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Abstract

The adaptive voter model allows for studying the interplay between ho-
mophily, the tendency of like-minded individuals to attract each other, and
social influence, the tendency for connected individuals to influence each
other. However, it relies on graphs, and thus, it only considers pairwise in-
teractions. We develop a minimal extension of the adaptive voter model to
hypergraphs to study the interactions of groups of arbitrary sizes using a
threshold parameter. We study S-uniform hypergraphs as initial configura-
tions. With numerical simulations, we find new phenomena not found in the
counterpart pairwise models, such as the formation of bands in the magneti-
zation and the lack of an equilibrium state. Finally, we develop an analytical
model using a sparse hypergraph approximation that accurately predicts the
bands’ boundaries and height.

Keywords: opinion dynamics, network science, group interactions,
co-evolution model, hypergraphs

1. Introduction

How collective phenomena can be explained from their micro-constituents
is at the core of many disciplines. For example, in statistical mechanics, the
Lenz-Ising model explains the spontaneous magnetization of materials by
considering the local interactions among two adjacent atomic dipoles [1].
Similarly, in socio-physics, the adaptive voter model describes the emergence
of consensus and fragmentation in social networks by modelling interactions
among individuals [2]. In this model, each individual i is characterized by a
degree of freedom si = {0, 1} representing whether the individual is in favour
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(si = 1) or against (si = 0) a given issue. Then, individuals are connected
among each other and interact according to a simple rule: an individual can
either adopt the opinion of a neighbour or drop this connection and create a
new one with an individual having the same opinion. Despite the simplicity
of this dynamics, it exhibits two totally different final states: consensus (i.e.,
all individuals have the same opinion) or fragmentation – where the social
network splits into two separate components with opposite opinions.

We extend this type of models considering group interactions and study
how they affect fragmentation. Group interactions are interactions that in-
volve more than two individuals. In opinion dynamics, examples are group
messaging, group discussions or emails with multiple recipients. Studies have
shown that complex mechanisms based on group interactions are often re-
quired to describe the dynamics in a social group [3, 4, 5, 6]. Examples of
such mechanisms are peer pressure [7] and reinforcement [8]. Another mech-
anism is advanced by Social Impact Theory, stating that groups modulate
the impact of a source on a target individual [9, 10]. Moreover, group inter-
actions have been very relevant in diverse fields ranging from physics [11, 12],
neural networks [13], and ecology [14].

To model group interactions, we use hyperedges [15]. A hyperedge of
size k ≥ 2 represents a group interaction among k individuals. By com-
bining hyperedges, we obtain a hypergraph. This mathematical object is
a powerful tool successfully used to study diverse group interactions, such
as multi-protein interactions in cellular biology [16], species interactions in
theoretical and experimental ecology [17, 18], and academic teams in co-
authorship networks [19].

One can also use simplicial complexes to model group interactions [20].
Simplicial complexes are hypergraphs with additional constraints [21]. An
important one for this discussion is that their hyperedges are closed under
inclusion. This requirement means that all the individuals of a group are
assumed to also interact with each other, pairwise or in small groups. We
instead use hyperedges to depict group interactions. This choice allows de-
scribing arbitrarily large social groups whose members do not necessarily
interact pairwise or through smaller groups with all other members.

Our model is based on the adaptive voter model of [22] and has the
following dynamics. At each time step, we choose a hyperedge e and check
its size ne. If ne = 2, i.e., a pairwise interaction, then we apply the rules
of the adaptive voter model [2]. If ne ≥ 3, either the influence or split-
merge process occurs. The influence process assumes that the minority in
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the group adopts the majority’s opinion with a certain probability. The split-
merge process instead assumes that the minority splits from the group and
merges with another group sharing the same majority opinion. A threshold
parameter γ determines the critical size of the minority at which either the
influence or split-merge process occurs.

The main differences from [22] are two. First, [22] studies the system in
a heterogeneous mean-field regime (HMF) where the group size distribution
was preserved. Hence, they studied how group interactions affect the dynam-
ics to total consensus, but fragmentation could not emerge as the final state.
Here, we instead explore how fragmentation is affected by group interactions.
To this end, we consider a system far away from an HMF. Second, [22] con-
siders that when a group splits, both subgroups merge into other groups. We
instead assume that only the minority group merges. This change implies
that we now preserve the number of groups over time; hence, the importance
of groups also stays constant during the dynamics.

We study how fragmentation is affected by the threshold parameter γ
and the initial mean degree, i.e., the average number of groups to which each
individual belongs. In general, we find that fragmentation decreases with
gamma (i.e., the importance of group influence) and initial mean degree (i.e.,
the system’s connectivity). Moreover, we find a striking difference compared
to the adaptive voter model without group interactions. We find fragmen-
tation bands, i.e., equilibrium states with different degrees of fragmentation
depending on γ. As the threshold parameter varies, the transition between
these states is discontinuous. We also provide an analytic explanation for
these bands and their discontinuity when the hypergraphs are sparse.

The remainder of this paper is divided into three sections. In Sect. 2,
we present our model’s dynamics and define the observables. In Sect. 3, we
present the results: the effects of group interactions on fragmentation (Sub-
sect. 3.1), a comparison adaptive voter model without group interactions
(Subsect. 3.2), and an analytic model under a sparsity approximation (Sub-
sect. 3.3). Finally, in Sect. 4, we summarize the results and discuss future
work.

2. Hypergraph Adaptive Voter Model

We model individuals as nodes on a hypergraph. Each node i is described
by a state variable si(t) which represents its opinion at a specific time t and
can take value either 1 or 0. Let N be the number of nodes.
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2.1. Initialization

At the beginning of each simulation, nodes are assigned the opinion 1 with
probability As. We generally set As = 0.5, unless stated. Also, we initialize
the system (at t = 0) as an S-uniform hypergraph H0 given by (V,E) where
V is the vertex set and E is the edge set, containing only edges of size S. For
the S-uniform hypergraph, the mean degree is H0 is 〈d(H0)〉 = S n

N
where n

is the number of edges in E. In summary, the parameters for initializing the
model are N , As, n, and S.

In the next section, we define the dynamics of the model. For the dy-
namics, there are two parameters: a probability of rewiring p and a threshold
parameter γ ∈ [0, 0.5].

2.2. Dynamics of the model

We call an edge e active (inactive) if the opinions of the nodes in e are
different (same). This definition applies to both simple edges and hyperedges.
The fraction of nodes with opinions 1 in an edge e is denoted by:

fe(t) =
1

ne

∑
i∈e

si(t) (1)

where ne is the size of the edge e, i.e., the number of nodes belonging to the
group. At each time step, we sample an edge e from E(t):

• if e is a simple edge (i.e. ne = 2) then

– if e is active then:

∗ with probability p, rewiring occurs. This means that each
node in e rewires to a random node from the network with
the same opinion. This process changes the edge set E.

∗ with probability 1 − p, adaptation occurs. This means that
one of the nodes is randomly chosen and it adopts the opinion
of the other.

– if e is inactive then nothing happens.

• if e is a hyperedge (i.e., ne ≥ 3) then:

– if fe(t) ≤ γ or fe(t) ≥ 1 − γ then influence occurs. This means
that each node with the minority opinion changes its opinion with
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(a) (b)

Figure 1: Schematic representation of the model dynamics. The red circles are nodes
with opinion 0 and the blue circles are nodes with opinion 1. Depending on whether it
is a simple edge (a) or a hyperedge (b), we apply different rules. In (a), we consider an
active simple edge and have either rewiring or adaptation occurring with probability 1−p
or p, respectively. In (b) we consider a hyperedge with fraction of nodes with opinion 1
(red) equal to 3

5 . Influence occurs if 3
5 > γ, then each (red) node with minority opinion

may change its opinion with probability 3
5 . Else, splitting and merging occur: the active

hyperedge splits into two. The split edge with the minority opinion (red) is merged into a
second edge with the same majority opinion chosen randomly from the rest of the network.

probability proportional to fe(t) if the majority opinion is 1 and
1 − fe(t) otherwise. In case of a tie, the “minority” opinion is
chosen randomly. This is an extension of the adaptation for group
interactions.

– if γ < fe(t) < 1 − γ then splitting and merging occurs. Splitting
means that the hyperedge e separates into two inactive edges with
opposite opinions. Merging means that the smaller split edge in-
tegrates with another edge randomly chosen from the hypergraph
whose majority opinion is the same as in the split edge.1 This
process changes the edge set E and is an extension of the rewiring
for group interactions: it models homophily at between groups.

This procedure is repeated until equilibrium is reached. We define equilib-
rium as when all the edges have become inactive. When an edge e has been
selected at a timestep, we graphically depict its dynamics in Figure 1.

1If the smaller split edge cannot find another edge sharing the same majority, then the
larger edge is integrated with another edge. This allows to keep constant the number of
hyperedges.
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Based on this dynamics, hyperedges are treated differently from simple
edges, i.e., their mechanisms are fundamentally different. The motivation
behind this is that hyperedges model group interactions, while simple edges
model pairwise interactions. For the former, the concept of majority and mi-
nority emerges unlike for the latter. The presence of a majority and minority
can create biases towards one opinion. In our model, we focus on the case
in which the majority opinion is preferred above a certain threshold. Note
that the proposed dynamics for group interactions cannot be described as
multiple pairwise interactions. This impossibility to decompose the group
interactions introduces new possible phenomena that could not be observed
using models of pairwise interactions [23].

2.3. Difference from previous models

Even though these dynamics are quite similar with those presented in the
introduction, there are important differences. Firstly, we use hypergraphs
instead of simplicial complexes. The main reason is that as explained in the
previous sections hypergraphs are less constraining to model large groups,
since it is not assumed that each subgroup or pair of individuals in a group
are connected, as is the case in simplicial complexes (they are closed under
inclusion).

Moreover, in our model, influence and splitting/merging take place deter-
ministically depending on the threshold parameter and not on a probability
q. This choice can be justified by the fact that we would expect influence to
occur with different probabilities for different sizes of groups. Also, unlike
for groups of size 3, for big groups the fraction of minority opinions can take
multiple values and we would like the large values to be treated differently
than smaller ones. For example, in a hyperedge with size 5, an edge with
only one node of opinion 0 has different impact on the opinion dynamics
than an edge with two nodes of opinion 0. This distinction would not be
possible using a hyperparameter probability q and it would be cumbersome
to introduce one for every possible size and minority fraction. The concept
of threshold in group interactions is also sociologically useful based on the
threshold model.

Another important difference is that at each timestep whole groups can be
picked, unlike in the previous model where only simple edges were randomly
chosen. In this way, we decouple the group interactions from the pairwise
interactions. This is because the dynamics of the selected hyperedge is de-
termined by the threshold parameter and the fraction of minority opinions in
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that hyperedge independently of parameters describing pairwise interactions.

2.4. Edge-based magnetization

Similarly to the classical Voter Model, the quantities of interest are the
time to reach equilibrium and the magnetization. The former is useful to
investigate whether group interactions accelerate or delays the evolution of
system to its equilibrium. The latter quantifies whether the system at equi-
librium has reached consensus or its degree of fragmentation.

We distinguish two kinds of magnetization: edge-based magnetization and
node-based magnetization. Both kinds of magnetization for finite systems
can be used to distinguish whether total consensus or fragmentation occurs.
If the magnetization at equilibrium is equal to 1 (-1) then the system has
reached total consensus with opinion 1 (0). Otherwise it is fragmented. In
formula, the node-based magnetization at time t is defined as:

m(t) =

∑
i∈V (2si(t)− 1)

N
, (2)

where si is the opinion of the node i. This means that the node-based
magnetization is equal to the fraction of nodes with opinion 1 minus the
fraction of nodes with opinion 0 in the node set V . Edge-based magnetization
at time t sums through all the nodes of all the edges and is defined as:

m(t) =
1∑

e∈E(t) ne

∑
i∈e

e∈E(t)

(2si(t)− 1) (3)

where si is the opinion of the node i. The edge-based magnetization is related
to degree-weighted moments because the nodes with the greatest number of
degrees contribute the most to the sum.

In our study, choosing the node-based over the edge-based magnetization
makes negligible difference since the initial hypergraph is chosen to have a
binomial degree distribution. Therefore, the standard deviation of the degree
is relatively small, and hence, each node is treated equal in the edge-based
magnetization. For this study, we chose the edge-based magnetization as it
is usually preferred in the complex network literature.
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Figure 2: Colormaps of mean degree versus γ. (a) The color represents the average
absolute magnetization. (b) The color represents the average time to convergence. The
maximum number of simulated steps was chosen to be 7000. If a trajectory does not
converge then this number is assigned for computing the average. The parameters are:
p = 0.55, N = 100, S = 10, AS = 0.5. For each mean degree and γ, we simulate 20
trajectories.

3. Results

3.1. Fragmentation of adaptive voters on hypergraphs

3.1.1. Low values of γ lead to fragmentation

In Fig. 2 (a), we report the absolute edge magnetization in function of
γ and the mean initial degree of the nodes. In general, we observe that we
have consensus for high values of γ, i.e., when the dynamics is dominate
by influence. At lower values of γ, we instead have fragmentation, i.e., the
final state is composed by groups containing nodes with both opinions. This
occurs because at low γ it is more likely that an active group splits into two
groups having opposite opinion. By this, a fragmented state emerges and
consensus is out of reach.

3.1.2. High mean degrees lead to total consensus

In Fig. 2 (a), we also observe that the fragmentation depends on the initial
mean degree. The mean degree describes the average number of groups to
which a node belongs. We explore mean degree values ranging from one to
100. We find that at low initial mean degree, we have more fragmentation,
while at high mean degree less. This result occurs as when decreasing the
mean degree, a node belongs to very few groups (one or two). If one of this

8



group splits, it is very unlikely that its nodes will go through the influence
dynamics and fragmentation will appear. For high mean degree, nodes belong
to more groups and hence, groups overlap. Thanks to this overlap, the
majority opinion of the system can propagate, and the systems can reach
total consensus.

3.1.3. Time of convergence

In Fig. 2 (b), we report the time needed to converge to a stable state,
i.e., a state without active groups. We find that the time of convergence
changes a lot depending on γ and the initial mean degree. In particular, at
fixed initial mean degree, the time of convergence is not monotonous in γ.
It first increases with γ until a threshold value γt that depends on the mean
degree. Then there is a γ-range in which the time of convergence stays high,
and finally it decreases again.

At very low γ, fragmentation is a stable state from which the system
does not move, see Fig. 2 (a). This state is also quick to reach as almost
every sampled group splits into two. Hence, the time of convergence is of
the order of the number of initial groups (Fig. 2 (b)). When increasing
γ, groups undergo the influence dynamics which tries to move the system
towards consensus. However, at this intermediate values of γ, influence is
not strong enough and does not manage to push the system to consensus.
The system gets instead trapped in k-orbits and never reaches a state without
active groups.

A simple example of k-orbit is when a node i is in two groups with
opposite majority opinion: a first group active and a second one inactive.
When influence acts on the active group and changes the opinion of the node
i, the first group becomes inactive and the second one active. This type of
dynamics can repeat itself, locking the system on a 2-orbit. Above γt and
the range with the k-orbits, consensus is the final equilibrium of the system,
see Fig. 2 (a). The bigger is γ, the more likely influence occurs, and hence,
the time to reach consensus decreases, see Fig. 2 (b).

3.2. Comparison to the adaptive voter model without group interactions

3.2.1. Predicting the final state

In the adaptive voter model without group interactions by [2], the magne-
tization (i.e., fraction of ones, m) and the density of active edges (i.e., frac-
tion of 0-1 edges, ρe) describe the phase transition between fragmentation
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Figure 3: The edge-based magnetization for 10 trajectories for 5 values of threshold pa-
rameters γ versus the density of active edges. The parameters are p = 0.55, N = 500,
S = 32, n = 125 with mean degree, 〈d(H0)〉 = 8. The curves cannot be fitted with
parabolas due to a congestion of trajectories around density of active edges equal to 1.

and consensus. The magnetization denotes whether the system is in frag-
mentation or total consensus. The density of active edges denotes whether
the system has reached equilibrium. In [2], the authors show that the density
of active edges has a quadratic form (a concave parabola) in the magneti-
zation during the system’s evolution, i.e., ρe(t) ∼ −m(t)2. Hence, by fitting
a parabola on the time sequence of (m(t),ρe(t)), the intersections between
the fitted parabola and the x-axis predict the final states that the system
eventually reaches at t → ∞. Prompted by this result, we ask whether it
applies also in presence of group interactions.

In Fig. 3, we plot the density of active edges versus edge-based magneti-
zation for different values of γ. We find that parabolas are poorly fitted to
the trajectories and the results of [2] do not generalize for the dynamics of the
presented model. The reason is that there is a congestion of trajectories at
high values for the density of active edges. This congestion happens because
a group is active if there is at least one node with a different opinion. There-
fore, in each group multiple nodes need to change their opinion to change the
group from active to inactive. Since we initialize nodes with random opinions
and also group them at random, the density of active edges starts close to
1. Then, there are large time periods during which the magnetization can
change while the density of the active edges stays constant. This process
creates a congestion of trajectories at high values for the density of active
edges.
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(a)

Figure 4: Absolute final edge-based magnetization versus threshold parameter, γ. In
(a), the merging and rewiring mechanism is active while in in (b), they are not. The
initial configuration is an S-uniform hypergraph with edge size, S = 10, number of nodes
N = 100, number of initial hyperedges n = 20 (thus the mean degree is 2) and probability
of rewiring p = 0.55. Opinions 1 and 0 were initially assigned to the nodes with equal
probability. The points and the shaded area are the mean and the standard deviation
of the absolute magnetization for 20 trajectories for each value of γ. In both (a) and
(b), there are bands where the average absolute magnetization stays constant and then
increases abruptly. These bands are more noticeable in (b).

3.2.2. Multiple fragmented states

In Fig 4(a), we show the absolute final edge-based magnetization versus
γ. We find the occurrence of bands, i.e., the absolute magnetization is ap-
proximately a step function between the initial value of the magnetization
2As − 1 and 1. In other words, we have multiple fragmented states when
varying the strength of influence. This phenomenon is not observed in the
adaptive voter model without group interactions which has one phase tran-
sition. Precisely, when increasing the probability to rewire active edges, the
final possible states are only two: a state with the fraction of minority equal
to zero (total consensus) or a state with the fraction of minority equal to the
initial (minority) fraction.

The presence of bands with constant magnetization is only an effect of
influence. Indeed, they are more noticeable if there is no the merging and
rewiring mechanism, but only influence and splitting (see Fig 4(b)). This
means that merging and rewiring is unrelated to the existence of the bands.
The effect of these two mechanisms is to smooth out the curve, especially for
low values of γ where they are more likely to occur.

In Sect. 3.3, we derive the height (i.e., the absolute magnetization value)
and the location (i.e., the γ ranges) of these bands when the merging and

11



(a) (b)

Figure 5: Absolute final edge-based magnetization versus γ. (a) Mean degree equal to
10 (N = 100, n = 100, S = 10). (b) Mean degree equal to 100 (N = 100, n = 1000,
S = 100). The points and the shaded area are the mean and the standard deviation of
the trajectories respectively for 10 trajectories for each of the 100 values of γ used. The
other parameters are p = 0.55 and As = 0.5.

rewiring process are switched off and the hypergraphs is sparse.

3.2.3. Convergence to the adaptive voter model without group interactions

For large number of groups n, the presented model looks similar to the
adaptive voter model without group interactions. In Fig. 5, we plot the
absolute magnetization vs γ for mean degree 10 and 100. The absolute
magnetization for most of the values of γ is either equal to the 2As− 1 (with
As = 0.55) or equal to 1. This phenomenon occurs also in the classical
adaptive voter model.

Note also that there is a small region of γ values for which the absolute
magnetization has intermediate values. When increasing the mean degree,
the “width” of the bands decreases and the system asymptotically approaches
a sharp transition.

To better understand the boundaries of the bands and how the absolute
magnetization changes, we now analytically study our model. We consider
the case where the mean degree is low since the bands are more prominent
in this regime (see Fig. 2 (a)).

3.3. Sparse hypergraph approximation

We develop an analytical expression to describe the boundaries and the
height of the bands, i.e., we characterize the multiple fragmented states.
For this analysis, we assume that the hypergraph is sparse. The sparsity
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assumption allows us to ignore the overlap between edges. Also, we neglect
the merging and rewiring mechanism since bands still exist without this
mechanism.

3.3.1. The boundaries of the bands

In Appendix, we formally prove the existence of the bands and their
boundaries with respect to the parameter γ. To do this, we calculate the
master equation for N(k, l, t) that is the number of edges with k nodes of
opinion 1 and size l at time t. We recursively solve this equation and find that
the boundaries of the bands are the rational numbers k

S
where k = 1, 2, ..., S

such that N(k, S, 0) is larger than zero.
A heuristic proof is the following. Without loss of generality, let us assume

that As > 0.5. Then, at t = 0, the majority of edges of size S that do not
split will on average become inactive edges of opinion 1 due to the influence
mechanism. These edges increase the absolute edge-based magnetization and
this increase is preserved in time by the sparsity of the hypergraph. Precisely,
the sparsity hypothesis implies that there is little overlap between edges, and
hence, inactive edges stay inactive as they cannot be re-activated from nodes
belonging to other edges. On the other hand, if an initial hyperedge splits, it
creates two inactive edges of opposite opinions. These inactive edges do not
change the absolute edge-based magnetization and their state stays frozen.
Hence, the final absolute edge-magnetization depends on the initial fraction
of edges that is susceptible to influence or split. A hyperedge is susceptible
to influence or split depending on the value of γ and its minority fraction
which is a discontinuous value k

S
with k = 1, 2, .., S. For example, by varying

γ, edges start splitting when γ < k
S

. Hence, at the critical values k
S

with
k = 1, 2, .., S, we have a different number of edges susceptible to influence or
split and different final magnetization.

The final result is that the boundaries of the bands for sparse hypergraphs
is given by the following theorem.

Theorem 1. Let an S-uniform hypergraph with S > 2, N nodes, n edges,
p the probability of rewiring, γ the threshold parameter evolve following the
dynamics described in Sect. 2, without the merging and rewiring mechanism.
For low mean degrees of the initial hypergraph (e.g., Sn

N
≈ 1), the magnetiza-

tion discontinuously changes at the following critical values of γ

γc =
k

S
, (4)
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where k ∈ Z such that N(k, S, 0) > 0 and k
S
≤ 1

2
or:

γc = 1− k

S
, (5)

where k ∈ Z such that N(k, S, 0) > 0 and k
S
> 1

2

In Figure 6, we show that the expectations coming from analytical anal-
ysis match the simulation results for mean degree equal to 2. For systems
with high mean degrees (approximately higher than 4), the previous analysis
does not work because inactive edges can still get re-activated due to overlap.
However, the boundaries of the bands still occur at rational numbers k

S
of

γ. We argue that this occurs as the trajectories in which inactive edges get
re-activated are rare and do not contribute significantly to the final state.

(a) Histograms of N(k, 10, 0) (b) Absolute magnetization vs Sγ

Figure 6: Illustration of Theorem 1, which calculates the locations of the bands. Pa-
rameters: N = 100, p = 0.5, S = 10, n = 20 edges. Subfigure 6a shows the fre-
quency of N(k, 10, 0) for k ∈ {0, .., 10} where N(k, l, t) is the number of edges of size
l with k nodes with opinion 1 at time t. The values of k with non-zero N(k, 10, 0)
are k = {2, 3, 5, 6, 7, 8}. Based on Theorem 1, we calculate the minority fraction of
the edges (k, 10) with k = {2, 3, 5, 6, 7, 8} and this gives the critical values of the bands
γc = { 2

10 ,
3
10 ,

4
10 ,

5
10} which match with the simulations in Subfigure 6b. In Subfigure 6b,

the blue vertical lines are the positions of the bands calculated by the previous theorem.

3.3.2. The height of the bands

We calculate the height of the bands, i.e., the final absolute magnetization
at equilibrium for sparse hypergraphs. To calculate this, we first characterize
initial configurations depending on their fraction of edges having a certain
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majority. Then, we use this information to calculate the probability of dif-
ferent initial configurations. Finally, we compute the final expected magne-
tization by computing the expected final state of each hyperedge based on
its initial majority. The expected final state of each edge is obtained under
the sparse hypergraph assumption.

To estimate the initial expected magnetization, recall that given an initial
As there are many different possible initial configurations. For example, if
As = 0.55, we can have with a high probability that about half of the nodes
have opinion 1; and with low with probability, we can also have that all the
nodes have opinion 0. To account for these different initial configurations,
we consider the following binomial probability for observing k nodes with
opinion 1:

p(k,As) =

(
N

k

)
Aks(1− As)N−k (6)

Then, the probability to observe an edge of size S with λ nodes with opinion
1 at fixed initial fraction α = k/N is:2

p(λ, k/N) = n ·
(
S

λ

)(
k

N

)λ(
1− k

N

)S−λ
(7)

By taking the product of p(λ, k/N) and p(k,As), we obtain the probability
to observe a edge with λ nodes with opinion 1 in an initial configuration with
k nodes with opinion 1. Using this probability, we can compute the initial
expected magnetization:

〈m(0, As)〉 =
N∑
k=0

min (S,k)∑
λ=0

p(k,As)p(λ, k/N)n ·m(λ) (8)

where m(λ) = 1
Sn

(2λ− S) is the magnetization of an edge with λ nodes with
opinion 1 and n is the number of hyper-edges.

From (8), we obtain the final expected magnetization by recalling that
when a hypergraph is sparse, the evolution of its edges are independent and
hence, determined by the magnitude of the initial majority:

2To write this last equation, we assume that the system is large enough as we are using

a sampling with replacement. The exact formula is instead: q(λ, k,N) =
(kλ)(

N−k
S−λ)

(SN)
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1. if γ < λ
S
< 1 − γ then e splits and the final magnetization does not

change,

2. if λ
S
> 1−γ then all its nodes with opinion 0 will eventually get opinion

1,

3. if λ
S
< γ then all its nodes with opinion 1 will eventually get opinion 0.

By applying, these three conditions to (8), we compute the expected final
magnetization:

〈m(∞, As)〉 =
N∑
k=0

p(k,As)

[
Sγ∑
λ=0

p(λ, k/N)m(λ)+

+

S−Sγ∑
λ=Sγ

p(λ, k/N)m(λ)+

+
S∑

λ=S−Sγ

p(λ, k/N)m(λ)

]
n

(9)
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Figure 7: Comparison of the Analysis with the Sparsity Approximation (Equation 9) and
the simulations for mean degree 1 and 1.5. Parameters: p = 0.55, N = 500, S = 10, n = 50
(for Subfigure 7a), n = 75 (for Subfigure 7b), AS = 0.55. The points and the shaded area
are the mean and the standard deviation of the trajectories respectively for 1000 initial
configurations. The black line is the analytical magnetization based on equation 9.
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Figure 8: Comparison of the Analysis with the Sparsity Approximation (Equation 9) and
the simulations for mean degree 1. Parameters: p = 0.55, N = 100, S = 10, n = 10,
AS = 0.55. The points are the mean of the trajectories respectively for XXX trajectories.
On the right, we have the convergence between the simulations and the analytical absolute
magnetization when increasing the sample size.

In Figure 7, we compare (9) with the simulations for mean degree equal to
1 and 1, 5. The analytic predictions for the final absolute magnetization are
compatible with the values coming from the simulations. We observe that
the match is better for mean degree equal to 1. This is expected as when the
mean degree is low, then the sparsity assumption is less violated. In Fig.8,
we have perfect match between the analytic formula and the simulations for
the limit case of mean degree equal to 1. Precisely, we obtain a relative
error lower than 10% which decreases with increasing sample size (see left
panels in Fig.8). Also, note that the relative error is higher for larger γ. This
possibly occurs because the number of possible final states increases with γ
and hence, we require more simulations to explore them.

When increasing the mean degree, the analytic predictions based on (9)
significantly underestimates the simulated values. The reason is that the
analytic prediction is valid under the assumption that there is no overlap
between edges. For high mean degree, the overlap is instead significant and
allows the initial global majority opinion to better diffuse in the system. Pre-
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cisely, recall that it is more likely to sample a hyperedge whose local majority
is equal to the global majority. In this sampled edge, nodes might change
their opinion to the global majority opinion. Because of the overlap, these
changes increase the number of nodes having the global majority opinion
not only in the sampled edge but also in its overlapping edges. Thus, the
expected number of edges with the local majority opinion equal to the global
majority opinion increases. In other words, overlap increases the absolute
final magnetization.

4. Conclusion

We have extended the adaptive voter model by including group interac-
tions. We have shown that the inclusion of group interactions drastically
changes the dynamics and can lead to fragmentation bands at equilibrium.
Specifically, fragmentation bands appear at equilibrium because the final
global majority can reach different values. This final value depends on the
critical size a majority should have in a group to convince the minority to
change their opinion. This type of final state is not present with only pairwise
interactions. Note that this type of final state is not present in the absence
of group interactions.

Second, different groups may share individuals, and this group overlap
might create geometrical frustration. The presence of this frustration creates
k-orbits as final states. Therefore, unlike the classical adaptive voter model,
the system does not always reach a single equilibrium configuration. Instead,
the system may get trapped in oscillations where some individuals change
their opinions periodically. Although this finding might not have direct ap-
plications, it shows how group interactions enrich the set of possible final
states from a mathematical point of view.

For analytical tractability, we have assumed an S-uniform hypergraph
as the initial topology. This is a simplification since real-world social hyper-
graphs are instead heterogeneous as individuals interact in groups of different
sizes and with non-random connectivity. Recently, in [24, 5], it was shown
that the heterogeneity of the initial configuration in presence higher order
interactions can significantly affect the system dynamics. Based on our re-
sults, we expect instead no drastic changes in the dynamics, but only an
increase in the number of fragmentation bands. It is still open for research
to study the interplay between group interactions and heterogeneous initial
configurations.
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Finally, extending the model to consider individuals with different im-
portance would be interesting. Some individuals might be more influen-
tial because of their status[25], reputation[26], or position in a hierarchical
structure[27]. It would be straightforward to account for the importance of
each individual when computing group majorities. This extension would al-
low for modelling scenarios where a more silent majority adopts the opinion
of a louder minority.
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Appendix A. Proof of Location of Bands

We prove Theorem 1, which describes the locations of the bands for S-
uniform initial configurations.

Let’s assume a system with N nodes initialized as an S-uniform hyper-
graph H at t = 0 with n edges. The threshold parameter is γ and the
probability of rewiring is p. The quantity N(k, l, t) describes the number of
edges in the hypergraph with k nodes with opinion 1 and size l at time t.

At a time t a random edge is selected and the dynamics of Section 2
are applied to it. To make the problem analytically tractable we switch off
merging/rewiring. We also assume that at each timestep only one node of the
selected edge flips its opinion. This assumption highly simplifies the analysis.
It is also reasonable since the case where e.g. ν nodes change opinions at
a timestep occurs with probability πν where π is the probability that each
minority in the selected edge changes its opinion. πν is a small number since
π ≤ 0.5 because it depends on the minority fraction. We list all the possible
changes to N(k, l, t) for some k and l after the dynamics act on the specific
edge selected. To start, we ignore changes to N(k, l, t) due to overlap of edges
with the selected edge but we consider them later on.

N(k, l, t+1) =



N(k, l, t) + 1, with p1 if k−1
l
> 1− γ and (k − 1, l) selected,

N(k, l, t) + 1, with p2 if k+1
l
< γ and (k + 1, l) selected,

N(k, l, t), with 1− p1 if k−1
l
> 1− γ and (k − 1, l) selected,

N(k, l, t), with 1− p2 if k+1
l
< γ and (k + 1, l) selected,

N(k, l, t)− 1, with p3 if k
l
> 1− γ and (k, l) selected,

N(k, l, t)− 1, with p4 if k
l
< γ and (k, l) selected,

N(k, l, t), with 1− p3 if k
l
> 1− γ and (k, l) selected,

N(k, l, t), with 1− p4 if k
l
< γ and (k, l) selected,

N(k, l, t), if k−1
l
≤ 1− γ and (k − 1, l) selected,

N(k, l, t), if k+1
l
≥ γ and (k + 1, l) selected,

N(k, l, t)− 1, if γ ≤ k
l
≤ 1− γ and (k, l) selected,

N(k, l, t), otherwise

,

(A.1)
where p1, p2, p3, p4 are transition probabilities that need to be found and
”(k, l) selected” means the edge selected has k nodes of opinion 1 and size
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l. For the quantities N(k, k, t) and N(0, l − k, t) there are two extra cases
resulting from the splitting process:

N(k, k, t+ 1) =

{
...,

N(k, k, t) + 1, if γ ≤ k
l
≤ 1− γ and (k, l) selected ,

(A.2)

and

N(0, l − k, t+ 1) =

{
...,

N(0, l − k, t) + 1, if γ ≤ k
l
≤ 1− γ and (k, l) selected

(A.3)

The intuition behind these lists is the following: N(k, l, t) can change only
if the edge selected at the given timestep is a (k− 1, l), a (k+ 1, l) or a (k, l)
edge since we assumed merge and rewire is switched off and only one node
changes opinion at each timestep. A small exception to this rule is when
we study N(0, k, t) or N(k, k, t) since we also need to consider an increase
because of the split edges created by the split mechanism (Equations A.2 and
A.3). In Equation A.1, the first two cases depending on p1 and p2 consider
increase of N(k, l, t) because influence occurs on (k−1, l) and (k+1, l) edges
respectively changing the opinion of a node from 0 to 1 and 1 to 0 respectively.
In the 6th and 7th cases depending on p3 and p4 we consider the possibility
that N(k, l, t) decreases when (k, l) is selected and influence occurs changing
a node from 0 to 1 or 1 to 0 respectively. The second to last case considers
the possibility that N(k, l, t) decreases because a (k, l) edge splits.

However, the transition probabilities have not yet been defined. These
depend on the probability of selecting an edge of a particular type e.g. (k, l)
and on the probability that influence or splitting occurs. In addition, we have
to consider changes to N(k, l, t) due to overlap of the edges further increasing
the correlations between the edges. To make this analysis tractable we use a
mean field approximation. We apply the following assumptions:

• the probability a node i in a selected (k, l) edge e has opinion si(t) at
time t is equal to the fraction of nodes with opinions si(t) in (k, l):

p(si = 0 | i ∈ e where e is a selected (k, l) edge) =
l − k
l

p(si = 1 | i ∈ e where e is a selected (k, l) edge) =
k

l

(A.4)
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• given that a node j in a selected edge (k, l) changes its opinion sj(t) = 0
to sj(t+ 1) = 1 (sj(t) = 1 to sj(t+ 1) = 0), a node i with opinion 0 (1)
in the system also changes its opinion with a probability proportional
l − k (k):

p

(
si(t+ 1) = 1

∣∣∣∣∣si(t) = 0, sj(t) = 0, sj(t+ 1) = 1, j ∈ e
where e is a selected (k, l) edge)

)
= b(l − k)

p

(
si(t+ 1) = 0

∣∣∣∣∣si(t) = 1, sj(t) = 1, sj(t+ 1) = 0, j ∈ e
where e is a selected (k, l) edge)

)
= bk

,

(A.5)
where b is the proportionality constant.

Combining these probabilities, the probability that a node with opinion
0 or 1 in a selected (k, l) edge e changes its opinion is respectively:

p(si(t+ 1) = 1 |, si(t) = 0, i ∈ e where e is a selected (k, l) edge) =
b(l − k)2

l

p(si(t+ 1) = 0 |, si(t) = 1, i ∈ e where e is a selected (k, l) edge) =
bk2

l

,

(A.6)
We can apply these assumptions for overlapping edges as well and we can

now express the transition probabilities as p1 = b(l−k+1)2

l
, p2 = b(k+1)2

l
, p3 =

b(l−k)2
l

, p4 = bk2

l
for a selected edge (k, l).

To study the bands, we assume without loss of generality broken symme-
try with positive initial magnetization. That means we assign opinion 1 to
nodes more frequently than we assign opinion 0 to the initial configuration.
We fix k = l and study the change of N(l, l, t) at one timestep:

〈δN(l, l, t+ 1)〉 = 〈N(l, l, t+ 1)〉 −N(l, l, t). (A.7)

When 〈δN(l, l, t + 1)〉 > 0 then there are (l, l) edges which contribute long
term to magnetization. They contribute long term because they are inactive
and therefore they are probabilistically fixed. ”Probabilistically” because,
due to overlap, some nodes of those fixed edges can change their opinion
re-activating the inactive edges. Therefore, for the rest of the analysis we
assume that the overlap is low enough (i.e. low mean degree) such that
inactive edges on average stay inactive.
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Let p(1, k, l, t + 1) be the probability that N(k, l, t) increases by 1 at t.
Similarly, we also define p(0, k, l, t+ 1) and p(−1, k, l, t+ 1).

Using p1, p2, p3, p4 and Equation A.1, 〈δN(k, l, t + 1)〉 can be expressed
as:

〈δN(k, l, t+ 1)〉 =
1

3

(
b(l − k + 1)2

l
H(

k − 1

l
− 1 + γ)p(k − 1, l, t− 1)+

+
b(1 + k)2

l
H(γ − k + 1

l
)p(k + 1, l, t− 1)−

−
(
b(l − k)2

l
H(

k

l
− 1 + γ) +

bk2

l
H(γ − k

l
) +

bk2

l
H(

k

l
− γ)H(1− γ − k

l
)

)
p(k, l, t− 1)

)
,

(A.8)

where p(k, l, t) is the probability of selecting an edge (k, l) at time t and H(x)
is the Heaviside step function (H(x) = 1 for x > 0, else H(x) = 0).

At t = 0 the hypergraph is S-uniform with n edges and thereforeN(k, S, 0) =
n for k ∈ {0, 1, ..., S}. We derive the value of γ for which 〈δN(S, S, t+1)〉 > 0
at a timestep t, since we expect the edges (S, S) to contribute the most to the
magnetization because they have the largest number of nodes with opinion
1 and they are fixed.

Using Equation A.8 for (S, S) edges we get:

〈δN(S, S, t+ 1)〉 =
b

3l
H(γ − 1

S
)p(S − 1, S, t). (A.9)

We try to find a condition of the threshold parameter γ such that there
exists a t when 〈δN(S, S, t+ 1)〉 > 0. If there is not such t then the quantity
〈δN(S, S, t+ 1)〉 is always 0 and we do not expect to see clear characteristic
bands. Therefore, we assume there exists t when 〈δN(S, S, t+1)〉 > 0. Let τ
be the minimum time where 〈δN(S, S, τ)〉 > 0. This means that γ > 1

S
and

p(S − 1, S, τ) > 0. If p(S − 1, S, τ) > 0 then there exists at least one edge
(S − 1, S) at time τ i.e. N(S − 1, S, τ) > 0. Due to our initial conditions,
this means either that N(S − 1, S, 0) > 0 or that there is a τ ′ < τ such that
〈δN(S − 1, S, τ ′)〉 > 0. The latter imposes additional conditions since, using
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Equation A.8, 〈δN(S − 1, S, τ ′)〉 can be expressed as:

〈δN(S − 2, S, τ ′)〉 =
1

3

(
4b

S
H(− 2

S
+ γ)p(S − 2, S, τ ′ − 1)

−
(
b

S
H(γ − 1

S
) +

b(S − 1)2

S
H(γ − 1 +

1

S
)

+
b(S − 1)2

S
H(−γ + 1− 1

S
)H(

1

S
− γ)

)
p(S − 1, S, τ ′ − 1)

) (A.10)

Thus, 〈δN(S−2, S, τ ′)〉 > 0 is positive if γ > 2
S

and p(S−2, S, τ ′−1) > 0.
If γ ≤ 2

S
there is not τ ′ < τ such that 〈δN(S − 2, S, τ ′)〉 > 0 at the expense

of N(S, S, t) and the magnetization. If γ > 2
S

and p(S − 2, S, τ ′ − 1) > 0
we repeat the previous procedure. This creates a domino effect until t = 0.
Therefore, the significant contributions to the magnetization depends on the
initial edges N(k, S, 0) where k ∈ {dS

2
e, dS

2
e + 1, ..., S − 1, S}. This means

that at t = 1, the initial edges that do not split, i.e. γ ≥ k
S

such that
N(k, S, 0) > 0, become (S, S) edges contributing to N(S, S, t). Increasing γ
leads to edges (k, S) with lower value of k at t = 0 not splitting and becoming
inactive (S, S).

Similarly, we can follow the same procedure for negative initial magneti-
zations by studying (0, S) edges. �
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