated draws of a uniform random distribution on
the unit interval.52 Expected value start distributions are central for a very fruitful method-
ological approach: One relies on one and the same expected value start distribution (e.g.,
with n = 50). For that constant start distribution one analyses the effects of, for instance,
stepwise increasing confidence levels ϵ. On purpose and programmatically, the approach
deviates from the usual practice to run, firstly, a major number of random initialisations,
and then, secondly, to do some statistics on the runs. Of course, the expected value ap-
proach blinds to effects that depend largely on the randomness of initialisations. But, the
approach may, and often does, expose directly effects that are otherwise hidden and hard
to detect in averages. Additionally, the approach easily reduces computation time by one
to three orders of magnitude.53 Thus, the study of social processes that start with expected
value start distributions is directly helpful with regard to questions which arise in the con-
text of an empirical, analytically minded social science that aims at explanations of social
phenomena. The approach sharpens the sense for unexpected phenomena and, at the same
time, opens the eyes for possible explanations. Therefore, this type of start distribution is
interesting for reasons far beyond a purely formal and purely mathematical interest.

However, all possible equidistant start distributions for a given n can be understood as
positive-affine transformations of any of these start distributions. Therefore Analytical Note
9 (see Appendix I) implies that, for a given n, we need to examine just one equidistant start
distribution to know everything about any other equidistant start distribution with the same
n. Which one should we use? Is there one with a salient feature? To my mind, the regular
start distribution has an advantage, namely the intuitiveness of the profile width of X(0):
Whatever the value of n, we know that in a regular start profile it always holds that x1(0) = 0
and xn(0) = 1. From a psychological point of view, this structure is the easiest to grasp (at
least for me). For this very pragmatic reason, I often use the regular start distribution in the

52We can do the same with regard to other types of random distributions. However, one has to derive
the equations that then correspond to equation [9]. The equidistance in [9] is due to the uniform random
distribution. If, for example, we do the same with a normal distribution, the corresponding expected value
distribution would not be equidistant. The relevant discipline here is order statistics; for an overview see David
and Nagaraja [2003].

53That is my experience. My interest in expected value start distributions originated in problems with
computing time. Fruitful applications of the expected value approach can be found in Hegselmann and
Krause [2015] and Hegselmann [2020].

57



following as a kind of ‘mother of all equidistant start distributions’. By Xr,n(0) I refer to a
regular start profile with n agents.

Analytical Note 10. All equidistant start distributions with n agents have the same number s of
ϵ-switches. Their respective lists of switches differ by a multiplicative transformation of all s switches
by a factor α.

If cr,n is the equidistance of a regular start profile with n agents and cn the equidistance of any other
equidistant start profile with n agents, then we get the list of ϵ-switches of the latter by a multiplicative
transformation of the regular switches by the factor

α =
cr,n
cn

.

If Xn,r(0) is a regular and Xn(0) is an expected value start distribution, then we get the list of
ϵ-switches of the latter by a multiplicative transformation of the regular switches by the factor α =
(n – 1)/(n + 1).

α =
n – 1
n + 1

.

The properties of the kth of the s switches are always the same.

Analytical Note 11. For increasing even values of n, and as well – but separately – for increasing
odd values of n, the number of switches increases monotonically. In both cases the increase is more
than linear. It looks like a polynomial increase. In most cases, but not always, the number of switches
for an odd n, is greater than the number of switches for the even number (n + 1). [See Figure 9.]

Analytical Note 12. For even values of n, often many switches exist that destroy a consent that
their predecessor switch generated. As even values of n become larger, there seem to be larger numbers
of such cases. For odd values of n, there are no switches that destroy a consensus and, at the same
time, lead to polarisation in the strict sense of just two final clusters. [See Figure 10.]

Analytical Note 13. There seem to be no switches that destroy their predecessor’s consent, and then
lead to more than three final clusters.

We can look at switches that destroy consents under a more general perspective: Such
switches generate a final cluster structure with more clusters than their predecessor does.
But that may occur not only in the case of consent, i.e. a case with just one cluster. It may
happen as well, that, instead of previously six, the next switch generates a final structure of
seven (or more) clusters. And, indeed, that happens—even quite often. Figure 19 shows
that this type of non-monotonicity occurs increasingly often. For n = 46 we get 19 such
cases. By comparison of Figure 19 with Figures 10 and 11 one can easily verify that: From
Figure 11 we know that for n = 46, in six cases a consent is turned into polarisation. From
Figure 10 we know that for n = 46, in one case a consent switch is succeeded by a switch
that generates three final clusters. Thus, in 12 of the 19 cases we get increasing numbers of
clusters that are structurally different from ‘blowing up’ a consent.

Analytical Note 14. For increasing even and odd values of n, there is a non-monotonic tendency
to occurrences of ever greater numbers of switches that, compared to their immediate predecessor, lead
to more final clusters. In most, but not all cases, regular start distribution with an even value n have
more such switches than the start distribution for the odd value (n – 1). [See Figure 19.]
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Figure 19: The number of switches that lead to more final clusters than their predecessor
switch. The blue graph connects the numbers of such switches for consecutive even numbers
of n; the red graph does that for odd numbers. The grey graph connects the y-values for
consecutive values of n.
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Figure 20: The number of switches that lead to a final profile width that is greater than
for their predecessor switch. The blue graph connects the numbers of such switches for
consecutive even numbers of n; the red graph does that for odd numbers. The grey graph
connects the y-values for consecutive values of n.
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In figure 20 we focus on switches that – compared to their predecessor – let the final
profile width increase. Trivially, that happens by all switches that ‘blow up’ a consent. But
it also happens under other conditions. For n = 50 we have a total of 607 switches of an
equidistant start profile. As we see in Figure 20, 90 of the switches generate an increasing
final profile width.

Analytical Note 15. For increasing even and odd values of n, there is a non-monotonic tend-
ency to ever greater numbers of switches that, compared to their immediate predecessor, lead to a
larger final profile width. For an even value of n, the number of such switches never seems to be smal-
ler than their number for the odd value (n – 1). In most, but not all cases, a regular start distribution
with an even value n have more such switches than the start distribution for the odd value (n – 1).
The difference between the two numbers of switches seems to be increasing. [See Figure 20.]

The Figures 9 to 11, 19 and 20 show for regular start profiles (n = 2, 3, . . . , 50) the
number of their ϵ-switches or frequency data on certain effects that they cause, for instance
destroying a consent. The figures do not give information about the exact positions of the
switches in the interval [0, 1] as Figures 12 does. Figures 21 to 23 have the same structure
of the axes as in Figure 12: On the x-axis we have the complete range of possible ϵ∗-values,
i.e. [0, 1]. The y-axis shows the increasing values of n, i.e. the number of agents in a
regular start profile Xn,r(0). As a consequence, each switch is a certain point ⟨x, y⟩ in the
coordinate system thus given. At this point we position a colored circle that indicates by
its color the specific feature that we visualise by the diagram: Above in Figure 12, it was
the final number of clusters; now, in Figure 21, it is the final profile width; in Figure 22, it is
the time to stabilisation; and in Figure 23, it is the period in which the switch was found. The
colormaps together with legends (both to the left) give the information how to read the
specific diagram.

Figure 21 looks at the final profile widths. Trivially, a zero width means consent. Again,
we mark specific non-monotonicities: Black triangles hint to switches that lead to a larger
final profile width than the predecessor switch does.

The positional overview in Figure 22 focuses on the times to stabilisation. Short times
get a special treatment: By four different reddish/brown colors we indicate stabilisation
times t = 2, 3, 4, 5. A downwards directed black triangles marks switches that, for the
given value of n, require the maximum time to stabilisation. A horizontally and rightwards
directed blue triangle marks the switch from which onwards the stabilisation times decrease
monotonously.

The final positional overview in Figure 23 shows each switch with the period in which it
was found. t = 0 and t = 1 get a special treatment by two blueish colors. Primary switches
(found in t = 0) are light blue; switches colored dark blue were found in t = 1. In this
Figure a downwards directed black triangle marks the maximum period in which a switch
was found (for the given n).

Figures 12 and 21 to 23 reveal a lot. Below I collect the most important observations:

1. For all n, there is always a switch that leads to a consensus that is final in the sense:
No successor switch destroys the consent. Careful visual inspection (with a focus on
n ≥ 5) shows a clear difference between even and odd values of n: For odd values
the final consensus switch comes for significantly smaller ϵ-values. Evidence: Figure
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Figure 21: General overview on the final profile widths of the switches for regular start
profiles with n = 2, . . . , 40. Colors indicate the final widths. Grey circles indicate consent
(the width equals zero). They are drawn last. Upwards directed black triangles mark switches
that lead to profile widths larger than the width that the predecessor switch generates.
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Figure 22: General overview of the times to stabilisation for the switches of regular start
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dish/brown. The downward directed black triangles mark the maximum time to stabilisation.
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maximum period in which a switch was found for the given n.
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12.54

2. The transition from a final plurality (i.e. a major number) of clusters to a final con-
sensus (just one cluster) is wild: Only for a few values of n, the first consensus switch
is also the final one. Normally, from switch to switch, many times the number of
final clusters decreases and increases again. The most dramatic cases of this type are
the many cases of a back-and-forth of consensus and dissent (the latter in the sense
of polarisation or a final structure with three clusters). Evidence: Figure 12.

3. In terms of the final number of clusters, we see a ‘smooth’ monotonic transition from
a plurality to consensus only for the profiles Xn,r(0) with n = 2, 3, 4, 5, 6, 9, 11, 17.
Evidence: Figure 12.

4. X7,r(0) is the first profile in which a consent is destroyed: There are two switches that,
after a consent under their predecessors, lead to a final cluster structure with three
clusters. Evidence: Figure12.

5. X8,r(0) is the first profile with a switch that generates a final cluster structure with
more clusters than the predecessor switch and where the predecessor did not lead to
a consent. Evidence: Figure 12.

6. X10,r(0) is the first profile with a switch that destroys a consent and leads to polarisation
in a strict sense. Evidence: Figure 12.

7. X26,r(0) is the first profile that has it both: four switches generate polarisation after a
consent; one switch generates a final cluster structure with three clusters, while the
predecessor switch leads to consensus. Evidence: Figure 12.

8. An enormous number of switches leads to an increasing final profile width. We find
this type of non-monotonicity for all start distributions with n ≥ 6, and they occur
much more often than the non-monotonicities with regard to the final number of
clusters. Evidence: Figures 21 and 12.

9. There are very few cases of a monotonic decrease of the final profile width, namely
just the profiles Xn,r(0) for n = 2, 3, 4—not even a handful. Evidence: Figure 21.

10. The maximum stabilisation times tend to increase as n increases. For a given n, the
stabilisation times are radically non-monotonic for switches ϵ∗ <≈ 0.27. Particu-
larly long stabilisation times seem to concentrate in certain zones: A first zone in
the region of very small ϵ∗-values; a second zone exists for switches around ≈ 0.2.
Evidence: Figure 22.

11. For somewhat larger values of n, switches that lead to a stabilisation in t = 5 are
concentrated in the region from about 0.3 to about 0.35. Evidence: Figure 22.

12. For ϵ∗ = 0.5 (always a switch) it holds: Is n even, that switch leads to stabilisation in
t = 4; is n odd, we always get stabilisation in t = 3. Evidence: Figure 22.

54In Figure 12, it is always the first consensus-switch (grey circle) after the last non-monotonicity marker
that leads to the first consensus that is not destroyed any more.
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13. Without exception, all switches strictly greater than 0.5 and strictly smaller than 1,
lead to stabilisation in t = 2. The last switch always leads to stabilisation in t = 1.
Evidence: Figure 22.

14. For somewhat larger values of n, the monotonic decrease of the times to stabilisation
normally begins at ϵ∗-values of about 0.27. But there are clear exceptions to this,
namely the values n = 12, 15, 17, 19, 27, 29. Evidence: Figure 22.

15. For switch values smaller than about 0.3, the periods in which the switches are found,
are clearly non-monotonically distributed. Evidence: Figure 23.

16. The positions of the primary switches (by definition found in t = 0) and as well the
switches found in t = 1, clearly follow a regular pattern. For primary switches that
is no surprise; for the switches found in t = 1 it is. For both types, the distance
between two consecutive occurrences of them is always the equidistance of the start
profile. All positions of primary switches are multiples of the respective equidistance
of their start distributions. Evidence: Figure 23 together with a computational check.

17. With the exception of n = 5 and n = 8, for all n, all switches ϵ∗ ≥ 0.4 are found in
t = 0 or t = 1. Evidence: Figure 23.

18. For ϵ∗ = 0.5 (always a switch) it holds: Is n even, that switch is found in t = 1; is n
odd, the switch is found in t = 0 (primary switch). Evidence: Figure 23.

19. Without exception, all switches strictly greater than 0.5 are found in t = 0 (primary
switches). Evidence: Figure 23.

Analytical Note 16. As a consequence and application of Analytical Notes 9 and 10, the findings
from Figure 12 and Figures 21 to 23 hold correspondingly for all equidistant start distributions.

65



Appendix III: What (not only, but especially) BC-modellers
should know about floating-point arithmetic

Floating-point arithmetic is the type of arithmetic that computers today normally use for all
their computations. Partially, that arithmetic is built into the hardware (FPU, the floating-
point unit, supported by IUs, the integer units). Floating point arithmetic follows a cer-
tain standard, called IEEE 754 (named after the working group p754 of the Institute for
Electrical and Electronics Engineers). The standard evolved over some decades since the
1950s, but was worked out in detail, and then published only in 1985; a major update and
extension followed in 2008. Some details are tricky, but there is no mystery.55

Floating point-arithmetic is an arithmetic that operates on floating-point numbers (floats,
for short). Floats are ‘engineered’ numbers in order to, firstly, approximate a very large
range of the continuum of real numbers by a huge, but finite subset of real numbers, and
then, secondly, to do numerical computing with them. One can engineer floats for any
positional number system, whatever the base, but most important are the floats with base
2. They are the floats with which numerical computing normally is done.56 Such binary
floats are represented in a sign-exponent-significand format by a fixed number of bits. Our
computations used floats with a total of 64 bits to represent a number. It is a binary exponen-
tial representation by a bit string with a well defined structure: The string starts with 1 bit
for the sign, then follow 11 bits for the exponent, and thereafter 52 bits for the significand
(often called mantissa). The IEEE standard refers to these numbers as numbers of the type
double precision. There are other types as well. Single precision has a total of 32 bits, single
extended 40, and double extended 80. Since the 2008 update, IEEE 754 covers even 128 bit
floats (quadruple precision).

Whatever their type, the representation of floats is normalised with regard to a standard
position of the binary point. From the decimal scientific notation we know that there
are equivalent ways to express a number in an exponential form: 0.00036525 could be
written as 0.36525 × 10–3, but as well as 3.6525 × 10–4. Or, in other words, one can
‘float’ the decimal point to any position by repeatedly multiplying or dividing by 10, and
decrementing or incrementing the exponent accordingly. In the binary system it is the
same. In a normalised floating-point number, the position of the binary point is (except
for zero, which is treated as an exception) always after the first nonzero bit in the binary
expansion.57 Given this first convention58, it is not necessary to explicitly use the first

55The following description is for the most part based upon two excellent introductions into floating point
arithmetic, namely [Overton, 2001] and [Goldberg, 1991].

[Overton, 2001] is Michael L. Overton’s 100-pages book Numerical Computing with IEEE Floating Point
Arithmetic. On the cover, it additionally says Including One Theorem, One Rule of Thumb, and One Hundred and
One Exercises. My appendix follows the chapters 2 and 3 in Overtone’s book. In a remarkable way, the book
also covers the history and pre-history of the IEEE 754 standard.

[Goldberg, 1991] is David Goldberg‘s long article (43 pages) What Every Computer Scientist Should Know
About Floating-Point Arithmetic. For the title of my appendix I have stolen parts of Goldberg’s title.

56Since 2008, IEEE 754 sets also the standards for floats with the base 10.
57A general alternative to a floating-point representation is a fixed point representation: after the sign bit,

one has a certain fixed number of bits for the representation of the number before the binary point; then
follow the bits for the representation of the number after the binary point. Compared to a floating-point
representation, the fixed point representation reduces the range of storable numbers severely.

58“First convention” is my language, not the language in which the standard IEEE 754 originally was
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bit of the significand to store the binary 1, each significand is simply considered as being
implicitly preceded by a hidden 1, which gives one additional bit to increase precision.59

The number of bits of the exponent field determines the maximum number of different
bit strings in that field. Given the 11 bits in the exponent field of double precision-floats,
there are 211 = 2048 different bit strings. Following a second convention (called biased
exponent), almost all of them are used to represent exponents in the range –1022 to +1023.
The negative exponents allow an easy representation of very small absolut values of both
positive and negative numbers.60 Additionally, a complication that is caused by the first
convention, is fixed via the exponent field: The number zero can’t be represented as a
normalised float with a hidden leading 1 of the significand, since an all zero significand is
1.0, not 0.0. The problem is solved by an explicit exception: As a third convention, an all
zero exponent field (00000000000)2, followed by an all zero significant field, signals zero.
That, then, gives a possibility to represent numbers that are even smaller than the smallest
normalised number, the so called subnormal (or denormalised) floats, which smooth the gap
between zero and the smallest normalised float: As the number zero, they are characterised
by an all zero exponent, but then followed by a significand bit string that is not all zero.
For them, by a fourth convention, the leading hidden bit of the significand is set to 0, while
the exponent is set to the smallest value (–1022 for double precision). As a consequence,
compared to normalised floats, the accuracy of subnormal floats drops sharply. Finally, by
a fifth convention, the exponent field is used to introduce some useful special cases: The
bit string (11111111111)2 signals ±∞ or NaN (not a number), depending upon whether
or not the bit string in the significand field is all zero or not. These strange ‘numbers’ are
introduced to manage numerical situations that traditionally were beyond repair, and often
caused the computation to stop immediately, as for instance range overflows, underflows,
or a division by zero.61 The elements of the set of real numbers that, along these lines, can
be exactly represented, that are floats in a technically precise sense.

All the details of the representation (and that are far more than the five conventions that
I use here for a short summary), plus exactness requirements on some elementary numerical
operations with such numbers, plus requirements on format conversions (e.g. conversion
of floats to an integer format), that is what the standard IEEE 754 specifies.

Not only in our context one should be aware of some important features of floats, and
the arithmetical operations with them. I focus on 64-bits floats (1 sign bit, 11 exponent bits,
52 significand bits, i.e. the type double precision), since they are used in my computations. I
look especially on floats from and in the ‘numerical world’ of all BC-processes, namely the
unit interval. My main concerns are the magnitudes of the absolute errors (representational
or operational), that we have to expect.

1. For double precision the largest positive number is ≈ 21024 ≈ 1.8× 10308. The smallest
normalised positive float is 2–1022 ≈ 2.2 × 10–308; the smallest subnormal float is
2–52 × 2–1022 ≈ 4.9× 10–324. The range of negative floats has the analogous limits.

formulated. The same holds for the four other conventions that follow.
59Because of the hidden leading bit 1, one can look at the significand as the fractional part of the mantissa.

That is, why the significant is often simply called fraction.
60The cost is that the largest representable number is only about half of what the largest in principle could

have been, namely ≈ 22048.
61For instance, under the IEEE 754 standard, 0/0 has a result, namely NaN [cf. Goldberg, 20ff].
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2. If we think of the continuum of real numbers as a line, then floats are a finite number
of points on that line, and they have a spacing. Floats are not uniformly distributed over
their whole range. Close to zero they are densest. The spacing of floats follows perfect
powers of 2: Within the left-closed and right-open interval between two consecutive
perfect powers of 2, the floats are uniformly spaced. The total number of floats in each
such interval is always the same, and this number is directly determined by the number
of bits for the significand. Single precision leads to 223 = 8388608 ≈ 8.4 × 106,
double precision to 252 = 4503599627370496 ≈ 4.5 × 1015 floats in each interval.
Since the size of the interval between two consecutive perfect powers of 2 always
doubles, the gaps between the floats in consecutive intervals double as well. As a
consequence, between 252 and 253 (≈ 9.0× 1015) double precision floats represent just
the integers; above 253, not even all integers between consecutive powers can be
represented.

3. As a surprising consequence of the general principles, the situation in the unit interval
[0, 1] is very special: In the upper half we have for [0.5, 1) what we always have
between consecutive perfect powers of 2 (here the powers –1 and 0), namely 252 ≈
4.5 × 1015 floats. For floats in the lower half of the unit interval, we have all the
1022 exponents ≤ –1. That gives us there 1022× 252 = 4602678819172646912 ≈
4.6 × 1018 floats. By comparison, the interval [1, 2) contains only 1

1023 of the total
number of floats in [0, 1). All the floats in [1, 2) are uniformly spaced with a perfect
mirror symmetry with regard to 1.5, while in the unit interval we have 1023 different
sizes of gaps between floats.62 About a half of all positive floats, lie in the interval
[0, 1] (correspondingly, about a half of all floats lie in between –1 and +1).

4. Since almost all of the real numbers can not be represented, rounding is unavoidable.
A non-representable real number will be rounded to the nearest representable float.63

Given double precision-floats with their 52-bits significand, we know that between two
consecutive perfect powers of 2, there are always 252 equally spaced floats. Therefore,
the nearest upper float of 1 is (1+2–52). The distance between 1 and its nearest upper
float, is called the machine epsilon; for double precision-floats it is machineϵ = 2–52 ≈
2.2×10–16. For any number x with 1 < x < (1+2–52), the difference between x and
its floating-point representation, is at most 1

2 · machineϵ = 2–53 ≈ 1.1 × 10–16. This
value is an upper bound to the absolut error of rounding to the nearest representable
float for real numbers x inbetween 1 and (1 + machineϵ).64 But, because of the equal
spacing of floats between consecutive perfect powers of 2, the same holds obviously
for all real numbers in the interval [20, 21). For real numbers in [21, 22), the maximum

62The huge number of different gaps contribute decisively to the many asymmetries in Figure 4. One
might therefore have the idea of moving the BC processes into the interval [1, 2] (or further to the right) for
the calculations, and then transferring the results of the calculation back to [0, 1] by subtraction. In essence,
however, this is window dressing: the numerical errors are made more difficult to detect, but not eliminated.
Cf. footnote 34 above.

63There are three other modes of rounding: up, down, and towards zero. Here and in the following, I
focus only on rounding to the nearest representable float.

64Some authors refer to this value as the machine epsilon. As it seems, in computer and computational science
the machine epsilon is normally the distance between 1 and the nearest upper float. Any confusion with our
confidence level ϵ, ϵ-switches, ϵ-segmentation etc. has to be avoided.
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absolut error doubles, in [22, 23) it doubles again, and so forth. In the opposite
direction, for negative exponents of 2, i.e. within the unit interval, the maximum
absolut errors get smaller and smaller: In the upper half of the unit interval, i.e. in
[2–1, 20), we have as many equally spaced floats as in [20, 21), what halfs the gaps, and
that halfs the maximum absolut rounding error. As a consequence, in the upper half
of the unit interval, the maximum absolut error is 1

4 · machineϵ = 2–54 ≈ 5.5× 10–17.
In the lower half of the unit interval, following the decreasing perfect powers of 2,
the stepwise halving of the maximum representational error continues.65

5. Irrational or binary periodic numbers can never be exactly represented by the fi-
nite number of bits for their binary representation in the sign-exponent-significand
format. They will be rounded to the nearest representable float. Increasing the num-
ber of bits for the binary representation increases precision, but can not solve the
basic problem.

6. Irrationality of numbers is invariant with regard to the base of a positional number
system. But periodicity is not: A non-periodic number in the decimal system, may be
periodic in the binary system. For ‘decimal natives’ it comes as a surprise that of all
the ‘innocent’ numbers 0.1, 0.2, . . . , 0.9, it is only 0.5 that is binary non-periodic.
Only 3 out of the 99 numbers 0.01, 0.02, . . . , 0.99 are binary not periodic, namely
0.25, 0.50, and 0.75. Just 7 out of the 999 numbers 0.001, 0.002, . . . , 0.999 are binary
non-periodic, and, therefore, do not need a rounding to fit into the sign-exponent-
significand format with a fixed finite number of bits.

7. IEEE 754 sets and guarantees a certain exactness standard for some elementary arith-
metical operations: For addition, subtraction, multiplication, and division, the fun-
damental requirement is: applied to any two floats x and y, the result has to be equal to
the rounded exact result. Additionally required are exactly rounded square roots and
remainders. Though it is a surprisingly complicated task, meeting these requirements
is possible, and even guaranteed. However, IEEE 754 only narrows down, but does
not exclude operational errors. Some of them can easily be detected. An example is
the subtraction 1.0 – 0.68 (one of the distances in our example start profile). We get
0.31999999999999995 as the result (as the absolut distance between the two involved
numbers, we get the same result). Logically equivalent ways to calculate a value may
lead to different results, the usual laws of commutativity and associativity do not ap-
ply in full generality, suddenly ‘superfluous’ parentheses matter. Example: For the
division 3/5 we get the result 0.6, but for the equivalent calculation 3 · (1/(4+1)) we
get 0.6000000000000001 (while, without the outer brackets in the latter expression,
the computer gets it right). Here it is an operational error of the magnitude 10–17,
what is as well the magnitude of the maximum absolut representational error in the
upper half of the unit interval. But in general, one has to know: Under the standard
IEEE 754, there is no guarantee that the result of a sequence of elementary arithmetic
operations is still the rounded value of the exact result. Often it is not. If an al-
gorithm involves the sequential and iterated execution of arithmetical operations of

65Therefore, we can consider the machineϵ as a way to measure the relative rounding error of a number
x. This error depends only upon the number of bits for the significand, while the absolute rounding error
depends upon the size of x.
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all sorts, it may be a hard task, if not impossible, to determine how accurate one’s
computations with floats of a certain type can be expected to be.
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