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Abstract
Positive and negative relations play an essential role in human behavior and shape the communities we

live in. Despite their importance, data about signed relations is rare and commonly gathered through surveys.

Interaction data is more abundant, for instance, in the form of proximity or communication data. So far, though,

it could not be utilized to detect signed relations. In this paper, we show how the underlying signed relations

can be extracted with such data. Employing a statistical network approach, we construct networks of signed

relations in five communities. We then show that these relations correspond to the ones reported by the in-

dividuals themselves. Additionally, using the inferred relations we study the homophily of individuals with

respect to gender, religious beliefs, and financial backgrounds. Finally, we study group cohesion in the analyzed

communities by evaluating triad statistcs in the reconstructred signed network.

Keywords: Signed Networks, Interaction Data, Homophily

1 Introduction

Social interactions and signed relations are distinct yet related facets of human behavior. Social interactions are

short-lived contacts during which individuals exercise directed or reciprocal influence over one another [37]. In-

dividuals can interact via different means, and their interactionsmay repeatedly occur over time. Signed relations,

such as friendship and enmity, are interpersonal relations characterized by a sign (positive or negative) reflecting
how one person feels or thinks about another. Signed relations are long-lived and change less frequently as more

effort is required to form or change them.

While social interactions and signed relations are different, they are coupled to each other–relations acting as

drivers for interactions. A positive relation commonly induces more interactions, while a negative one hinders

them [20]. Moreover, humans perceive surrounding patterns of positive and negative relations [11] to which they

adapt [19]. Over time, such adaptations can lead to interactions appearing mostly within cohesive groups, poten-

tially leading to echo-chambers . Negative links may be formed across opposing groups, pushing communities

towards segregation and, eventually, to polarization [15, 38].

To understand such phenomena quantitatively, we require data on the positive and negative relations, which

is rare. Interaction data is instead more abundant. However, they do not directly inform us about the relations

among individuals. This leads to the problem of inferring meaningful information only from interaction data.
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Usually, this problem is addressed by taking the network perspective, where nodes represent individuals and

edges their interactions [16, 33, 30, 9, 7]. Network filtering [34] and backboning methods [40] can extract relevant

connections from observed noisy interactions and find successful applications in biology [44, 28] and econom-

ics [14]. Alternative methods use thresholding rules [46], take a topic modeling perspective [42] or use relational

event models [2]. All these methods, though, can at most be applied to the study of unsigned relations or require

knowledge about the exact time-ordering of both interactions and relations. For the recovery of signed relations,

we require novel approaches. Only few recent works [29, 12] have developed methods with precisely this goal in

mind.

Following down this path, we introduce a statistical network method to infer weighted signed relations from a

collection of unsigned, repeated interactions. We will refer to it as theΦ-method. It relies on the main assumption

that a statistical over-representation of interactions signals a positive relation and an under-representation sig-

nals a negative relation. This assumption is motivated by the longstanding theoretical argument that individuals

with positive relations are more likely to interact [35, 20] and its empirical evidence across different communit-

ies [22, 32, 43]. Moreover, the idea that negative relation induces fewer interactions is supported by the arguments

that individuals avoid others who are considered a source of discomfort rather than pleasure [18, 23, 21]. Hence,

the Φ-method is the counter-part to methods developed for inferring signed relations from repeated signed in-

teractions [41, 13, 8].

To demonstrate our Φ-method, we utilize five classical interaction datasets of social communities. These are a

karate club in a university [47] (KC), a windsurfer community [11] (WS), a high school in France [27] (HS), parti-

cipants in the Nethealth project [26] (NH) and user of the Epinions website [17] (EP). These social communities

are chosen because they, in addition to interactions, contain information about social relations that can be used

to validate our method.

With our method, we reconstruct the underlying relational networks of the five communities. The inferred

signed relations allow us to study pairs and triads of individuals in a new light. We illustrate the strength of

having access to the complete relational structure of communities, which we represent using a weighted signed

network. To this end, we investigate the pairwise homophily, relational triads, and cohesiveness of groups in the

communities. Note that we refer to social communities (KC, WS, HS, NH, EP) rather than to those detected by

community-detection algorithms.

2 Results

Inference of signed networks. To infer the weighted signed networks Si for the five communities KC, HS,

WS, NH and EP (extended details provided in Methods), we first construct an interaction network Gi. An edge

ev→w in Gi is created every time an interaction between individuals v andw is observed in the respective dataset.

Furthermore, each dataset contains a small set of reported relations obtained by directly surveying a subset of the
individuals or by using a proxy (e.g., declared trust and distrust in EP). Such reported relations are either binary

(i.e., positive/neutral or positive/negative) or continuous (i.e., how strong they are).

In Fig. 1, we visualize the interaction network GHS only for HS, which records interactions between students

in a French high-school divided into 9 classes. From GHS we infer the weighted signed network SHS using the
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Figure 1: (left) Interaction network GHS from the HS dataset. Nodes represent individuals and edges recorded interactions

between them. Multiple interactions are shown by parallel edges. (center) Inferred signed network SHS shown only for a

subset individuals. Positive relations are represented by blue edges (darker colour refers to larger weight). (right) Network
of declared friendship relations among individuals. We report a summary of the evaluation in a confusion matrix.

Φ-method. For each pair (v, w) of individuals, the weight of the relation sv→w is obtained as a linear combination

of the probability that two individuals are interacting more than expected with the probability of interacting less

than expected (seeMethods for details). The coefficients of this linear combination are estimated based on the few

reported relations in the community. Once determined, this allows us to infer both positive and negative relations

between all individuals. In [5], we provide an implementation to quantify the above-mentioned probabilities

within the R library ghypernet.

In th reconstructed weighted signed network SHS, we observe clusters of positive relations with weak negative

ties between the clusters. This pattern matches the class separation within the high-school. If we compare SHS to

the declared friendships provided in the survey (Fig. 1 (right)), we see that most declared friendships are within

classes and only few across classes.

Accurate prediction of reported relations. Using the Φ-method, we accurately predict the reported rela-

tions between individuals. To evaluate this accuracy, we perform both an in-sample and an out-of-sample pre-

diction task where the dependent variable is the reported relation and the predictor the value of sv→w . We detail

the results of the prediction tasks in Table 1. For HS, NH, KC and EP, the reported signed relations are categorical

(friends/not friends, trust/distrust, or individuals feeling a strong, weak or no relation at all). Hence, we evaluate

Si by means of standard classification methods and list the resulting sensitivity, specificity, and balanced accur-

acy (see Methods). All these scores are remarkably high and above 80%, which holds for both the in-sample and

the out-of-sample predictions, for HS, NH, KC. For EP the scores are slightly lower, but still above 77% except

for the specificity. The lower specificity is linked to the limitation of the Φ-method that we elaborate in the dis-

cussion. For WS, the reported signed relations are continuous. Thus, we model them with a linear regression. We

evaluate the goodness of fit using the R
2
and the root-mean-squared-error. These continuous relations are harder

to model, as they were obtained through a convoluted interview process. Hence, the reported relations are more

noisy. Our goodness of fit suffers from this with an R
2
just above 0.3.
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We find that the Φ-method is robust in handling unseen data. For the HS and NH dataset, we preserve a very

similar accuracy between the in-sample and the out-of-sample prediction, the same holds for the difference in R
2

in the WS dataset. The most considerable accuracy loss occurs in the case of the small KC dataset where the spe-

cific train-test split has a significant impact. In the supplementary material, we further show that the Φ-method

outperforms other approaches for predicting relations based on thresholding rules or network modularity.

HS NH KC EP WS

Model specification friends ∼ ϕ friends ∼ ϕ faction ∼ ϕ trust ∼ ϕ closeness ∼ ϕ

In-sample
Sensitivity 0.831 0.831 1 0.805
Specificity 0.931 0.985 0.938 0.742
Balanced Accuracy 0.881 0.908 0.969 0.774
R
2 0.307

RMSE 0.118

Out-of-sample
Sensitivity 0.8 0.821 0.875 0.863
Specificity 0.941 0.985 0.875 0.689
Balanced Accuracy 0.871 0.904 0.875 0.776
R
2 0.302

RMSE 0.120

Table 1: Quality of the model for in-sample and out-of-sample predictions. We report the sensitivity, specificity, and

balanced accuracy for the binary HS, NH, KC and EP. For the continuous relations in WS, we report the R
2
and the root-

mean-squared-error (RMSE). Overall, the model quality is good for the binary relations and worse for the continuous ones.

The model is robust as the out-of-sample prediction only loses little compared to the in-sample prediction.

Homophily. Homophily is the phenomenon of similar individuals being more likely to form positive rela-

tions. In the inferred signed networks SHS and SNH, we find strong gender homophily, i.e., the specific case in

which similarity is defined by gender. To test the presence of this phenomenon, we compare two probabilities

(in percentage): i) the probability that individuals with a positive relation also have the same gender and ii) the

probability that randomly sampled pairs of individuals have the same gender. These are shown in Fig. 2 in the i)

outer and ii) inner circles. We only have data about genders in the NS and HS datasets, so we restrict the ana-

lysis to these two datasets. We find that the probability that individuals with a positive relation also are of the

same gender is larger compared to the reference probability of randomly sampled pairs being of the same gender

(Fig. 2). Precisely, compared to the reference case, it is approximately 20% and 30% more likely that individuals

with a positive relation have the same gender in the HS and NH dataset, respectively. By performing a binomial

test, we verify that these results are statistically significant (see Methods for details).

Apart from gender, we find that religion and parental income homophily are of lesser importance to university

students. This is shown in Fig. 2, by comparing 64.8 vs 49.0 for gender to 60.7 vs 55.5 for religion and 51.5 vs 45.9

for parental income. Only for this dataset do we have such additional information. The probability that friends
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have similar religious beliefs or parental income is slightly larger than in the reference case, but nevertheless

significant.

Gender (HS)

51.848.2
42.8

57.2

Expected

Observed
Gender (NH)

51.049.0

35.2

64.8

Religion (NH)

44.5
55.5

39.3

60.7

Income (NH)

54.1
45.9 48.551.5

Different

Same

Figure 2: (Left) Gender homophily in HS and NH. (Right) Religion and income homophily in NH. The outer ring shows the

probability (in percentage) that individuals with a positive relation also have the same gender, relgion or parental income.

The inner circle refers to the random sampling. While all three types of homophily are present, gender homophily is the

strongest.

Beyond dyadic properties. Thanks to our analysis, we have attributed a signed relation to each pair of indi-

viduals. The datasets contain additional information about the belonging of these individuals to different groups

(e.g. classes, memberships). By looking at triads composed of three individuals, we can now characterize these

groups. Considering only the sign of relations, four types of triads Tτ can appear: (+++) (T1), (++−) (T2), (+−−)

(T3), (− − −) (T4). For each triad t = (v, w, z) of a given type Tτ , we assign a weight ωt by multiplying the

weighted signs sv→w , sw→z , and sz→v [39]. We define group cohesion by means of triads T1 with three positive

relations (+++). Group conflict on the other hand, is defined by those triads T2 that have one negative link (++−).

Through the weights of the triads, we can quantify the importance of each type of triads for groups (see Meth-

ods for details). We can distinguish formal groups (e.g. classes) from informal groups, for example the two groups

in KC centered around the leaders JA and HI. Analyzing the networks of signed relations SHS , SKC and SWS ,

we find that cohesion strongly outweighs conflict only in HS, which contains formal groups. Differently, informal

groups emerging in WS and KC show weaker cohesion and a higher presence of conflict. Specifically, Table 2

shows, that (+ + +) (T1) triads have high importance within the groups of HS (0.98 and 0.96). In the informal

groups of WS and KC, their importance decreases up to 0.45. Moreover, in the JA group of KC, conflict has as

much importance than cohesion. Across all analyzed communities, the importance of relational triads with many

negative relations, (+−−) (T3) and (−−−) (T4), is marginal.

Our analysis of KC further highlights leaders’ influence on group formation. While, at the time of the data

collection, KC consisted of a single community, it eventually split into two groups centered around two leaders,

JA and HI [47]. Analyzing these two groups separately, we find that the triads involving their leaders are strongly
cohesive: (+++) (T1) triads involving HI and JA have an importance of 0.72 and 0.59, respectively (see Table 2 for

details). However, when considering triads not involving the leaders, we only find cohesion in HI’s group (0.63).
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JA’s group instead is dominated by conflict (0.54). Hence, we have revealed that the presence of the influential

leader is the major characteristic defining the group.

WS HS KC
G1 | G2 C1 | C2 HI | JA

+++ 0.730.730.73 | 0.830.830.83 0.980.980.98 | 0.960.960.96 0.680.680.68 | 0.450.450.45
++− 0.23 | 0.15 0.02 | 0.03 0.24 | 0.450.450.45

HI | JA HI | JA
+++ 0.720.720.72 | 0.590.590.59 0.630.630.63 | 0.28
++− 0.28 | 0.38 0.19 | 0.540.540.54

Table 2: (Top) Importance of triad types (+ + +) and (+ + −) for different communities. Each community features groups

and the importance of the triads is calculated within these groups. In all groups but the one of John A. (JA) in KC, the im-

portance of cohesion outweighs conflict. (Bottom) Left are triads in KC involving the leaders of the groups (squared node),

right triads not involving the leaders. Mr. Hi’s group is always characterized by cohesion, while John A.’s shows mostly

conflict when he is not present.

3 Discussion

Our work contributes to the study of human relations by unlocking new applications of interaction data for

such investigations. To infer signed relations between individuals, we have employed data about face-to-face

contacts (HS), SMS and phone calls (NH), proximity (WS), co-attendance (KC), and online consumer ratings (EP).

Traditionally, weighted signed relations are obtained with surveys, an expensive and hardly scalable approach.

Instead, interaction data is abundantly available. Despite the different types of data, we have shown that our

methodology is well suited to extract signed relations. Therefore, social scientists, behavioral researchers, and

psychologists can now use interaction data in new ways.

Our central assumption is that positive relations imply more and negative relations fewer interactions. This

way of linking interactions to relations is a long-standing assumption in social science [20], which has been

widely tested for positive relations [22, 32, 43]. In the case of negative relations, instead, it has rarely been ex-

plored, mainly due to a lack of data. The Φ-method fills this gap.

Our broader perspective allows quantifying social phenomena such as homophily, cohesion, and conflict within

groups. For instance, we have confirmed that gender homophily is essential in establishing positive relations, such

as friendship. Additionally, we have found that leaders can strongly influence the cohesion of a group. This result

can be related to the theories of social status and structural balance, according to which individuals adapt their

behavior in response to their surroundings [45, 36, 19, 3].

The main limitation of this work is linked to the assumption of theΦ-method. It assumes that positive relations

imply more and negative relations fewer interactions. Even though this is true in many social settings, it is

not always true. For instance, in large online social networks, creating a negative relation may require more

interactions than retaining a neutral one. Indeed, in this online setting, most users do not know each other, have

no relations (i.e., a neutral one) and never interact. Negative relations are instead established between users that

interacted negatively once or a few times, leading to negative relations appearing between individuals interacting

rather than between individuals not interacting. This process is why for EP, we obtain a lower specificity than

for the other datasets. Another setting in which the assumption of the Φ-method might not hold is in strategic

settings where individuals might decide to “keep their friend close, and their enemies closer”.
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Overall, our work shows that diverse interaction data can be used to infer signed relations in social communit-

ies. The ability to infer signed relations from interaction data enables us to study how relations evolve over time.

Social theories about structural balance, status, or social impact postulate different mechanisms for relational
changes. We can now test these mechanisms by leveraging the fine-grained temporal resolution of interaction

data. This opportunity paves the way for future research to explore the evolution of signed relations and their

effect on communities with an unprecedented resolution.
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5 Methods

5.1 Data

We require data about social communities containing both interactions and declared relations, gathered through

surveys. While such data is, in general, scarcely available, we leverage four datasets fulfilling our requirements.

They vary in size, number and type of interactions, and form of surveyed relations. We summarize this inform-

ation in Table 3.

The data ranges from small communities of under 50 individuals to larger ones encompassing hundreds of

people. In these datasets, an interaction ev→w indicates proximity, colocation, or communication events through

phone calls, SMS, and WhatsApp between two individuals v and w. In the two datasets HS and NH, interactions

were collected automatedly. Thus, they feature the most interactions: up to roughly 2 · 106 for NH. In the other

two datasets, instead, interactions were recorded manually by researchers. The surveyed relations rvw either

indicate a quasi-continuous closeness, belonging to one of four factions, or a binary friendship, i.e., people being

friends or not.

Nodes Interactions Relations Directionality Interaction Type Relation Type

HS 327 67 613 406 Undirected Face-to-Face Proximity Friendship

NH 698 1 987 527 1353 Directed Communication Friendship

KC 34 231 30 Undirected Co-attendance Faction belonging

EP 84 483 4 109 866 689 728 Directed Rating Trust/Distrust

WS 43 1206 903 Undirected Proximity Closeness

Table 3: Summary of the main features of the data.

Windsurfer (WS). The study of the windsurfer community took place in California in the fall of 1986, with the

authors being long-time members of this community [11]. The windsurfers were naturally dividing themselves

into two groups, newcomers and older members, but there was no display of intergroup conflict. They were
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observed over 31 days, each day for two 30 min intervals. The interactions can loosely be defined as proximity

events, people sitting together for lunch, or social exchanges. Looking at the interaction network (Fig. 3a) makes it

clear thatmost interactions took placewithin the two informal groups. All communitymemberswere interviewed

shortly after the conclusion of the observation period. They were asked to perform a sorting task to identify how

close they were to each other. This closeness is rescaled to a number in (0, 1) and represents the relations in this

dataset. Even though the authors describe a dataset of 54 surfers, only data about 43 of them was released.

Zachary’s Karate Club (KC). This dataset contains interactions between 34 members of a university karate

club over three years. The recorded interactions occurred not during the karate lesson but in different contexts.

Like the windsurfer community, the karate club had two factions that “were never organisationally crystallized”

and “[...] not named”[47]. However, the factions had two leaders the club president (John. A.) and the karate

instructor (Mr. Hi). These factions arose due to a dispute between the leaders over an increase in the costs of

lessons. At a certain point, the club split into two clubs, one led by John. A. and the other by Mr. Hi. The club

members mainly chose the leader they wanted to join according to the factions they were in before the split [47].

The interaction network (Fig. 3b) makes these factions visible before the split, while inter-faction contacts are

still present. Before the split, club members were asked which faction they saw themselves in and whether that

sentiment was strong or weak. Only between Mr.Hi and John A. can we assume a negative relation. These de-

clarations form the relations in our analysis (negative, weakly positive, strongly positive). The data also contains

information about each member’s final group after the split.

French Highschool (HS). As a third community, we consider a high school in France. [27] have recorded

face-to-face interactions between students from four programs and organized them into nine classes. This was

done using RFID trackers, which only trigger when individuals are close and facing each other. The interactions

are recorded while being at school over five days. Interactions are mainly concentrated within classes, which

becomes apparent when considering the network visualization (Fig. 3c). Nevertheless, students interacted with

alters from other classes, possibly during breaks. On top of the interactions, information was collected about

positive social relations, i.e., friendship. Unfortunately, no information about negative relations was collected.

Nethealth Project (NH). We studied the Nethealth Project, a long-lasting (2015-2019) study conducted by the

Center for Network Science and Data at the University of Notre Dame [26]. It investigates the social networks and

health of initially around 700 undergraduate students, comprising pair-wise interaction data as well as responses

to surveys administered in 8 waves over the study period. Interactions were recorded through communication

events in the form of in- and out-going calls and messages from the participants’ phones. We construct the

interaction network (Fig. 3d) only including people who have at some point participated in the study and have

given their consent to the use of their data. The sheer size of the interaction network does not allow us to extract

much information from its visualization. However, we see that the degrees of the nodes vary greatly, between

0 at least and 89950 at most. The data contains surveyed friendships, which constitute the relations we use in

our work. As there were multiple ‘waves’ of surveys, in our analysis, we focus on one wave, namely the second

one. This wave contains the most individuals, as subsequently there were some drop-outs. We then only consider

interactions happening between the first and second surveys. Our results remain stable over the other waves.
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Epinions (EP). Epinions was a general consumer review site, where users could create reviews, issue ratings

of articles and establish trust or distrust relations. Interactions are created by rating the article of another user.

We limit our prediction task to positive (trust) and negative (distrust) relations, filtering the links where no trust

relation was established. As this dataset contains also information about the ratings that were issued to articles,

we employ this information in the prediction task to characterize the authors of articles. Specifically, we use the

mean of the received ratings as a proxi for popularity and the standard deviation of the received rating as a proxi

for how controversial the author is. Note, that we do not use the actual ratings, as this would defy the purpose of

using the interactions stripped of their ratings. This leaves us with a dataset as specified in table 3. In principle,

our method allows for a prediction task on all three types of relations, including neutral ones. This comes with

a significant loss in accuracy (10 − 20%), as we cannot a priori distinguish between individuals which did not

know each other and those that did. Many different versions of the Epinions dataset exist, we employ the version

used in [17]. The size of the interaction network only allows us to plot a sample of it in (Fig. 3e).

(a) (b)
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●

●

●
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●

●

●●
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Mr. Hi

John A.

(c)

(d) (e)

Figure 3: Interaction networks visualized for (a) WS, (b) the KC, (c) HS, (d) NH and (e) EP. Link weights in the figures are

proportional to interaction counts.
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5.2 Inferring signed relations

The Φ-method. The Φ-method relies on the central assumption that over/under-representations of interac-

tions signal positive/negative relations, a longstanding hypothesis in social sciences [20]. To quantify these over-

and under-representations, we compare the observed interaction counts between individuals to a network null

model, the hypergeometric ensemble of random graphs (HypE) [6]. By employing a network null model, we

define an expectation for the number of interactions between individuals. This expectation should account for

all factors that bias the observed number of interactions beyond the effect of signed relations [7]. In this work,

we specifically account for the heterogeneity in the activities of the different individuals. That means, we ac-

count for the fact that a very active individual is more likely to interact with others irrespectively of whether

they share a positive or negative relation. Similarly to a standard configuration model [10], HypE allows explicit

modeling of such heterogenous activities and enables the estimation of network- and dyadic- sampling probab-

ilities through closed form expressions [6]. It does so by modeling the network generation as a sampling process

without replacement from a carefully designed urn.

The urn is filled with a given number of balls, each representing a possible directed edge between two nodes v

and w. An edge ev→w from v to w is considered to be in this set of possible edges if the nodes have non-zero in-

and out-degrees koutv and kinw , respectively. To account for the different levels of activity of different individuals,

we specify the maximum number Ξvw of possible edges between each pair of individuals to be proportional to

the activity—i.e., degree—of each individual in the network. To do so, we define a matrix ΞΞΞ, whose entries Ξvw

are given by koutv kinw . It directly follows that

∑
vw Ξvw = m2

is the total number of possible edges, and thus

the number of balls in the urn. A network realization XXX with m edges is given by sampling m balls from this

urn without replacement. This sampling procedure is akin to hypergeometric sampling, and the probability of

finding the observed network configurationAAA is given by:

Pr (XXX = AAA) =

∏
vw

(
Ξvw

Avw

)(
m2

m

) . (1)

Equation (1) defines HypE, the network ensemble that we use to estimate the pair-wise over-and under-

representation of interactions. This ensemble has the benefits of incorporating interdependencies between pairs

of individuals, preserving individuals’ activity and attractiveness, and being analytically tractable. For more de-

tails, we refer to [6]. While in this work, we focus only on incorporating the activity of individuals into our null

model, it is in principle possible to extend the null model to account for more complex factors, e.g., block or

sub-group structures [4]. However, these extensions are beyond the scope of this article.

From Eq. (1), we extract the two marginal probabilities P (Xvw < Avw) and P (Xvw > Avw), where Avw is

the observed number of interaction between v and w and Xvw is an hypergeometric random variable:

Pr (Xvw < Avw) =

Avw−1∑
avw=0

(
Ξvw

avw

)(
M−Ξvw

m−avw

)(
M
m

) (2)

Pr (Xvw > Avw) =

Ξvw∑
avw=Avw+1

(
Ξvw

avw

)(
M−Ξvw

m−avw

)(
M
m

) (3)
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Intuitively, when the first probability is high, it is unlikely to find as many interactions as we observed, indic-

ating an over-representation [7, 24] and, therefore, a positive relation. The same reasoning holds for the second

probability, indicating a negative relation. Extending the approach of [29], we construct the signed relations by

taking the difference of these probabilities, weighted according to some constants in what we call the Φ-method

MΦ:

ϕvw(a, b) = aP (Xvw < Avw) + bP (Xvw > Avw) (4)

As shown in the following, we can learn the community-dependent constants a and b when we have access to

data about the relations between a small number of individuals in the community. When this data is not available,

we assume a symmetric influence of over- and under-representation, i.e. a = −b = 1.

Constructing the signed networks: training on data. Whenever we have access to data about interactions

and relations between some individuals, we can train the Φ-method to find optimal parameters â and b̂ to infer

signed relations. By extrapolating the learned parameters to all pairs in the community, we compute Eq. (4) and

construct full signed networks from only a few reported relations.

We employ simple machine learning techniques to estimate the parameters in Eq. (4). Our aim is to classify

the reported relation rvw based on the value of ϕvw(a, b):

rvw ∼ ϕvw(a, b) + c . (5)

Whenever we have binary relations, e.g., rvw ∈ {Friend,Not Friend} or ∈ {Trust,Distrust}, we perform

the classification in Eq. (5) by means of a logistic regressions. In the case of continuous relations, e.g., rvw

refers to some ‘closeness’ ∈ (0, 1), we use linear regressions. If multiple categories are possible, e.g., rvw ∈
{Friend, Positive Attitude,Neutral,Negative Attitude,Enemy}, multinomial or cumulative link methods [1] are

employed, depending on whether the categories are ordered or not.

The classification just described gives us estimates â and b̂ for the parameters in Eq. (4), obtained for the subset

of individuals for which reported relations rvw exist. With these, we can extrapolate our findings to the whole

community, generating the signed network S, whose links sv→w = ϕvw(â, b̂). In Table 4, we report the coef-

ficients estimated for all datasets. These coefficients are community-dependent. However, a is always positive,

and b is always negative. This finding demonstrates that having a high over-representation in interactions in-

creases the probability of having a surveyed friendship. Similarly, having a high under-representation decreases

this probability. Additionally, the only dataset with a large negative b̂ is KC. This community is also the only one

in which a known conflict arose. For the other communities, b̂ tends to be small in absolute value, giving weakly

negative relations.

The coefficient c in Eq. (5), provides a baseline from which the value of ϕvw(a, b) can be related to the reported

relations. Thus, we do not employ such value in constructing the signed network S.

Comparing Φ to other methods. In the following, we show that the Φmethod outperforms two other meth-

ods used to infer relations. The first one is a threshold method MT . The user defines a threshold on the inter-

actions over which individuals are assumed to be friends. Similarly, they are assumed to be enemies below this
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coefficient predictor HS NH KC EP WS

â P (Xvw < Avw) 4.71 5.67 2.42 0.66 0.19

b̂ P (Xvw > Avw) −0.21 −0.64 −0.92 −3.30 −0.06

Table 4: Estimated coefficients â and b̂ for over- and under-representation for the four datasets studied. |b̂| is always
smaller than |â| for all datasets, indicating the presence of weak negative links. Only for KC we have a large negative

coefficient. This is expected as it is the only community in which a known conflict emerged.

threshold. We assume one threshold for all pairs in the community and this threshold can be learned from the

known relations. Specifically, we use as a predictor the interaction counts Avw in the regression methods:

rvw ∼ αAvw + c . (6)

This method disregards any heterogeneities in the individuals, their different levels of activity in the community,

or their popularity. We can partly alleviate this by factoring in the degrees of the individuals when defining their

relations. By quantifying the expected number of interactions between two individuals based on their degrees,

we reach a formulation akin to the one used in the well-known network modularity [31, 25]. We call this model

the modularity method MM . Formally, it can be written as follows (for directed networks):

µvw = Avw − koutv kinw
m

(7)

In the undirected case, total degrees are substituted koutv = kv and k
in
w = kw and the right-hand side is divided by

two. While the modularity method now partly accounts for heterogeneities, it disregards that the two individuals

we study are part of a larger system, namely the whole network. To compare it to theΦ-method, we use this µvw

as a predictor in the regression to learn appropriate scaling parameters.

Below, we demonstrate that our proposedΦ-method outperforms both the threshold and the modularity meth-

ods in identifying the known relations. To do so, we perform cross-validation on a training subset of the data and

validate the learned representations of the relations on a separate testing subset. This out-of-sample prediction

task tests the different methods’ ability to predict relations in unseen data based on its learned specification.

In Table 5, we report our findings for all datasets. For the three datasets with categorical relations (HS, NH,

KC), we are interested in correctly identifying the known relations, i.e., the true positives and true negatives.

Additionally, we are dealing with unbalanced data, where most pairs have no relation. Therefore, we report the

balanced accuracy (BA) score, the mean of sensitivity and specificity, which fits our problem best. We report the

R
2
coefficient for the continuous relations in WS. Consistently across all but KC, the Φ-method outperforms the

other two methods. In KC, a highly modular graph, the modularity method performs similarly to the Φ-method.

5.3 Significance of homophily

To evaluate the statistical significance of our results on homophily for NH and HS, we perform a binomial test.

LetmSG be the number of pairs that share the same gender andmDG the number of opposite pairs. The probability

to randomly sample a pair with the same gender from the full data is then p = mSG/(mSG +mDG). If we have n
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HS (BA) NH (BA) KC (BA) EP (BA) WS (R
2
)

MT 0.813 0.870 0.750 0.739 0.179
MM 0.824 0.860 0.875 0.743 0.244
MΦ 0.871 0.904 0.875 0.776 0.302

Table 5: Comparing Φ to other models. Balanced accuracy/ R
2
from out-of-sample prediction through cross validating

the inferred relations in all four datasets. While the in-sample comparison remains inconclusive, the out-of-sample sees a

drastic improvement of the Φ-method over the other two.

friends in total and l friends who also share the same gender (success), the p-value of the binomial test is given

by:

p = P (Y ≥ k) =

n∑
i=l

(
n

i

)
pi(1− p)n−i

(8)

where Y is a random variable. If this probability is low, it is improbable to observe at random as many or more

homophilous friends as we do in the data. For the HS, we find a p-value of pG
HS

= 1.6 ·10−6
. For NH, the p-values

are pG
NH

= 3.16 · 10−95
, pI

NH
= 1.67 · 10−6

and pR
NH

= 3.70 · 10−5
for gender, income and religion respectively.

All p-values are significant (< 0.05).

5.4 Importance of triads

Let Tτ={1,2,3,4} be the set of all triads of either one of the four types: (+++), (++−), (+−−), (−−−). We quantify

the importance of a given triad type Tτ as:

n(Tτ ) =
∑

t∈(Tτ )

ωt =
∑

t∈(Tτ )

∥ϕvw∈t∥ · ∥ϕwz∈t∥ · ∥ϕzv∈t∥ (9)

The sum runs over all triads t is the set Tτ . The subscript vw ∈ t signifies that the link between v and w is in the

triad t. Note that we use the absolute value of the Φ-measure. Thus, we consider the weight of the relation when

evaluating the importance of a given triad. This way, triads containing mainly weak links will contribute less to

the importance.

To obtain a number comparable across communities, we normalize the importance of each triad type over the

total importance of all triad types.

I(Tτ ) =
n(Tτ )

N
(10)

whereN = n(+++)+n(++−)+n(+−−)+n(−−−). Such a normalization gives us the relative importance, which

is the number we report for the different datasets in Table 2 in the main text.

6 Data Availability

All data used in this work is freely available online under the following links:

• Highschool: http://www.sociopatterns.org/datasets/
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• Nethealth: http://sites.nd.edu/nethealth/data-2/

• Karate Club: https://rdrr.io/github/statnet/statnet.data/man/zach.html

• Windsurfers: https://github.com/schochastics/networkdata

• Epinions: https://www.kaggle.com/datasets/masoud3/epinions-trust-network

Requests for the processed data may be addressed to the authors directly.

The authors declare no competing interests.
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