
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2023) 13:129
https://doi.org/10.1007/s13278-023-01120-w

ORIGINAL ARTICLE

Locating community smells in software development processes using
higher‑order network centralities

Christoph Gote1,2,5 · Vincenzo Perri2,5 · Christian Zingg1 · Giona Casiraghi1 · Carsten Arzig3 · Alexander von Gernler3 ·
Frank Schweitzer1,4 · Ingo Scholtes2,5

Received: 2 May 2023 / Revised: 8 June 2023 / Accepted: 25 August 2023
© The Author(s) 2023

Abstract
Community smells are negative patterns in software development teams’ interactions that impede their ability to successfully
create software. Examples are team members working in isolation, lack of communication and collaboration across depart-
ments or sub-teams, or areas of the codebase where only a few team members can work on. Current approaches aim to detect
community smells by analysing static network representations of software teams’ interaction structures. In doing so, they are
insufficient to locate community smells within development processes. Extending beyond the capabilities of traditional social
network analysis, we show that higher-order network models provide a robust means of revealing such hidden patterns and
complex relationships. To this end, we develop a set of centrality measures based on the MOGen higher-order network model
and show their effectiveness in predicting influential nodes using five empirical datasets. We then employ these measures
for a comprehensive analysis of a product team at the German IT security company genua GmbH, showcasing our method’s
success in identifying and locating community smells. Specifically, we uncover critical community smells in two areas of
the team’s development process. Semi-structured interviews with five team members validate our findings: while the team
was aware of one community smell and employed measures to address it, it was not aware of the second. This highlights
the potential of our approach as a robust tool for identifying and addressing community smells in software development
teams. More generally, our work contributes to the social network analysis field with a powerful set of higher-order network
centralities that effectively capture community dynamics and indirect relationships.

Keywords Community smells · Social debt · Higher-order networks · Path analysis · Centrality measures

 * Christoph Gote
 cgote@ethz.ch

 Vincenzo Perri
 vincenzo.perri@uni-wuerzburg.de

 Christian Zingg
 czingg@ethz.ch

 Giona Casiraghi
 gcasiraghi@ethz.ch

 Carsten Arzig
 carsten_arzig@genua.de

 Alexander von Gernler
 alexander_gernler@genua.de

 Frank Schweitzer
 fschweitzer@ethz.ch

 Ingo Scholtes
 ingo.scholtes@uni-wuerzburg.de

1 Chair of Systems Design, ETH Zurich, Weinbergstrasse
56/58, 8092 Zurich, Switzerland

2 Data Analytics Group, Department of Informatics, University
of Zurich, Binzmühlestrasse 14, 8050 Zurich, Switzerland

3 genua GmbH, Domagkstraße 7,
85551 Kirchheim bei München, Germany

4 Complexity Science Hub, Josefstädter Straße 39,
1080 Vienna, Austria

5 Chair of Machine Learning for Complex Networks,
Center for Artificial Intelligence and Data Science
(CAIDAS), University of Würzburg, John Skilton Str. 8A,
97074 Würzburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-023-01120-w&domain=pdf

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 2 of 28

1 Introduction

We are woken up by the alarm app on our phones; we use
navigation software to commute to work; we use social
media to interact with friends and collaborators around
the world. These seemingly trivial everyday activities
demonstrate our reliance on software and the resulting
importance of its effective creation and maintenance for
our modern society.

Software is typically created by teams. When joining
a team, developers have different specialisations and past
experiences. Thus, all developers have personal knowl-
edge unique to them. For example, team members could
be familiar with different programming languages, have
expertise in frontend or backend development, or have an
elaborate knowledge of a product’s past design decisions.
The key to a software team’s success is the effective com-
bination of the unique knowledge of its members (Blackler
1995).

When team members leave their team, they take their
unique knowledge with them. Therefore, if knowledge is
not adequately shared and managed, this unique knowl-
edge is lost to the remaining team. In software develop-
ment, such perils are referred to as social debt. Social debt
is defined as the “unforeseen project cost connected to a
‘suboptimal’ development community” (Tamburri et al.
2013). The sources of social debt within a team are called
community smells (Tamburri et al. 2013; Caballero-Espi-
nosa et al. 2023).

Community smells can only be addressed once they
have been identified and understood. To this end, social
network analysis (SNA) on static networks, in which
nodes represent developers and edges dyadic interactions
between them, are a widely used tool (Meneely et al. 2008;
Bird et al. 2009; Tamburri et al. 2015, 2019; Tamburri
2019; Almarimi et al. 2020). However, static network
models only allow insights into direct relations between
team members. Therefore, they cannot consider patterns
in development processes. As we show in this paper, this
means they can only be used to study patterns in the team’s
direct interaction topology and, thus, that trivial things
such as bottlenecks in software development processes—
i.e. in the sequences of actions team members need to per-
form to create software—would be completely overlooked.

To capture patterns in the dynamics between team
members, higher-order generalisations of network models
have been proposed (Lambiotte et al. 2019; Battiston et al.
2020; Torres et al. 2020). While the specific assumptions
about the higher-order patterns captured by those models
differ, they have in common that they generalise network
models towards representations that go beyond pairwise,
dyadic interactions.

This paper explores the use of higher-order network
analysis to identify community smells in the development
processes of software teams. Specifically, we analyse the
development activities of a product team at the German
IT security company genua GmbH using centrality meas-
ures computed on the higher-order network model MOGen
(Gote et al. 2020), which captures non-Markovian patterns
in paths in complex networks, i.e. patterns that require
memory to be modelled. Our contributions are as follows:

• We mine a unique curated dataset comprised of fine-
grained time-stamped path data from two issue trackers
and a code review platform tracking the actions of a
product team at genua over 20 years.

• To identify community smells, we consider five cen-
trality measures that serve as proxy for the influence of
specific nodes and node sequences in dynamical pro-
cesses. For these centrality measures, we demonstrate
that utilising a path model results in improved predic-
tions of influential nodes in time-series data compared
to a simpler network-based model, provided there is
enough training data. However, this approach results in
a significant generalisation error for smaller datasets.

• To address this problem, we define equivalent measures
for MOGen, a higher-order generative model for paths
in complex networks (Gote et al. 2020). We show that
our MOGen-based centrality measures effectively miti-
gate the generalisation error, i.e. they balance between
underfitting and overfitting the data.

• We apply our five MOGen-based centrality measures to
identify team members consistently taking over tasks
that no other team members perform, identifying two
community smells in the dynamic development process
that could have not been identified using static SNA.

• We validate our findings in semi-structured interviews
with five developers from genua. The team is aware
of one of these community smells and employs active
measures against it. However, the team was not aware
of the second community smell but could confirm it
ex post. Thus, we prove that our approach successfully
uncovers community smells and can aid software teams
in countering them.

This article is an extended version of the ASONAM 2022
contribution “Predicting Influential Higher-Order Patterns
in Temporal Network Data” (Gote et al. 2022). In this ver-
sion of our work, we extend our previous development and
assessment of MOGen-based centrality measures by apply-
ing them to the empirical software engineering domain
(Sects. 3, 6, 7). In doing so, we show the capability of
higher-order network methods in a real-world application.

Social Network Analysis and Mining (2023) 13:129

1 3

Page 3 of 28 129

2 Related work

2.1 Community smells

Social debt in software development refers to the “unfore-
seen project cost connected to a ‘suboptimal’ development
community” (Tamburri et al. 2013). The sources of social
debt are called community smells, which have been identi-
fied as a cause of issues in the source code (Palomba et al.
2017, 2018), e.g. using them to predict bugs (Eken et al.
2021).

The empirical software engineering literature has iden-
tified a wide variety of community smells (see Caballero-
Espinosa et al. 2023 for a recent review). Community
smells are usually caused by a lack of communication and
knowledge exchange between individuals or subgroups
within the team (Lin et al. 2017). This can be due to highly
independent development tasks, in which developers work
without communicating with others. Such developers are
referred to as “lone wolves” (Tamburri et al. 2019). Simi-
larly, groups of developers not communicating with the
remaining team constitute “organisational silos” (Rilling
et al. 2008). Over time, this lack of communication can
create a large “cognitive distance” between team mem-
bers, obfuscating and impeding interactions (the “black
cloud effect”). Ultimately, such problems result in a fur-
ther lack of interactions, referred to as “bottlenecks” or
“radio silence” (Tamburri et al. 2015). Additionally, a
large cognitive distance between team members can pro-
mote the emergence of other community smells, such as
“prima donnas”, “sharing villainy”, or “code-red” situ-
ations, which adversely impact development and reduce
overall trust within the team (Tamburri et al. 2015). Here,
prima donnas are developers who believe that their work
is superior to that of their colleagues and are unwilling
to collaborate or share knowledge with others. Similarly,
sharing villainy is the tendency of some developers to
hoard knowledge and resources, making it difficult for oth-
ers to access and use them (Tamburri et al. 2015). Finally,
code-red (Palomba et al. 2018) refers to situations where
only a few developers are capable of maintaining certain
areas of the codebase.

Several studies have shown that community smells can
have a significant negative impact on software develop-
ment projects, including delays, lower productivity, and
increased technical debt (Sedano et al. 2017; Ma et al.
2020). For example, community smells can predict if and
which developers stop contributing to a project (Huang
et al. 2021, 2022). The consequences are particularly
severe if the departing developers were lone wolves, part
of an organisational silo, or maintainers of code-red code.
This is expressed in the “bus number” or “truck factor”

which counts the number of developers that have to be “hit
by a bus”, before a software development project would
come to a halt (Izquierdo-Cortazar et al. 2009; Avelino
et al. 2016; Cosentino et al. 2015; Ricca et al. 2011; Fer-
reira et al. 2016, 2019). Through the dependency network,
community smells can further be amplified resulting in
a negative impact across the entire software ecosystem
(Schueller et al. 2022; Schueller and Wachs 2022).

Once community smells have been identified, measures
can be employed to counter them. For example, if the com-
munity smell is due to insufficient knowledge distribution,
the team can enhance task assignment (Etemadi et al. 2022)
through the use of agile methodologies such as Scrum
(Schwaber and Sutherland 2020) or Extreme Programming
(Beck 1999). Moreover, effective communication strategies
such as regular team meetings, code reviews, and pair pro-
gramming can help to reduce cognitive distance and promote
knowledge sharing within the team (Lin et al. 2017). In sum-
mary, the identification and mitigation of community smells
are crucial for managing social debt in software development
projects.

2.2 Social network analysis

Social network analysis (SNA) is an established method to
study community smells. These works typically study static
networks, where nodes represent developers and edges
dyadic interactions between them. For example, Meneely
et al. (2008) investigated collaboration structures using
developer networks derived from code churn information
to predict file-level failures. Similarly, Bird et al. (2009)
employed SNA to study coordination among groups of
developers with socio-technical dependencies and dem-
onstrated that network properties of a software component
could predict fault-proneness more accurately than depend-
ency or contribution information alone. Tamburri et al.
(2019) developed an automated approach to identify com-
munity smell types based on SNA. In related work, Tam-
burri (2019) suggested that studying social debt and com-
munity smells at the architecture level could help software
development communities eliminate critical organisational
flaws and reduce costs. Almarimi et al. (2020) showed that
network centralities were among the most influential char-
acteristics identifying community smells.

Conventional SNA methods are highly effective in iden-
tifying patterns within direct relationships captured in net-
work topology. However, in most networked systems with
sparse interaction topologies, the actual complexity stems
from higher-order patterns representing indirect influ-
ences (Lambiotte et al. 2019), which cannot be explained
by network topology alone. To account for these patterns,
higher-order generalisations of network models have been
proposed. These higher-order models capture information

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 4 of 28

about the network structure beyond pairwise, dyadic inter-
actions. Researchers have used higher-order methods to
model memory in paths on networks. For example, when
modelling itineraries through a transportation system, we
need to not only consider where passengers are and where
they can go (i.e. the transportation network), but also where
they came from (i.e. memory). To study random walks and
diffusion processes (Scholtes et al. 2014; Rosvall et al. 2014;
Lambiotte et al. 2015), detect communities and assess node
centralities (Rosvall et al. 2014; Scholtes et al. 2016; Xu
et al. 2016; Edler et al. 2017; Peixoto and Rosvall 2017)
analyse memory effects in clinical time-series data (Palla
et al. 2018; Krieg et al. 2020; Myall et al. 2021), generate
node embeddings and network visualisations based on tem-
poral network data (Saebi et al. 2020a; Tao et al. 2017; Perri
and Scholtes 2020), detect anomalies in time-series data on
networks (Saebi et al. 2020b; LaRock et al. 2020), enhance
deep learning models for networks (Qarkaxhija et al. 2022),
or assess the controllability of networked systems (Zhang
et al. 2021).

Furthermore, recent research has demonstrated the advan-
tages of multi-order models, which combine multiple higher-
order models, for various applications such as the generali-
sation of PageRank to time-series data (Scholtes 2017) and
path prediction in networks (Gote et al. 2020). By account-
ing for paths of different lengths, multi-order models offer a
more comprehensive understanding of complex networked
systems than higher-order models alone (Gote et al. 2020).
Gote et al. (2022) introduce centrality measures based on
multi-order models. In this paper, we show that such central-
ity measures enable a deeper analysis of team interactions,
information flow, and knowledge-sharing patterns. In the
context of software development processes, this means that
we can better identify potential bottlenecks, organisational

silos, and lone wolves, thus enhancing our ability to detect
and address community smells.

3 Data

To develop and test an approach to detect community smells
in software development processes, we require fine-grained
temporal data. In particular, the ideal dataset contains infor-
mation on which team member performed which action at
which point in time. To obtain such data, we collaborated
with genua GmbH, a German IT security company. As part
of this collaboration, genua gave us full access to the devel-
opment repository, the corresponding issue trackers, and the
code review platform for one of their core projects with a
development history of more than 20 years. In addition, we
had the opportunity for several extended discussions and
interviews with multiple members of the development team.

3.1 The development process at genua

Based on the availability of extensive and long-running
data, we focused our data collection efforts on a single team
developing one of genua’s core products over the past 20
years. In the following, we summarise the team’s develop-
ment process, which we visualise in Fig. 1. The development
team differentiates between bugs and features as two funda-
mental issue categories. However, while the prioritisation
process differs, the development process for features and
bugs is identical. Therefore, in the following, we refer to
both as issues.

Whenever a team member finds a new bug or identifies
a need for a new feature, an issue is created on the issue
tracker. Issues can be created by anyone with a technical

Fig. 1 Simplified representation
of the process to resolve a typi-
cal issue at genua. The process
takes place over multiple
platforms. Backward loops have
been removed

Social Network Analysis and Mining (2023) 13:129

1 3

Page 5 of 28 129

or development-related position. However, most new issues
are created either by customer managers reporting bugs
or feature requests from clients using genua’s products or
by developers identifying new bugs while working on the
codebase.

In weekly bug meetings and daily Scrum meetings, the
team discusses the prioritisation of currently open issues.
Subsequently, potential issue resolutions are discussed pri-
marily on the issue tracker. Once a promising issue reso-
lution has been identified, the issue is assigned to a team
member. Similar to OSS projects (Crowston et al. 2007), this
commonly occurs through self-assignment.

After being assigned the issue, the team member starts
developing the corresponding change on the team’s code
review platform. As an IT security company, one of genua’s
primary aims is to ship code with as few bugs as possible.
Therefore, each developed change is reviewed by a second
team member and integrated into the release version of the
codebase by a third team member. Following this process,
each change has been worked on by at least three separate
team members. Our data shows that for around 60% of all
issues, development, review, and integration are successfully
completed in direct succession. However, for the remain-
ing issues, either the code review or the integration fails,
requiring further development, thus repeating the process.
For readability, the resulting backward loops are not shown
in Fig. 1. However, we note that all completed changes
start with the development of a change and end with its
integration.

After successfully integrating a change, the correspond-
ing issue is marked as resolved on the issue tracker. Before
closing the issue, final quality assurance tests are performed
to ensure that the bug or feature works as intended in a wide
range of application scenarios. If this test is successful, the
issue is closed. Otherwise, the process continues with fur-
ther discussion or development.

3.2 Extracting paths capturing the development
process

Until 2010, the team used Bugzilla (Mozilla Foundation
1998) to track their issues. From then onwards, the team
transitioned to Redmine (Lang 2006). For code review, the
team uses the tool Aegis (Miller 2013). To obtain all actions
performed by team members for all issues and changes, we
developed crawlers processing the internal databases and
data storage structures of Bugzilla, Redmine, and Aegis.
Bugzilla’s and Redmine’s backends use a MySQL database.
To obtain time-stamped records of team members’ actions,
labelled by issue, we accessed these databases and selected
the respective columns. Aegis instead uses a tree of text files
as internal data storage. Here, we use a simple text-parsing
tool that extracts the issues and the developer actions from

these files. We performed name disambiguation to uniquely
identify each team member across all platforms. Finally, we
used a text-based approach to match the issues between the
three platforms. All team members and issues are repre-
sented by pseudo-anonymised IDs. For privacy and security
reasons, we were not allowed to process any user informa-
tion or the content of team members’ actions.

We capture the development process for each issue as a
time-resolved path, sequentially connecting all team mem-
bers contributing to it. To obtain paths, we order all actions
according to their time-stamp for each issue in ascending
order. We show an example of a resulting path in Fig. 2a.
Here, team member A reports an issue and engages in a dis-
cussion with B and C, each leaving a comment. After the
discussion, C self-assigns the issue and starts developing the
change required to resolve the issue. Once C completes the
development process, B reviews the changes. However, the
review fails as the code still contains errors. After C fixes the
errors in a renewed development process, B passes the code
review, and D integrates the changes into the main develop-
ment branch. Once integrated, team member D marks the
issue as resolved on the issue tracker, and E performs a qual-
ity assurance test before closing the issue.

We split the path into separate paths for issue tracker
(Bugzilla and Redmine) and code review (Aegis) platforms
(cf. Fig. 2b). This is done for three reasons: First, while the
development, review, and integration of each change must
be performed by three different team members, no such con-
straint exists for issue tracker platforms. Second, the code
review platform is only used by team members with develop-
ment responsibilities—a subset of all team members. Third,
we can expect that team members adapt their behaviour to

t

A

B

A

C

C

C

B

C

B

D

D

E

E

reports issue

comments

comments

comments

self-assigns issue

develops change

fails code review

develops change

passes code review

passes integration

marks issue as resolved

passes quality assurance test

closes issue

a) b) Extract paths from issue tracker
and code review data.

Issue Tracker Path:

Code Review Path:

A B A C C D E E

C B C B D

c)Merge consecutive actions by
same teammember (self-loops).

Issue Tracker Path:

Code Review Path:

A B A C D E

C B C B D

Fig. 2 Process of extracting issue tracker and code review paths for
an issue. Nodes on paths represent actions by different team members
A to E. The required consecutive actions to start and end develop-
ment, review, and integration in the code review process have been
merged into single steps

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 6 of 28

the platform they work on, which could lead to different
behaviours of team members on the two platforms, which
should be distinguished (Lisiecka et al. 2016). In total, we
extract a combined total of 18,949 paths from Bugzilla and
Redmine, and 24,360 paths from Aegis1.

3.3 Characteristics of the software development
team

In Fig. 3, we show the extracted path counts for a one-year
rolling window shifted by three-month increments. Apart
from the very beginning of our data, we have at least 500
paths for each platform in any given one-year interval. In
the issue tracker data, we observe a peak at around 2,500
paths per year in 2006. Afterwards, the number gradually
declines until stabilising at around 500 paths per year. With
path counts averaging 1,800, the number of code review
paths are significantly more consistent over time.

Figure 3 also shows the number of team members
involved in the issue tracking and code review processes.
Only those team members directly involved with the devel-
opment of changes to resolve issues interact on Aegis.
Therefore, with 20 to 30 team members, this core team is
significantly smaller than the full team interacting on the
issue trackers, which also includes customer managers, the
developers responsible for quality assurance, and members
of other product teams. While the size of the full team grew
significantly from around 25 team members in 2000 to
around 60 team members in 2018, the size of the core team
has been relatively stable over time.

In Fig. 4, we show interaction networks derived from all
issue tracker paths in 2005 and 2015, respectively. To allow

a comparison of the two teams, we fixed the network layout
between the two years. For reference, Figure 4 also shows
the network derived from all paths occurring in either 2005
or 2015. The node sizes correspond to the node degree—i.e.
the number of interaction partners—of each team member.
The figure highlights that the team has changed substantially
within the ten years, from 2005 to 2015. Only around 25%
of the team members present in 2005 are still part of the
team in 2015. Instead, we see a large number of new team
members in 2015. In addition, the activity of team members
has changed significantly. In 2005, team members A and B
are among those with the highest number of interaction part-
ners. In contrast, C, with a relatively small degree, is in the
network’s periphery. By 2015, the roles are reversed, with
C and E—who was not even a part of the team in 2005—
being the most connected nodes in the network, whereas the
degrees of A and B have shrunk. Overall, 176 unique people
contribute to either the issue tracker or the code review plat-
forms during our 20-year observation period.

0

1,000

2,000

nu
m
be

ro
fp

at
hs

Issue Tracker (Bugzilla/Redmine) Code Review (Aegis)

2003 2006 2009 2012 2015 2018
0

20

40

60

time

te
am

si
ze

Fig. 3 Path counts and team size for the issue tracker and code review
data over time. Counts were obtained for a rolling one-year window
shifted by three-month increments

Fig. 4 Issue tracker interaction networks for a 2005 and b 2015. The
network layout is identical for both networks, i.e. all nodes appear
in the same positions in (a) and (b). The full layout is shown above.
The node sizes correspond to the number of interaction partners in
the given year. Five team members A–E that we analyse in detail in
Sect. 6 are highlighted. All team members that appear in both 2005
and 2015 are shown in . The team members only appearing in 2005
and 2015 are displayed in and , respectively

1 Note that some issues take multiple changes to resolve, explaining
the higher path count for Aegis.

Social Network Analysis and Mining (2023) 13:129

1 3

Page 7 of 28 129

4 Methods

In the following, we introduce the methods used throughout
this manuscript to analyse genua’s development process.
Specifically, in Sect. 4.1, we first introduce some terminol-
ogy formally defining networks and paths. In Sect. 4.2, we
motivate the use of higher-order models before introducing
the multi-order model MOGen (Gote et al. 2020) in Sect. 4.3.
Finally, we introduce the MOGen-based centrality measures
predicting influential nodes and higher-order patterns to ulti-
mately detect community smells in Sect. 4.4.

4.1 Paths on network topologies

We mathematically define a network as a tuple G = (V ,E) ,
where V is a set of nodes and E is a set of edges. As a real-
world example, let us consider a public transport system.
Here, the individual stations are the nodes, and an edge
exists between two nodes if there is a direct connection
between the two stations. A user of the system moves from
a start to a destination following a path that is restricted
by the network topology. A path is defined as an ordered
sequence s = v1 → v2 → ⋯ → vls of nodes vi ∈ V , where ls
is the length of the path, and nodes can appear more than
once. We refer to a set of paths constrained by the same
network topology as path dataset P.

While empirical paths can come from various sources, we
can differentiate between two main types: (i) data directly
recorded in the form of paths; (ii) paths extracted from data
on temporal interactions, i.e. a temporal network. Examples
for the first case include clickstreams of users on the Web
or data capturing passenger itineraries from public transport
systems. The primary example of temporal data are records
on human interactions, which are a common source for stud-
ying knowledge transfer or disease transmission.

A temporal network is a tuple G(t) = (V ,E(t)) , where V is
a set of vertices, and E(t) is a set of edges with a time-stamp
E(t) ⊆ V × V × ℕ . We can extract paths from a temporal
network by setting two conditions. First, for two temporal
edges ei = (v1, v2;t1) and ej = (v2, v3;t2) to be considered con-
secutive in a path—i.e. s = ⋯ → v1 → v2 → v3 → ⋯—they
have to respect the arrow of time, i.e. t1 < t2 . Second, con-
secutive interactions belong to the same path only if they
occur within a time window � , i.e. t2 − t1 ≤ � . Using these
conditions, we can derive a set of paths P from any temporal
network.

In summary, the network topology constrains the paths
that are possible in real-world systems, such as transport
or communication systems. However, empirical path data
contain additional information on the start- and end-points
of paths and the specific sequences in which nodes are
traversed. Thus, the real paths by which nodes indirectly

influence each other can differ significantly from what we
would expect solely based on the network topology.

4.2 Modelling higher‑order patterns in path data

In the previous section, we showed that empirical paths
capture information not contained in the network topology.
Based on our arguments, one might assume that paths are
always better for capturing the dynamics on a networked
system compared to the topology alone. However, the valid-
ity of this argument strongly depends on the number of paths
that we have observed.

Let us consider the example shown in Fig. 5. As we can
infer from the colour-coded paths, a path in D will always con-
tinue to E if it started in A. In contrast, if the path started in B,
it will continue to F. But does this mean that paths from A to
F do not exist, despite being possible according to the under-
lying network topology? To address this question, we need to
consider how often we observed the paths from A to E and B
to F. If, e.g. we observed both paths only once each, we would
have little evidence suggesting that a path from A to F is not
be possible. In a nutshell, we should not mistake absence of
evidence as evidence of absence. Hence, in this case, using the
observed paths as indicators for all possible paths would over-
fit the data, and a network model that additionally accounts
for theoretically possible but unobserved paths may be more
appropriate. In contrast, observing both paths many times
without ever observing paths from A to F would indicate that
paths from A to F do not exist or are at least significantly less
likely than the observed paths. In this case, a network model
would underfit the data by not adequately accounting for the
patterns present in the empirical path data.

These examples underline that to capture the influence
of nodes in real-world networked systems, neither a net-
work model nor a limited set of observed paths is suf-
ficient. Instead, we require a model that can both capture
the memory in the path data and allow transitions that are
consistent with the network topology and cannot be ruled
out because path data have not provided enough evidence.

A

B

C D

E

F

Fig. 5 Exemplary set of paths on a network topology. We observe
three colour-coded paths from A to B (), from A to E (), and from
B to F (). The underlying network topology is shown in grey ()

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 8 of 28

4.3 MOGen

Our work is based on MOGen, a multi-order generative
model for paths (Gote et al. 2020) that combines infor-
mation from multiple higher-order models. In addition,
MOGen explicitly considers the start- and end-points of
paths using the special initial and terminal states ∗ and † .
MOGen represents a path v1 → v2 → ⋯ → vl as

where K denotes the maximum memory the model accounts
for. Going back to the example from Fig. 5, a MOGen model
with K = 2 would represent the path from A to E as

Hence, it would model the transition from D to E while con-
sidering if the path originated from A or from B (cf. our
discussion in Sect. 4.2).

Combining the representations of all paths in a set P,
the resulting MOGen model is fully described by a multi-
order transition matrix T(K) shown in Fig. 6. The entries
T
(K)

ij
 of T(K) capture the probability of a transition between

two higher-order nodes.
Considering no memory, a MOGen model with K = 1

is equivalent to a network model but for nodes ∗ and †
that additionally consider the starts and ends of paths. In
turn, a MOGen model with K matching the maximum path
length observed in P is a lossless representation of the set
of paths. Thus, MOGen allows us to find a balance between
the network model—allowing all observed transitions in
any order—and the observed set of paths—only allowing
for transitions in the order in which they were observed.

4.3.1 MOGen: Fundamental matrix

Building on the original model (Gote et al. 2020), we inter-
pret the multi-order transition matrix T(K) of MOGen as an
absorbing Markov chain, where the states (v1,… , vn−1, vn)
represent a path in node vn having previously traversed nodes
v1,… , vn−1 . Using this interpretation allows us to split T(K)
into a transient part Q representing the transitions to dif-
ferent nodes on the paths and an absorbing part R describ-
ing the transitions to the end state † . We can further extract
the starting distribution S . All properties are represented in
Fig. 6.

This representation allows us to compute the fundamental
matrix F of the corresponding Markov chain.

(1)∗→ v1 → (v1, v2) → ⋯ → (vl−K+1,… , vl) → †,

(2)∗→ A → (A,C) → (A,C,D) → (C,D,E) → †.

(3)F =
(
I(m×m) −Q

)−1

Here, I(m×m) is the m × m identity matrix, where m is the
number of nodes in the multi-order model without counting
the special states ∗ and † . Entries (i, j) of this fundamen-
tal matrix F represent the expected number of times a path
in node i will visit node j before ending. The fundamental
matrix F is essential as it allows us to compute path central-
ity measures for the MOGen model analytically.

4.4 Centrality measures

We now introduce five MOGen-based centrality measures
that we use throughout the subsequent analyses. For all
MOGen-based centrality measures, we also introduce the
corresponding measures for a network and a path model.

4.4.1 Betweenness centrality

Betweenness centrality considers nodes as highly influential
if they frequently occur on paths connecting pairs of other
nodes.

Network model In a network, the betweenness centrality
of a node v is given by the ratio of the shortest paths �st(v)
from s to t through v to all the shortest paths from s to t �st
for all pairs of nodes s and t:

Path model Standard betweenness centrality calculated
in a network model relies on the assumption that only the

(4)bv =
∑

s,t∈V

�st(v)

�st
.

00

T1,2

...

TK−1,K

TK,K

0

0

T0,1

T†

V 1 V 2 . . . V K †
∗

V 1

...

V K−1

V K

T(K) =

Fig. 6 Multi-order transition matrix T(K) of a MOGen model with max-
imum-order K. We split T(K) into a transient part Q () and an absorb-
ing part R (). S () represents the starting distribution of paths

Social Network Analysis and Mining (2023) 13:129

1 3

Page 9 of 28 129

shortest paths are used to connect two nodes. Using path
data, we can drop this assumption and consider paths that
are actually used. Therefore, we can obtain the betweenness
of a node in a given set of paths P by simply counting how
many times a node appears between the first and last node
of all paths.

MOGen For MOGen, we can utilise the properties of the
fundamental matrix F . Entries (v, w) of F represent the num-
ber of times we expect to observe a node w on a path con-
tinuing from v before the path ends. Hence, by multiplying F
with the starting distribution S , we obtain a vector contain-
ing the expected number of visits to a node on any path. To
match the notions of betweenness for networks and paths, we
subtract the start and end probabilities of all nodes, yielding

Equation (5) allows us to compute the betweenness central-
ity for all nodes in the MOGen model—i.e. higher-order
nodes. The betweenness centrality of a first-order node v can
be obtained as the sum of the higher-order nodes ending in v.

4.4.2 Closeness centrality (harmonic)

When considering the closeness centrality of a node v, we
aim to capture how easily node v can be reached by other
nodes in the network.

Network model For networks, we are therefore inter-
ested in a function of the distance of all nodes to the target
node v. The distance matrix D capturing the shortest dis-
tances between all pairs of nodes can be obtained, e.g. by
taking powers of the binary adjacency matrix of the net-
work where the entries at the power l represent the exist-
ence of at least one path of exactly length l between two
nodes. This computation can be significantly sped up by
using graph search algorithms such as the Floyd–Warshall
algorithm (Floyd 1962) used in our implementation. As
our networks are based on path data, the resulting network
topologies are directed and not necessarily connected. We,
therefore, adopt the definition of closeness centrality for
unconnected graphs, also referred to as harmonic central-
ity (Marchiori and Latora 2000). This allows us to com-
pute the closeness centrality of a node v as

where Dvi is the entry in the v-th row and i-th column of D.
Path model For paths, the distance between two nodes v

and w can be obtained from the length of the shortest sub-
path starting in v and ending in w among all given paths,
also resulting in a distance matrix D . Again, the closeness
centrality is then computed using Eq. (6), however, with
the modified distance matrix.

(5)bv = (S ⋅ F)v − Sv − Rv.

(6)cv =
∑

i∈V ,i≠v

1

Dvi

,

MOGen As MOGen models contain different higher-
order nodes, D captures the distances between higher-
order nodes based on the multi-order network topology
considering temporal correlations up to length K. While
we aim to maintain the network constraints set by the
multi-order topology, we are interested in computing the
closeness centralities for first-order nodes. We can achieve
this by projecting the distance matrix to its first-order
form, containing the distances between any pair of first-
order nodes but constrained by the multi-order topology.
For example, for the distances d{(A,B), (C,A)} = 3 and
d{(B,B), (C,A)} = 2 , the distance between the first-order
nodes B and A is 2. Hence, while for the network, the
distances are computed based on the shortest path assump-
tion, multi-order models with increasing maximum-order
K allow us to capture the tendency of actual paths to devi-
ate from these shortest paths. Based on the resulting dis-
tance matrix D , the closeness centrality is again computed
following Eq. (6). Therefore, while for all representations,
we compute the closeness centrality of a node using the
same formula, the differences in the results originate from
the constraints in the topologies considered when obtain-
ing the distance matrix D.

4.4.3 Path end

The path end ev of a node v describes the probability of a
path to end in node v.

Network model Path end cannot be computed for a net-
work model as the information on the start and end of paths
is not captured by this representation.

Path model For paths, ev is computed by counting the
fraction of paths ending in node v.

MOGen For MOGen, all paths end with the state † . There-
fore, ev is obtained from the transition probabilities to † of
a single path starting in ∗ . This last transition can—and is
likely to—be made from a higher-order node. We can obtain
the path end probability for a first-order node by summing
the path end probabilities of all corresponding higher-order
nodes.

4.4.4 Path continuation

When following the transitions on a path, at each point, the
path can either continue or end. With the path continuation
fv , we capture the likelihood of the path to continue from
node v.

Network model As path information is required, no com-
parable measure exists for networks.

Path model Similarly to the path end, we obtain path
continuation from a set of paths P by counting the fraction of

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 10 of 28

times v does not appear as the last node on a path compared
to all occurrences of v.

MOGen For MOGen, path continuation is given directly
by summing the probabilities of all transitions in the row
of T(K) corresponding to node v leading to the terminal
state † . As for other measures, for MOGen, the continuation
probabilities are computed for higher-order nodes. We can
obtain continuation probabilities for a first-order node v as
the weighted average of the continuation probabilities of
the corresponding higher-order nodes, where weights are
assigned based on the relative visitation probabilities of the
higher-order nodes.

4.4.5 Path reach

Finally, we consider path reach. With path reach, we capture
how many more transitions we expect to observe on a path
currently in node v before it ends.

Network model Again, the path reach requires informa-
tion on path ends. Therefore, it cannot be computed using
the network model.

Path model To compute the path reach �v for a node v, we
average the number of remaining transitions before the path
ends for all occurrences of v.

MOGen For MOGen, we can again use the properties of
the fundamental matrix F and obtain the expected number of
remaining transitions for any node v as the row sum

where Fvi is the entry in the v-th row and i-th column of
the fundamental matrix F . We subtract 1 to discount for
the occurrence of node v at the start of the remaining path.
Analogous to path continuation, we obtain the path reach of
a first-order node v by weighting the path reach of all cor-
responding higher-order nodes according to their respective
relative visitation probabilities.

5 Evaluating MOGen‑based centralities
in empirical path data

In Sect. 4, we argued that network models are likely to
underfit patterns in observed paths that are due to some paths
occurring less often (or not at all), while others appear more
often than we would expect based on the network topology
alone. Similarly, we expect the centralities computed directly
on the paths to overfit these patterns. We, therefore, expect
that when computing centralities based on the network or
the paths directly, we misidentify the nodes that are actually
influential. We further conjecture that the errors caused by

(7)�v = −1 +
∑

i∈V

Fvi,

overfitting are particularly severe if the number of observed
paths is low, i.e. if we have insufficient data to capture the
real indirect influences present in the complex system.

5.1 Experimental setup

We now test our MOGen-based centrality against network-
and path-based measures in five empirical path datasets. We
refer to Appendix A for further information and summary
statistics of these datasets. For each path dataset, we com-
pare three types of models: First, a network model contain-
ing all nodes and edges observed in the set of paths. Second,
a path model which precisely captures the observed paths,
i.e. the model is identical to the set of paths. Third, MOGen
models with different maximum-orders K that capture all
higher-order patterns up to a distance of K.

We operationalise our comparison in a prediction exper-
iment in which we aim to predict influential nodes and
higher-order patterns in a set of test data based on train-
ing data. Figure 7 provides an overview of our evaluation
approach.

5.1.1 Train‑test split

For our prediction experiment, we first split a given set of N
paths into a training and test set while treating all observed
paths as independent. We denote the relative sizes of the
training and test sets as ntr∕N and nte∕N , respectively.

5.1.2 Ground truth ranking

As introduced in Sect. 4, our path-based centrality meas-
ures exclusively capture the influence of nodes in a set of
observed paths. While we expect this to lead to overfitting
when making predictions based on training data, they yield
precise ground truth influences when applied to the test data
directly. To obtain a ground truth ranking (see Fig. 7b), we
sort the nodes and node sequences according to their influ-
ence in descending order.

5.1.3 Prediction of influential nodes and node sequences

The network model is the least restrictive model for a set of
paths. In contrast, the path model always considers the entire
history. With K = 1 , a MOGen model resembles a network
model with added states capturing the start- and end-points
of paths. By setting K = lmax , where lmax is the maximum
path length in a given set of paths, we obtain a lossless repre-
sentation of the path data. By varying K between 1 and lmax ,
we can adjust the MOGen model’s restrictiveness between
the levels of the network and the path model. We hypoth-
esise that network and path models under- and overfit the

Social Network Analysis and Mining (2023) 13:129

1 3

Page 11 of 28 129

higher-order patterns in the data, respectively, leading them
to misidentify influential nodes and node sequences in out-
of-sample data. Consequently, by computing node centrali-
ties based on the MOGen model, we can reduce this error.

To test this, we train a network model, a path model,
and MOGen models with 1 ≤ K ≤ 5 to our set of training
paths. We then apply the centrality measures introduced in
Sect. 4.4 to compute a ranking of nodes and node sequences
according to each of the models. In a final step, we compare
the computed rankings to the ground truth ranking that we
computed for our test paths.

5.1.4 Comparison to ground truth

While our models are all based on the same set of train-
ing paths, they make predictions for node sequences up to
different lengths. We allow the comparison of the differ-
ent models’ predictions through an upwards projection of
lower-order nodes to their matching node sequences. To this
end, we match the prediction of the closest matching lower-
order node vl ∈ L as the prediction of the higher-order node
vh ∈ H . Here, L is the set of lower-order nodes, e.g. from
the network model, whereas H is the set of higher-order
nodes from the ground truth. We define the closest matching
lower-order node vl as the node with the highest order in L
such that vl is a suffix of vh.

We evaluate how well the predictions match the ground
truth using an AUC-based evaluation approach. Our
approach is built on a scenario in which we aim to predict
the top 10% most influential nodes and node sequences in the
ground truth data. By considering this scenario, we trans-
form the comparison of rankings into a binary classification
problem, where for each node or node sequence, we predict
if it belongs to the top 10% of the ground truth or not. All
results reported throughout this manuscript refer to averages
over at least five validation experiments.

5.2 Comparison of the prediction quality

We now present the results of our prediction experiments
comparing the performance of network, path, and MOGen
models to predict the influence of nodes and node sequences
in out-of-sample data. For ease of discussion, we start our
analysis by focusing on the two datasets, BMS1 and HOS-
PITAL. Figure 8 shows the results for our five centrality
measures. For betweenness and closeness, we do not require
information on the start- and end-point of paths. Therefore,
equivalent measures for the network model exist. In con-
trast, no equivalent measures for the network model can be
computed for path end, path continuation, and path reach.

We show the AUC values for the different models and
for different relative sizes for our training and test sets. The
models shown on the x-axis are sorted according to the

Fig. 7 Overview of our approach to predict influential nodes and
node sequences based on path data. We start from path data which we
split into training and test sets. We learn three different models based
on the training data: (i) a network model containing all transitions
from the training data, (ii) a multi-order generative model containing
observed higher-order transitions up to a maximum order of K, and

(iii) a path model containing the full paths in the training set. Based
on these models, we predict the influence of nodes or node sequences
according to a broad range of centrality measures. We compare the
ranking of node sequences to the ground truth rankings obtained from
the test paths using AUC-based evaluation

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 12 of 28

maximum distance at which they can capture indirect influ-
ences. Thus, starting from the network model (N), via the
MOGen models (MK) with increasing K, the models become
more restrictive until ending with the path model (P).

Overall, the MOGen models outperform both the network
model and the path models. With less training data, the AUC
scores of all models decrease. However, as expected, these
decreases are larger for the network and path models. For
the betweenness and closeness measures, this results in AUC
curves that resemble “inverted U-shapes”. For the remain-
ing measures, for which no equivalent network measures
are available, we generally find that MOGen models with
K between 1 and 3 perform best, and the prediction perfor-
mance decreases for more restrictive models, such as the
path model. Our results highlight the risk of underfitting
for network models and overfitting for path models. We fur-
ther show that this risk increases when less training data are
available.

In Table 1, we show the results for all datasets and cen-
trality measures for a 30/70 train/test split. In general, we
find similar patterns to those discussed with Figure 8. How-
ever, for WORK and TUBE, the difference in prediction
quality between the MOGen and path models decreases, and
for some measures, the path model even yields better perfor-
mance. WORK and TUBE are those datasets for which we
have the highest fraction of total observed paths compared
to the number of unique paths in the datasets. As shown in
Table 4, BMS1 contains 59,601 total paths, of which 18,473
are unique. This means that, on average, each unique path is
observed 3.2 times. These counts increase to 4 for SCHOOL,
4.6 for HOSPITAL, 6.7 for WORK, and 132.9 for TUBE.
The good performance of the path model for these datasets
shows that the error we found with fewer observations is
indeed due to overfitting. In other words, if we have a suf-
ficient number of observations, we can compute the cen-
tralities on the path data directly. However, if the number of
observations is insufficient, the path model overfits the pat-
terns in the training data and consequently performs worse
on out-of-sample data. How many observations are required

to justify using the path model depends on the number of
unique paths contained in the dataset.

In conclusion, our results support our hypothesis. By not
capturing the higher-order patterns present in path data and
not considering the start- and end-points of paths, the net-
work model consistently underfits the patterns present in path
data. Similarly, the path model overfits these patterns. Con-
sequently, when using either model to rank the influence of
nodes and node sequences in path data, we obtain rankings
that are not consistent with out-of-sample observations. Pre-
diction performance can be significantly improved by using
MOGen models that prevent underfitting by capturing higher-
order patterns up to a distance of K while simultaneously
preventing overfitting by ignoring patterns at larger distances.

6 Detecting community smells at genua

The data from genua contain up to ∼2,000 paths for any
one-year interval (cf. Fig. 3). This means that analysing the
path data directly is likely to overfit the interaction patterns.
Therefore, in the following, we apply the MOGen-based cen-
trality measures to identify community smells within the
development process. We visualise our approach in Fig. 9. In
addition, we provide a detailed sequence of steps in Table 2.

6.1 Higher‑order interaction patterns

First, we infer the optimal maximum order for the issue
tracker and code review data using MOGen’s built-in model
selection approach. To account for changes over time, we fit
a separate MOGen model to all paths starting in a given one-
year period. We then move the one-year window by three-
month increments and repeat the process.

For the issue tracker, we detect an optimal maximum
order of one over the entire data. We conclude that issue
tracker interactions occur relatively unrestricted. This is
aligned with our knowledge of the development process

Fig. 8 Prediction results for
five centrality measures for the
BMS1 and SCHOOL datasets
and different train/test splits. N
and P indicate the network and
path model, respectively. M1
through M5 are MOGen models
with maximum orders between
1 and 5

Social Network Analysis and Mining (2023) 13:129

1 3

Page 13 of 28 129

at genua. Importantly, even a first-order MOGen accounts
for the start- and end-points of paths. The results presented
later will show that the consideration of these start- and end-
points, neglected by static network models, is essential.

For the code review process, we consistently find second-
order patterns over the entire 15-year observation period2.
This indicates that the subsequent step in the code review
process is influenced by the previous two steps. This implies
that to accurately predict who will perform the integration

task—incorporating code changes into the main codebase—
information about both the developer and the reviewer of a
change is necessary.

Based on these results, we analyse the issue tracker and
code review data using first-order and second-order MOGen
models, respectively.

Table 1 AUC values for all
models and measures on five
datasets for a 30/70 train-test
split (color figure online).

N and P indicate the network and path model, respectively. M1 through M8 are MOGen models with
maximum orders between 1 and 8 (shown in). The best-performing result for each dataset and measure
is highlighted in bold

time
windows

a) Extract
Issue Paths

time

A

C

F

G

A

B

D

C

D

E

G

A

C

B

E

G

b) MOGen (Visitation)

A

B C

D

E F

G

•
•

•
•

•

•
•

•
•

•
•

•
••

•
•

Track
most central

team
members
(, ,)
over time.

Most Central

Least Central

A C G

F

f) Actionable Insights:
Real-time application

of emerging community smells.

Assess central teammembers (, ,)
with respect to the full population ().

c) Temporal Analysis of
Path Centralities

e) Interviews d) Community Smells

Ce
nt
ra
lit
y

Time

Identify community smells
in development process.

Validate community smells
in semi-structured interviews.

Fig. 9 Overview of our approach to detect community smells in
the development process at the German IT security company genua
GmbH. a For each one-year time window, we extract paths for all
issues and their related changes. b We fit the MOGen model to the
extracted paths and identify the most central team members according
to the centrality measures introduced in Sect. 4.4. c We identify those
team members that are most central to the team and track them over

time. d We identify community smells by comparing the centralities
of those members with the values obtained for the remaining team. e
We validate the detected community smells in semi-structured inter-
views with team members from genua. f As our centrality measures
are computationally effective, they can be employed in real-time to
provide actionable insights on existing and emerging community
smells to software development teams

2 The code review data only start approximately five years after the
data from the issue trackers.

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 14 of 28

6.2 Identifying community smells in software
development processes

Our aim is to identify lone wolves, bottlenecks, organisa-
tional silos, and code-red situations in genua’s development
process—i.e. individual developers or small subgroups tak-
ing over specific tasks that nobody else takes over. To this
end, we compute the five centrality measures introduced in
Sect. 4.4. In addition to these five measures, we also com-
pute visitation, capturing the frequency of observing each
team member in any position on a path. As a result, we
obtain individual time-series for all team members and all
centrality measures over the 20 years.

To identify those team members that are more likely to
create community smells, we focus on individuals exhibiting
consistently high deviations from the team’s average cen-
trality scores. This is because such deviations suggest these
members may have unique or unbalanced roles within the
team, potentially leading to communication or collaboration
issues that contribute to the emergence of community smells.
To this end, we define a deviation score Sp,i , which aggregates
over all time-points t ∈ T and centrality measures c ∈ C:

In Eq. (8), i identifies the developer for whom the deviation
is computed and p ∈ P = {IT ,CR} denotes the development
platform, i.e. issue tracker or code review, for which the
score is computed. vp,c,i(t) and v̄p,c(t) represent the centrality
value of a developer and the mean centrality value across
all developers at time t, respectively. Aggregating across the
two platforms, we get a final score Si for each developer as

(8)Sp,i =
∑

t∈T

∑

c∈C

|||||

vp,c,i(t) − v̄p,c(t)

v̄p,c(t)

|||||

(9)Si =
1

|P|
∑

p∈P

Sp,i.

Based on Eq. (9), we select five team members (A–E) with
the highest values for Si as the focal point of our analysis.

6.2.1 Community smells in the issue tracking process

Figure 10 visualises the centrality values for the five selected
team members in the issue tracking data.

Visitation. From the visitation, we observe that all selected
team members have high activity levels. A and B have high
visitation probabilities until 2011, then are surpassed by C
and E. Developer C is responsible for over 30% of actions
from 2016 onwards. With the team having over 50 active
team members during this period, this is a notable finding.
We also observe a transition in activity from A to E, with A
dropping to 0% and E reaching around 15% from 2012.

Betweenness. Betweenness centrality allows us to capture
a team member’s importance as a transmitter of information.
We observe a substantial change in betweenness centrality in
2011, with many team members’ scores increasing signifi-
cantly, especially for C and D. This change could be due to
longer paths on the issue tracker, which would result in more
team members appearing in the middle of a path.

Closeness. The above-average values for closeness cen-
trality show that all highlighted team members are central
to the development process. It further indicates that they
closely collaborate with a large part of the remaining team.
When team members change roles and become less active
(e.g. A in 2012), they deviate back towards the median.

Path end. Path end quantifies how frequently team mem-
bers appear at the end of a path. From Section 3.1, we know
that for the issue tracker, this relates to quality assurance
and issue closing. Path end reveals that starting in 2011, E
appears at the end of over 60% of all paths, with other mem-
bers’ appearances significantly reduced. This changed in
2016 when also C appeared more frequently in this position.

Path continuation and reach. Finally, path continua-
tion indicates if the development process continues after an

Table 2 Sequence of steps to detect community smells in the development process at the German IT security company genua GmbH

1. Start with development platforms storing team’s time-stamped actions, labelled by issue.
2. Extract all actions from the databases.
3. Sort all actions according to their time-stamp.
4. Aggregate them at issue-level to form sequence of actions, i.e. paths.
5. Assign paths to rolling time windows (one-year long with three-month shifts, cf. Section 3).
6. Fit a MOGen model for each time window.
7. Compute path centralities for team members (cf. Section 4.4).
8. Identify members consistently deviating from average centrality (cf. Section 6.2).
9. Examine these members’ centrality score time-series.
10. Detect time-series anomalies.
11. Explain anomalies, forming community smell hypotheses.
12. Validate hypotheses through semi-structured interviews.

Social Network Analysis and Mining (2023) 13:129

1 3

Page 15 of 28 129

action from a team member, and path reach quantifies how
many steps are still left. Here, we find that most highlighted
developers show around average values. However, as already
indicated by path end, E represents an exception to this as
the development process rarely continues after E, and even
if it does, it still only does so for a few steps.

Hypotheses for the issue tracking process We summarise
our findings as a set of hypotheses regarding the issue track-
ing process. Firstly, the significant increase of betweenness
and average path reach in 2011 points to a notable change in
the development process at that time. As E joined the team
in 2011 and has held the final position in 60–80% of all
paths for over 10 years since we hypothesise that E took on a
new role in quality assurance or issue closing. Therefore, we
hypothesise that the knowledge of this aspect of the devel-
opment process is primarily concentrated in E, potentially
creating a bottleneck or organisational silo.

In addition, we have identified C as a highly active and
important transmitter of information within the team. How-
ever, other team members also frequently appear in the same
positions as C. Consequently, based solely on the current
data, we cannot definitively determine if C contributes to a
community smell.

6.2.2 Community smells in the code review process

In Fig. 11, we show the centrality values for the code review
data. Unlike in the issue tracker data, E does not appear in
the code review data at all. The absence of E from the code

review data provides further evidence for the unique position
of E we hypothesised based on the issue tracker data.

Visitation. Team members A–E exhibit similar visitation
probabilities and thus maximum activity levels, maintaining
them over multiple years. Their highest activity levels occur
at different times, with clear handoffs between members (e.g.
B and D from 2012 to 2014). Similar to the issue tracker
process, we again find C to be very active and highly central.

Betweenness and path end. Based on our knowledge of
genua’s code review process (cf. Sect. 3.1), we can interpret
the betweenness centrality as code review activity and path
end as integrations. The betweenness shows that from 2007
onwards, C performs more code reviews than any other team
member. Analysing the time-series of betweenness and path
end together, we observe that upon joining the team, mem-
bers initially focus on development and review tasks. They
only begin to take on integration tasks after several years
with the team. For instance, C assumes this role after six
years, while D does so after seven years. Notably, path end
reveals that only B, C, and D perform integration tasks (i.e.
appear at the end of paths) at any given point in time.

Closeness. As for the issue tracker process, we find
above-average closeness values of developers A–E. Although
we do not gain any additional insights regarding community
smells at this stage, this substantiates the validity of our
focus selection.

Path continuation and reach. Path continuation and path
reach are below average for all highlighted team members.
This is consistent with their high path end, indicating that
they perform integration tasks.

Fig. 10 Centrality values for
the five selected team mem-
bers in the issue tracker data
(Bugzilla/Redmine) over time.
The significant increases in
betweenness and average path
reach in 2011 point to a notable
change in the development pro-
cess at that time. As indicated
by path end, path continuation,
and path reach, E has held the
final position in 60–80% of
all paths since 2011. The high
visitation and betweenness of
C identify C as a highly active
and important transmitter of
information within the team,
although other team members
also frequently appear in similar
positions

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 16 of 28

Hypotheses for the code review process We find that team
members need multiple years of project experience to perform
integration tasks. This makes the team potentially vulnerable
when experienced members leave. With only very few people
performing integrations at any point in time, we hypothesise
that this represents a code-red situation.

As for the issue tracker, we have identified C as highly active
and an important transmitter of information. Even the study of
node centralities in the code review process has not given us
conclusive insights on the role of C, therefore motivating fur-
ther analyses. Uniquely, our MOGen-based centralities allow us
to quantify the importance of not only nodes, but also edges
in the network. In Sect. B, we examine the centralities of all
edges, where C is either the target or the source to determine the
extent of C’s interactions with various team members. Through
this analysis, we assess whether C’s interactions are limited to
a small subset of the team or if they involve a broader range of
team members. This ultimately helps us understand the extent
of knowledge sharing involving C. Our results show that while
C is holding significant project knowledge, C’s broad interac-
tions with various team members, both as sender and recipient,
indicate that C is not a lone wolf, and the team likely has active
measures in place to promote knowledge exchange. Therefore,
we do not consider C as a potential community smell.

7 Validating our results in semi‑structured
interviews

Based on the analysis of the data, we have hypothesised that:
(i) E constitutes a bottleneck or organisational silo in the issue
tracker process related to either the quality assurance process
or the closing of issues. In addition, we found that (ii) the inte-
gration task in the code review process represents a code-red
situation, as only very few team members with extensive expe-
rience perform it. However, based on the second-order interac-
tion patterns, we conjectured that (iii) the team has measures
in place to promote broad interactions between team members.

To test these hypotheses and simultaneously validate the
performance of our evaluation approach, we conducted semi-
structured interviews with five members of genua that were
or currently are members of the analysed team. In particular,
we had the opportunity to interview three of the highlighted
team members—B, D, and E. Besides those, we spoke with
two additional team members, which we refer to as F and
G. All interviews lasted approximately one hour and were
conducted without the aid of any supplementary material.
The interviews were conducted in March of 2021 in German,
with the transcripts subsequently being translated into Eng-
lish. Following each interview, we debriefed the interviewee
and discussed the set of figures shown throughout the previ-
ous sections. We performed all evaluations and the selection
of highlighted team members solely based on their pseudo-
anonymised ID (cf. Sect. 3.2). After sending our results to

Fig. 11 Centrality values for
the five selected team members
in the code review data (Aegis)
over time. Visitation shows that
team members have similar
maximum activity levels which
they maintain over multiple
years. Betweenness and path
end can be interpreted as code
review activity and integrations,
respectively. Their time-series
indicate that upon joining, team
members initially focus on
development and review tasks
and take over integration tasks
only after multiple years. From
path end, we further observe
that only very few people per-
form integrations at any point
in time

Social Network Analysis and Mining (2023) 13:129

1 3

Page 17 of 28 129

genua, the team de-anonymised the five highlighted team
members for the subsequent interviews.

All interviews started with general questions about the
team and the interviewee’s role and career within the pro-
ject. Based on our quantitative findings, we designed our
subsequent questions around the two community smells
we detected. Following this structure, we first report
the responses to questions aimed at validating that our
approach is capable of identifying those team members
most central to the development process. Subsequently,
we present our findings concerning the community smell
in the issue tracker process. Finally, we summarise the
responses to our questions addressing the code-red situa-
tion in the integration task during the code review process.

7.1 Essential team members

To validate our approach of detecting influential team
members using centrality measures, we asked every inter-
viewee to name three team members essential for the pro-
ject, which cannot include themselves. The aggregated
results from all five interviews are shown in Table 3.

In total, only two interviewees mentioned a team member
not highlighted in our data. Interestingly, both interview-
ees mentioned the same team member, which we refer to
as H. When we asked why this team member was critical,
we learned that H took over a large part of the work from D
after D changed teams in 2018. As our data end at the end of
2018, most of this period is outside our observation period.
Thus, overall, we could confirm that our approach is effec-
tive at detecting essential team members.

The counts with which different team members were
mentioned also match our expectations. A who stopped
contributing in 2012 is mentioned only once. Instead, most
interviewees consider current or more recent team members
as more important. That said, E, whom we hypothesise to be
a bottleneck or organisational silo, is only mentioned once.
We further discuss this result in the following section.

7.2 The quality assurance process

In Sect. 6.2.1, we found that both the betweenness centrality
and the path reach increased substantially for some of the
team members. We hypothesised that this is due to a newly
introduced or significantly extended quality assurance pro-
cess headed by E. However, we could not fully rule out that
the increases were related to the transition from Bugzilla to
Redmine, which occurred around 2010.

As we found during our interviews, the transition from
Bugzilla to Redmine did not modify the development
process.

“The process didn’t change much. The categories and
priorities may have looked minimally different, but the
process itself [...] there nothing has changed.” (state-
ment by D)

B confirmed that the development process itself did not
change, arguing that

“[t]his [Bugzilla] was just a tool.” (statement by B)

When asking for the reason behind the transition, we learned
that

“[t]he switch [from Bugzilla to Redmine] was made
mainly because they wanted to track features that were
promised to customers, which was not possible with
Bugzilla.” (statement by E)

Further, the team is not aware of any causal relationship
between the transition and E joining the team:

“No, I think this was pure chance.” (statement by E)

Thus, we conclude that the transition from Bugzilla to Red-
mine was not accompanied by any significant change in the
development process.

Next, we aimed to determine how the quality assurance
process worked before and since E joined the team. Here,
we found that before E joined, the team used an internal
testing setup:

“A unique aspect of Aegis is that for each bugfix or
feature that you develop, you have to write a test. You
then need to execute this test twice—once with your
changes and once without your changes. Without your
changes, the test needs to fall on its nose and fail. With
your changes, the feature is now there, and the test
is successful. Through this process, we have already
tested the code. Not only developed but simultaneously
also tested.” (statement by D)

In addition to the testing by the development team,

“[t]he customer managers have a natural interest to test
new features before installing them for a customer.”
(statement by B)

Table 3 Number of times
each team member was
mentioned when asking our five
interviewees to name the three
team members most important
for the development process
(excluding themselves)

The congruence with our
highlighted team members is
remarkable as, in total, 176 dif-
ferent people contributed to
either the issue tracker or the
code review platform during our
20-year observation period

A B C D E other (H)

1 4 4 3 1 2

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 18 of 28

However, with both the product and the customer base grow-
ing significantly, the team eventually introduced an external
quality assurance process:

“The BSI [Federal Office for Information Security]
responsible for the certification of [the product]
requested an additional quality assurance process con-
ducted by an external person not part of the develop-
ment team. I became this person.” (statement by E)

Over the last ten years, E has developed a meticulous testing
setup allowing the evaluation of new releases in environ-
ments similar to those used by genua’s clients. However, as
we hypothesised,

“[n]obody apart from E knows how the testing envi-
ronment works.” (statement by B)

E confirmed this, stating:

“I am effectively the entire quality assurance depart-
ment for [the product]. In moments where I don’t feel
like doing it, go on holiday, or am busy with other
things, it [new changes] remains without quality assur-
ance.” (statement by E)

So what happens if E can no longer perform the work?

“Certainly, nobody would know my test environment
and my tests at a deeper level. One or two people
have performed tests of patches—this means they
have effectively tested a new version of the software
with the existing set of tests. However, I am the only
one who knows the setup in depth and knows how
to properly create new tests or adapt tests for new
features.” (statement by E)

In other words, there would be severe consequences for
the team:

“If [E] is absent or unable to perform the work,
we have a massive problem. Quality assurance is
undoubtedly something where we have [E] who has
done this for many years and is genuinely the only
one.” (statement by G)

Despite these consequences, only G, who has also worked
in quality assurance, mentioned E as one of the most
important team members. Also, no steps are taken to miti-
gate the potential consequences:

“Concerning me, if there are any steps taken to moder-
ate the consequences if I was no longer there? I don’t
know; I haven’t witnessed any.” (statement by E)

We argue this is particularly critical as the external quality
assurance process, which E is responsible for, was explicitly
requested by the Federal Office for Information Security and
is thus required to obtain the product’s certification.

In conclusion, the interviews confirm our hypothesis that
E is crucial for the quality assurance of the product. We
further learned that E is the only team member with detailed
knowledge of the testing environment. Hence, our quanti-
tative analysis correctly identified E as a bottleneck in the
issue tracker process and as an organisational silo regarding
the quality assurance process. Interestingly, when asked to
name team members essential to the development process’
functioning, E was only named once. This shows that espe-
cially the core team, responsible for the development of new
features, is not actively aware of this community smell. It
also explains the lack of measures in place to mitigate the
consequences emerging if, for any reason, E drops out.

Overall, we validate that our method successfully detects
community smells. We were further able to show that in
this case, the team was not widely aware of the community
smell and the corresponding risk. But what can a team do
to mitigate the risk? To address this question, we next look
at the integration task in the code review process.

7.3 The integration of changes

Our quantitative analysis revealed that the integration task is
only performed by a few team members with multiple years
of experience in the project. However, our analysis of sec-
ond-order nodes showed that these team members not only
interact with each other but instead with a broad spectrum of
other team members. Therefore, we hypothesised that there
are active processes present in the team to (i) ensure that
there are sufficient team members to perform integrations at
all times and (ii) facilitate the spread of knowledge among
team members.

During our interviews, everyone confirmed that indeed,
to perform integrations, deep insights into the structure and
development history of the product are required, which are
very hard and time-consuming to obtain:

“[The product] is now significantly older than 20 years,
and it still exists, [...], but there were multiple gen-
erations of developers that have worked on it. Those
are now gone again, which means that there is quite a
lot of knowledge—especially undocumented knowl-
edge—concentrated in just a few team members.”
(statement by D)

This rich history also contains numerous design decisions
that might look wrong initially but were made for good
reasons.

“With certainty, things that look peculiar at first glance
[today] had to be done exactly like this for reasons that
date back six, eight, or ten years. The longer you are
part of the team, the more corners of the product you
get to know, allowing you to make changes relatively

Social Network Analysis and Mining (2023) 13:129

1 3

Page 19 of 28 129

efficiently without running the risk of breaking every-
thing in another place.” (statement by E)

This complexity makes it very difficult for newcomers to
get started contributing to the project, and even experienced
team members have a hard time understanding all aspects
and use cases:

“I think the initial barrier of entry is very high for
[the product]. This means that while experienced
Unix, Pearl, and C developers can collaborate on a
small subarea, they lack the bigger picture of how the
product works as a whole and how it is deployed with
our clients.”
“I would personally argue that even a long-term devel-
oper of [the product] could not put the product in oper-
ation or configure the product for a client. Even those
developers don’t know how the different components
interact and how they, therefore, need to be configured
as a whole.” (statements by F)

To cope with this complexity, the team has defined multiple
roles corresponding to different tasks in the development
process.

“There are three different roles: the role of the devel-
oper, the role of the reviewer, and the role of the inte-
grator. All those who participate are, in any case, first
developers. A few less are reviewers. For example,
new trainees are initially not allowed to review.” (state-
ment by D)

To become an integrator, team members indeed need multi-
ple years of experience working on the product.

“We only assign the integrator role to experienced
developers who see the bigger picture.” (statement by B)

We note that commonly a single team member has multiple
roles, with experienced team members taking over all three
roles depending on the need.

Over the 20 years of development history included in our
analysis, we found that three to four team members perform
integrations at all points in time. However, this count is not
something the team consciously keeps track of but rather a
result of the code review process in which the developer,

reviewer, and integrator of a change cannot be the same team
member.

“It’s purely a practical problem as if one [integrator]
is on holiday and another one is sick, nobody can inte-
grate. Therefore, you need a third one that can inte-
grate.” (statement by D)

If there is a lack of integrators, the tasks are given to the next
most experienced team member.

“You have to keep the process going. When you real-
ise, ok, we have one resource that integrates and five
developers waiting for someone to integrate, then you
say, ok, who is the second most experienced now? If
it still doesn’t work, you say, who is the third most
experienced now? And then you give the integrator
role to so many people until it works.” (statement by B)

However, the constraints of the review process do not
explain why the team does not form subgroups that con-
tinuously review and integrate the changes developed by
each other. Here B, who has been with the team for the full
observation period, told us:

“In the beginning, everyone had their own area. There
was one who did the WWW relay, and the other one
had to do the IP relay. When we wanted to do five
features in one release, then everyone was assigned a
different feature.”
“Then we restructured the whole thing by introducing
the Scrum process where now the team as a whole is
responsible for all things that are done. Thus we tried
to break the whole thing up a bit.” (statements by B)

Thus, by introducing Scrum, the team actively and con-
sciously tries to spread knowledge about the product
throughout the team.

“One of the philosophies of Scrum is that everyone can
do everything to address exactly the problems arising
when the bus comes [referring to the truck factor, which
is also known as the bus factor], or Google simply pays
more. Thus we try to counteract exactly these problems
in advance through XP [Extreme Programming] and

Table 4 Summary statistics for
our five empirical path datasets

Paths Nodes on path Network topology

Total Unique Mean median Nodes Links

BMS1 59,601 18,473 2.51 1 497 15,387
TUBE 4,295,731 32,313 7.9 7 276.0 663
SCHOOL 103,260 25,831 2.5 2 242 8,297
HOSPITAL 62,676 13,578 4.8 5 75 1,137
WORK 7,832 1,170 2.5 2 92 753

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 20 of 28

pair programming [deliberate pairing of team members
with different expertise].” (statement by D)

In addition, the review process also contributes to knowledge
sharing within the team.

“Given the complexity of [the product], we only have
relatively few developers. Whenever something is
changed, someone has to look at it [review and inte-
grate it], which means that there is inevitably a mix of
what people see.” (statement by G)

However, while, as we could show, these efforts lead to a
strong mixing of interaction partners, there remain some
areas in which team members specialise.

“However, I think there are still comfort zones where
people make initial changes and whom you let do it
[make changes in a certain area of the codebase].”
(statement by G)

Also, as D experienced in another project, even three experi-
enced team members can leave in short succession, causing
trouble for the remaining team.

“I had the plan to switch from [the analysed project] to
[the project I’m in now] for two months to have a look
at the other project. They have a different programming

language, a different framework etc. We were in the pro-
cess of scheduling when we would start when one of the
colleagues from that project quit. Then we said, ok, let’s
do that right away as then I’ll get some more information
from him. Because he quit, we decided that I’d switch
completely. Afterwards, it didn’t take long, and two more
core developers from the team quit, and that was pretty
hard. A lot of knowledge left very quickly, and it often
happens that I read some code that I don’t know and
that I don’t understand right away. Then it takes me a lot
longer. Also, the other remaining core developers need
to look these things up because it’s not their expertise. In
that situation, I felt the bus factor very hard. There you
notice that there was quite a bit of sand in the gears.”
(statement by D)

Thus, based on our MOGen-based centrality measures, we cor-
rectly identified the integration process as a code-red situation.

In conclusion, our quantitative analysis revealed that the
team succeeded at enabling at least three team members to
perform integrations at any point throughout our 20-year
observation period. Integrations are the most challenging part
of the code development and review process. They require
an in-depth overview of the project that due to its long and
complex history, even experienced newcomers need multiple
years to obtain. To facilitate the diffusion of knowledge, we

Fig. 12 Centrality of all edges
in the MOGen model with K = 2
in the Aegis data. All edges to
C that reach a total visitation of
at least 2% in any given year are
highlighted. The median and the
25% to 75% quantile are shown
in grey

Social Network Analysis and Mining (2023) 13:129

1 3

Page 21 of 28 129

have identified three key measures employed by the team:
First, a strict code review process in which all three parts of
introducing a new change to the product must be performed
by different team members. Second, Scrum, where the whole
team is involved and responsible for new milestones in the
project. Third, the team employs Extreme Programming and
pair programming, where team members with different areas
of expertise are deliberately paired to jointly develop a change
and share knowledge in the process.

As we found during our quantitative analysis, these meas-
ures allow the team to significantly reduce the reliance on any
individual team member. We argue that applying these already
established measures to the quality assurance process would
also reduce the risk concentration in E that we observed there.
However, it would also come with increased costs as an addi-
tional team member would need to be involved in the quality
assurance process. The resulting additional communication
overhead would further lead to a reduction in individual pro-
ductivity (Gote et al. 2021). Finally, as we saw with the last
example, risks can never be entirely eliminated. Also, the impor-
tance of cascade processes, where the departure of one team
member causes other team members to leave, needs to be further
explored (Burkholz and Schweitzer 2018; Callaway et al. 2000).
Thus, the best strategy that a team can take is to continuously
evaluate the team’s risk concentrations, allowing it to be aware

of the risks and act accordingly. Through our interviews, we
could validate that the centrality measures around the MOGen
model proposed in this manuscript are a powerful, versatile, and
fine-granular way to capture and quantify who holds knowledge
and performs certain aspects of the development process and
how this knowledge is shared within the team.

8 Threats to validity

We now discuss the threats to validity for our empirical
study identifying community smells, which we discussed
in Sects. 3,6,7.

First, applying our approach and the centrality measures
to software development data ranging over more than 20
years yields an immense amount of detail, as shown in the
result figures throughout this manuscript. As mentioned in
Sect. 6.2, this amount of detail is both a major strength and
weakness of our analysis. On the one hand, it allows us to
gain deep insights into any aspect of the development pro-
cess. However, on the other hand, it makes selecting the
focus of our analysis challenging. We have opted to per-
form a detailed analysis for a subset of team members. Here,
we specifically looked for instances where team members
show extreme values—both low and high—for our centrality

Fig. 13 Centrality of all edges
in the MOGen model with
K = 2 in the Aegis data. All
edges from C that reach a total
visitation of at least 2% in any
given year are highlighted. The
median and the 25% to 75%
quantile are shown in grey

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 22 of 28

measures. Our results demonstrate that this approach works
well to identify essential members of the team. However, as
we found with the quality assurance process, team members
are not necessarily aware of all community smells within the
team. Thus, while the community smells we identified were
confirmed in our interviews, our analysis approach cannot
guarantee that these are the only ones present in the team.

The second potential threat to validity originates from the
data used for our analyses. Here, we assessed all available
data from the issue trackers and the code review platform.
In our interviews, we further confirmed that the vast major-
ity of development processes appear on these platforms.
However, with personal communication, email, or online
chat, there are additional communication channels used for
knowledge exchange that are not available for our analyses.
We further learned that processes such as Scrum meetings or
pair programming that we identified to be essential in avoid-
ing community smells are not recorded and, therefore, do not
appear in our data. Through our interviews, we were able
to corroborate our quantitative findings made without this
data. Nevertheless, there are likely other team members in
crucial roles, such as the chairs of the Scrum meetings, that
are not captured by the present data. In future work, we will
extend our community smell detection method to include

additional data sources, e.g. by also tracking developers’
activity directly in the codebase (Gote et al. 2019).

Third, throughout our analysis, we make the critical
assumption that not observing a team member performing a
task means that this team member cannot perform the task.
Conversely, we assumed that if we only observe a specific sub-
set of team members performing a task, these are the only team
members who can take over the task. Basing our evaluation on
this assumption, our quantitative approach cannot be used in
an unsupervised manner to detect community smells entirely
independently. Instead, our method aims to inform software
development teams and their managers on where community
smells are likely to exist. Subsequently, similar to our inter-
views, the team itself can perform an informed further inves-
tigation and draw the appropriate consequences. We argue that
this is the best we can do, as due to privacy and intellectual
property considerations, we do not have any data on the con-
tent of interactions—i.e. the comments written by team mem-
bers and the developed source code—and, as mentioned above,
we are missing all data on personal interaction channels. While
this presents a threat to the external validity of our approach, it
does not affect the results presented here, as all findings could
be validated in our semi-structured interviews.

Finally, our methodological approach to detect commu-
nity smells is based on our knowledge about the development

Fig. 14 Centrality of all edges
in the MOGen model with K = 2
in the Aegis data. All edges to
A that reach a total visitation of
at least 2% in any given year are
highlighted. The median and the
25% to 75% quantile are shown
in grey

Social Network Analysis and Mining (2023) 13:129

1 3

Page 23 of 28 129

process applied at genua that we discussed in Sect. 3.1. This
means that it is not possible to directly carry over our inter-
pretations of the different centrality measures to teams using
a different development process. However, at its core, our
method is able to identify central nodes and structural bottle-
necks in any path data set. Therefore, while the development
processes might differ, we are convinced that our method
is applicable to other teams. In fact, it should apply to any
system for which we can observe path data. Nevertheless,
this needs to be tested in an extended study considering data
from additional teams and systems in future work.

9 Conclusion

In this paper, we proposed a new approach to locate commu-
nity smells in software development processes using higher-
order network centralities. Our work expands the current
understanding of social network analysis (SNA) by address-
ing the limitations of static network models and demonstrat-
ing the benefits of higher-order network analysis in capturing
the dynamics of software development teams.

Based on the higher-order model MOGen, we proposed
measures to quantify the influence of both nodes and node
sequences in path data according to five different notions of

centrality. Our centrality measures range from simple concepts
like betweenness to complex measures such as path reach. We
demonstrate in a prediction experiment with five empirical
datasets that utilising our MOGen-based centrality measures
results in improved predictions of influential nodes in time-
series data compared to both network and path models.

Finally, we showed how our method could be applied to
detect community smells, i.e. sources of unforeseen project
cost connected to a “suboptimal” community structure, within
a product team at the German IT security company genua
GmbH. With our analysis, we identified a developer acting
as a bottleneck and organisational silo in the quality assur-
ance process and a code-red situation in the code review pro-
cess. The validation of our findings through semi-structured
interviews with genua developers confirmed the presence
of the identified community smells. The team was already
aware of one community smell and was actively addressing
it. However, they were not aware of the second community
smell, which our approach helped uncover. This means that
our analysis enables the team to take counter measures against
it. This highlights the potential of our methodology in aiding
software teams to identify and address hidden community
smells, ultimately improving the overall development process.

In conclusion, this paper advances SNA by introduc-
ing higher-order network centralities to effectively capture

Fig. 15 Centrality of all edges
in the MOGen model with
K = 2 in the Aegis data. All
edges from A that reach a total
visitation of at least 2% in any
given year are highlighted. The
median and the 25% to 75%
quantile are shown in grey

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 24 of 28

dynamics and indirect relationships. This enhances the
detection of patterns not captured by static network mod-
els—the most popular models for relational data. Our
findings reveal that higher-order network centralities can
effectively identify community smells that would remain
undetected using traditional SNA. The approach proposed
in this work can be applied in real-time to warn the teams
of community smells before they cause harm, emphasising
the real-world value that higher-order models can provide.

10 Archival and reproducibility

Sources for all data used in this manuscript are provided. A
reproducibility package is available at https:// doi. org/ 10. 5281/
zenodo. 71394 38. A parallel implementation of the MOGen
model is available at https:// github. com/ pathpy/ pathp y3.

Appendix A General path datasets

We test our hypothesis in five empirical path datasets con-
taining observations from three different categories of sys-
tems: (i) user clickstreams on the Web (BMS1: Brodley

and Kohavi (2000)), (ii) travel itineraries of passengers
in a transportation network (TUBE: Transport for Lon-
don (2014)), and (iii) time-stamped data on social interac-
tions (HOSPITAL: Vanhems et al. (2013); WORKPLACE:
Génois et al. (2015); SCHOOL: Stehlé et al. (2011)). BMS1
and TUBE are directly collected in the form of paths. For
SCHOOL, HOSPITAL, and WORKPLACE, we extracted
paths following Sect. 4.1, using � as 800s, 1,200s, and
3,600s, respectively. The raw data for all datasets are freely
available online (cf. references above). We provide summary
statistics for all datasets in Table 4.

Appendix B Interaction broadness at genua

C holds a significant amount of knowledge on the project,
which, if not adequately spread within the remaining team,
would make C a lone wolf and possibly cause issues with
future development. Therefore, in this appendix, we study
the broadness of C’s interactions with the rest of the team.

For this, we recall that in Sect. 6.1, we detected an optimal
order of K = 2 for the code review process. In other words,
we found that in the code review process, previous interac-
tions have a statistically significant impact on subsequent

Fig. 16 Centrality of all edges
in the MOGen model with K = 2
in the Aegis data. All edges to
B that reach a total visitation of
at least 2% in any given year are
highlighted. The median and the
25% to 75% quantile are shown
in grey

https://doi.org/10.5281/zenodo.7139438
https://doi.org/10.5281/zenodo.7139438
https://github.com/pathpy/pathpy3

Social Network Analysis and Mining (2023) 13:129

1 3

Page 25 of 28 129

Fig. 17 Centrality of all edges
in the MOGen model with
K = 2 in the Aegis data. All
edges from B that reach a total
visitation of at least 2% in any
given year are highlighted. The
median and the 25% to 75%
quantile are shown in grey

Fig. 18 Centrality of all edges
in the MOGen model with K = 2
in the Aegis data. All edges to
D that reach a total visitation of
at least 2% in any given year are
highlighted. The median and the
25% to 75% quantile are shown
in grey

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 26 of 28

interactions. Our MOGen-based centralities uniquely allow
us to study the importance of these interactions, as, next to
the centrality of nodes, we can also compute the centrality
of edges.

In Figs. 12 and13, we show the centralities of all edges
where C is either the target or the source, respectively. With
12 target edges and 13 source edges with similar values for
all centralities, our results clearly show that C’s interactions
are not limited to a small subset of the remaining team.
Instead, C interacts with a broad range of other team mem-
bers both as sender and recipient. This means that when-
ever C develops or reviews code for a change, no specific
other team member reviews or integrates it. Similarly, C
reviews and integrates code from a wide range of other team
members.

In conclusion, we find that C is a highly central and pro-
lific member of the team. However, C is heavily involved
in interactions with a large part of the remaining team. In
addition, many other team members also appear in posi-
tions where C is central. This suggests that C is not a lone
wolf.

We further show that similarly broad interaction patterns
can be found for all other highlighted team members (see

Figs. 14,15,16,17,18,19)3. Finding such broad interactions
for all analysed team members suggests that the team has
active measures in place to promote knowledge exchange
within the team.

Acknowledgements We thank the five anonymous interviewees from
genua for the valuable insights provided during the interviews. C.G.,
V.P., and I.S. acknowledge support by the Swiss National Science
Foundation, grant 176938.

Author Contributions All authors conceived the research. C.G., V.P.,
and I.S. developed the MOGen centralities. C.G., C.A., and A.v.G.
mined and cleaned the empirical software development data. C.G,
G.C., and F.S. performed the quantitative analysis applying the MOGen
centralities to the data. C.G. and C.Z. conducted the qualitative analysis
validating the results in semi-structured interviews. C.G. created the
main manuscript. All authors reviewed the manuscript.

Funding Open access funding provided by Swiss Federal Institute of
Technology Zurich. Open access funding provided by Swiss Federal
Institute of Technology Zurich.

Declarations

Conflict of interest The authors declare no competing interests.

Fig. 19 Centrality of all edges
in the MOGen model with
K = 2 in the Aegis data. All
edges from D that reach a total
visitation of at least 2% in any
given year are highlighted. The
median and the 25% to 75%
quantile are shown in grey

3 Team member E does not appear in the code review data and is,
hence, not shown.

Social Network Analysis and Mining (2023) 13:129

1 3

Page 27 of 28 129

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Almarimi N, Ouni A, Mkaouer MW (2020) Learning to detect com-
munity smells in open source software projects. Knowl-Based
Syst 204:106201

Avelino G, Passos L, Hora A, et al (2016) A novel approach for estimat-
ing truck factors. In: 2016 IEEE 24th International Conference on
Program Comprehension (ICPC), IEEE, pp 1–10

Battiston F, Cencetti G, Iacopini I, et al. (2020) Networks beyond pair-
wise interactions: structure and dynamics. Phys Rep

Beck K (1999) Extreme Programming explained: embrace change.
Addison-Wesley Longman Publishing Co., USA

Bird C, Nagappan N, Gall H, et al (2009) Putting it all together: using
socio-technical networks to predict failures. In: 2009 20th Inter-
national Symposium on Software Reliability Engineering, IEEE,
pp 109–119

Blackler F (1995) Knowledge, knowledge work and organizations: an
overview and interpretation. Organ Stud 16(6):1021–1046

Brodley C, Kohavi R (2000) Kdd cup 2000: Online retailer web-
site clickstream analysis. http:// www. kdd. org/ kdd- cup/ view/
kdd- cup- 2000

Burkholz R, Schweitzer F (2018) Correlations between thresholds and
degrees: An analytic approach to model attacks and failure cas-
cades. Phys Rev E 98(2):022306

Caballero-Espinosa E, Carver JC, Stowers K (2023) Community
smells-the sources of social debt: a systematic literature review.
Inform Softw Technol p 107078

Callaway DS, Newman ME, Strogatz SH et al (2000) Network robust-
ness and fragility: percolation on random graphs. Phys Rev Lett
85(25):5468

Cosentino V, Izquierdo JLC, Cabot J (2015) Assessing the bus factor
of git repositories. In: 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER),
IEEE, pp 499–503

Crowston K, Li Q, Wei K et al (2007) Self-organization of teams for
free/libre Open Source software development. Inf Softw Tech-
nol 49(6):564–575

Edler D, Bohlin L, Rosvall M (2017) Mapping higher-order network
flows in memory and multilayer networks with infomap. Algo-
rithms 10(4):112

Eken B, Palma F, Ayşe B et al (2021) An empirical study on the
effect of community smells on bug prediction. Software Qual
J 29(1):159–194

Etemadi V, Bushehrian O, Robles G (2022) Task assignment to coun-
ter the effect of developer turnover in software maintenance:
a knowledge diffusion model. Inf Softw Technol 143:106786

Ferreira M, Avelino G, Valente MT et al (2016) A comparative
study of algorithms for estimating truck factor. 2016 X Brazil-
ian Symposium on Software Components. Architectures and
Reuse (SBCARS), IEEE, pp 91–100

Ferreira M, Mombach T, Valente MT et al (2019) Algorithms for
estimating truck factors: a comparative study. Software Qual J
27(4):1583–1617

Floyd RW (1962) Algorithm 97: shortest path. Commun ACM
5(6):345

Génois M et al (2015) Data on face-to-face contacts in an office build-
ing suggest a low-cost vaccination strategy based on community
linkers. Netw Sci 3(3):326–347

Gote C, Scholtes I, Schweitzer F (2019) git2net – Mining time-stamped
co-editing networks from large git repositories. In: 2019 IEEE/
ACM 16th International Conference on Mining Software Reposi-
tories (MSR), IEEE, pp 433–444

Gote C, Casiraghi G, Schweitzer F, et al. (2020) Predicting sequences
of traversed nodes in graphs using network models with multiple
higher orders. arXiv preprint arXiv: 2007. 06662

Gote C, Scholtes I, Schweitzer F (2021) Analysing time-stamped co-
editing networks in software development teams using git2net.
Empir Softw Eng 26(4):1–41

Gote C, Perri V, Scholtes I (2022) Predicting influential higher-order
patterns in temporal network data. In: An J, Charalampos C,
Magdy W (eds) Proceedings of the 2022 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2022), pp 109–116

Huang Z, Shao Z, Fan G, et al (2021) Predicting community smells’
occurrence on individual developers by sentiments. In: 2021
IEEE/ACM 29th International Conference on Program Compre-
hension (ICPC), IEEE, pp 230–241

Huang ZJ, Shao ZQ, Fan GS et al (2022) Community smell occurrence
prediction on multi-granularity by developer-oriented features and
process metrics. J Comput Sci Technol 37(1):182–206

Izquierdo-Cortazar D, Robles G, Ortega F, et al. (2009) Using software
archaeology to measure knowledge loss in software projects due
to developer turnover. In: 2009 42nd Hawaii International Confer-
ence on System Sciences, IEEE, pp 1–10

Krieg SJ, Robertson DH, Pradhan MP, et al. (2020) Higher-order net-
works of diabetes comorbidities: disease trajectories that matter.
In: 2020 IEEE International Conference on Healthcare Informat-
ics (ICHI), IEEE, pp 1–11

Lambiotte R, Salnikov V, Rosvall M (2015) Effect of memory on
the dynamics of random walks on networks. J Complex Netw
3(2):177–188

Lambiotte R, Rosvall M, Scholtes I (2019) From networks to optimal
higher-order models of complex systems. Nat Phys 15(4):313–320

Lang JP (2006) Redmine. http:// www. redmi ne. org/
LaRock T, Nanumyan V, Scholtes I, et al (2020) Hypa: Efficient detec-

tion of path anomalies in time series data on networks. In: Pro-
ceedings of the 2020 SIAM International Conference on Data
Mining, SIAM, pp 460–468

Lin B, Robles G, Serebrenik A (2017) Developer turnover in global,
industrial open source projects: insights from applying survival
analysis. In: 2017 IEEE 12th International Conference on Global
Software Engineering (ICGSE), pp 66–75

Lisiecka K, Rychwalska A, Samson K, et al. (2016) Medium moder-
ates the message. How users adjust their communication trajec-
tories to different media in collaborative task solving. PloS one
11(6):e0157827

Ma Z, Li R, Li T et al (2020) A data-driven risk measurement model of
software developer turnover. Soft Comput 24:825–842

Marchiori M, Latora V (2000) Harmony in the small-world. Physica
A 285(3–4):539–546

Meneely A, Williams L, Snipes W, et al. (2008) Predicting failures with
developer networks and social network analysis. In: Proceedings
of the 16th ACM SIGSOFT International Symposium on Founda-
tions of software engineering, pp 13–23

Miller P (2013) Aegis. https:// sourc eforge. net/ proje cts/ aegis/
Mozilla Foundation (1998) Bugzilla. https:// www. bugzi lla. org/

http://creativecommons.org/licenses/by/4.0/
http://www.kdd.org/kdd-cup/view/kdd-cup-2000
http://www.kdd.org/kdd-cup/view/kdd-cup-2000
http://arxiv.org/abs/2007.06662
http://www.redmine.org/
https://sourceforge.net/projects/aegis/
https://www.bugzilla.org/

 Social Network Analysis and Mining (2023) 13:129

1 3

 129 Page 28 of 28

Myall AC, Peach RL, Weiße AY et al (2021) Network memory in the
movement of hospital patients carrying antimicrobial-resistant
bacteria. Appl. Netw. Sci. 6(1):1–23

Palla G, Páll N, Horváth A et al (2018) Complex clinical pathways of
an autoimmune disease. J. Complex Netw. 6(2):206–214

Palomba F, Serebrenik A, Zaidman A (2017) Social debt analytics
for improving the management of software evolution tasks. In:
BENEVOL, pp 18–21

Palomba F, Tamburri DA, Fontana FA et al (2018) Beyond technical
aspects: how do community smells influence the intensity of code
smells? IEEE Trans Software Eng 47(1):108–129

Peixoto TP, Rosvall M (2017) Modelling sequences and temporal
networks with dynamic community structures. Nat Commun
8(1):1–12

Perri V, Scholtes I (2020) Hotvis: Higher-order time-aware visualisa-
tion of dynamic graphs. In: Auber D, Valtr P (eds) Graph Draw-
ing and Network Visualization - 28th International Symposium,
GD 2020, Vancouver, BC, Canada, September 16–18, 2020,
Revised Selected Papers, vol 12590. Lecture Notes in Computer
Science. Springer, Berlin, pp 99–114

Qarkaxhija L, Perri V, Scholtes I (2022) De bruijn goes neural:
Causality-aware graph neural networks for time series data
on dynamic graphs. In: Rieck B, Pascanu R (eds) Learning on
Graphs Conference, LoG 2022, 9-12 December 2022, Virtual
Event, Proceedings of Machine Learning Research, vol 198.
PMLR, p 51

Ricca F, Marchetto A, Torchiano M (2011) On the difficulty of com-
puting the truck factor. In: International Conference on Product
Focused Software Process Improvement, Springer, pp 337–351

Rilling J, Witte R, Schuegerl P et al (2008) Beyond information silos-
an omnipresent approach to software evolution. Int J Semantic
Comput 2(04):431–468

Rosvall M, Esquivel AV, Lancichinetti A et al (2014) Memory in net-
work flows and its effects on spreading dynamics and community
detection. Nat Commun 5(1):1–13

Saebi M, Ciampaglia GL, Kaplan LM et al (2020) Honem: learning
embedding for higher order networks. Big Data 8(4):255–269

Saebi M, Xu J, Kaplan LM et al (2020) Efficient modeling of higher-
order dependencies in networks: from algorithm to application for
anomaly detection. EPJ Data Sci 9(1):15

Scholtes I (2017) When is a network a network? multi-order graphi-
cal model selection in pathways and temporal networks. In: Pro-
ceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pp 1037–1046

Scholtes I, Wider N, Pfitzner R et al (2014) Causality-driven slow-
down and speed-up of diffusion in non-Markovian temporal net-
works. Nat Commun 5:5024

Scholtes I, Wider N, Garas A (2016) Higher-order aggregate networks
in the analysis of temporal networks: path structures and centrali-
ties. Eur Phys J B 89(3):1–15

Schueller W, Wachs J (2022) Modeling interconnected social and tech-
nical risks in open source software ecosystems. arXiv preprint
arXiv: 2205. 04268

Schueller W, Wachs J, Servedio VD et al (2022) Evolving collabo-
ration, dependencies, and use in the rust open source software
ecosystem. Sci Data 9(1):703

Schwaber K, Sutherland J (2020) The Scrum Guide - The definitive
guide to Scrum: The rules of the game. https:// scrum guides. org/
downl oad. html

Sedano T, Ralph P, Péraire C (2017) Software development waste.
In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, pp 130–140

Stehlé J, Voirin N, Barrat A et al (2011) High-resolution measurements
of face-to-face contact patterns in a primary school. PLoS ONE
6(8):1–13

Tamburri DA (2019) Software architecture social debt: managing
the incommunicability factor. IEEE Trans Comput Soc Syst
6(1):20–37

Tamburri DA, Kruchten P, Lago P, et al (2013) What is social debt
in software engineering? In: 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering
(CHASE), IEEE, pp 93–96

Tamburri DA, Kruchten P, Lago P et al (2015) Social debt in software
engineering: insights from industry. J Internet Services and Appl
6(1):1–17

Tamburri DA, Palomba F, Kazman R (2019) Exploring community
smells in open-source: an automated approach. IEEE Trans Soft-
ware Eng 47(3):630–652

Tao J, Xu J, Wang C, et al. (2017) Honvis: Visualizing and exploring
higher-order networks. In: 2017 IEEE Pacific Visualization Sym-
posium (PacificVis), pp 1–10

Torres L, Blevins AS, Bassett DS, et al. (2020) The why, how, and
when of representations for complex systems. arXiv preprint
arXiv: 2006. 02870

Transport for London (2014) Rolling origin and destination survey
(rods) database. http:// www. tfl. gov. uk/ info- for/ open- data- users/
our- feeds

Vanhems P, Barrat A, Cattuto C et al (2013) Estimating potential infec-
tion transmission routes in hospital wards using wearable proxim-
ity sensors. PLoS ONE 8(9):1–9

Xu J, Wickramarathne TL, Chawla NV (2016) Representing higher-
order dependencies in networks. Sci Adv 2(5):e1600028

Zhang Y, Garas A, Scholtes I (2021) Higher-order models capture
changes in controllability of temporal networks. J. Phys.: Com-
plex 2(1):015007

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2205.04268
https://scrumguides.org/download.html
https://scrumguides.org/download.html
http://arxiv.org/abs/2006.02870
http://www.tfl.gov.uk/info-for/open-data-users/our-feeds
http://www.tfl.gov.uk/info-for/open-data-users/our-feeds

	Locating community smells in software development processes using higher-order network centralities
	Abstract
	1 Introduction
	2 Related work
	2.1 Community smells
	2.2 Social network analysis

	3 Data
	3.1 The development process at genua
	3.2 Extracting paths capturing the development process
	3.3 Characteristics of the software development team

	4 Methods
	4.1 Paths on network topologies
	4.2 Modelling higher-order patterns in path data
	4.3 MOGen
	4.3.1 MOGen: Fundamental matrix

	4.4 Centrality measures
	4.4.1 Betweenness centrality
	4.4.2 Closeness centrality (harmonic)
	4.4.3 Path end
	4.4.4 Path continuation
	4.4.5 Path reach

	5 Evaluating MOGen-based centralities in empirical path data
	5.1 Experimental setup
	5.1.1 Train-test split
	5.1.2 Ground truth ranking
	5.1.3 Prediction of influential nodes and node sequences
	5.1.4 Comparison to ground truth

	5.2 Comparison of the prediction quality

	6 Detecting community smells at genua
	6.1 Higher-order interaction patterns
	6.2 Identifying community smells in software development processes
	6.2.1 Community smells in the issue tracking process
	6.2.2 Community smells in the code review process

	7 Validating our results in semi-structured interviews
	7.1 Essential team members
	7.2 The quality assurance process
	7.3 The integration of changes

	8 Threats to validity
	9 Conclusion
	10 Archival and reproducibility
	Appendix A General path datasets
	Appendix B Interaction broadness at genua
	Acknowledgements
	References

