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Abstract
Community smells are negative patterns in software development teams’ interactions that impede their ability to successfully 
create software. Examples are team members working in isolation, lack of communication and collaboration across depart-
ments or sub-teams, or areas of the codebase where only a few team members can work on. Current approaches aim to detect 
community smells by analysing static network representations of software teams’ interaction structures. In doing so, they are 
insufficient to locate community smells within development processes. Extending beyond the capabilities of traditional social 
network analysis, we show that higher-order network models provide a robust means of revealing such hidden patterns and 
complex relationships. To this end, we develop a set of centrality measures based on the MOGen higher-order network model 
and show their effectiveness in predicting influential nodes using five empirical datasets. We then employ these measures 
for a comprehensive analysis of a product team at the German IT security company genua GmbH, showcasing our method’s 
success in identifying and locating community smells. Specifically, we uncover critical community smells in two areas of 
the team’s development process. Semi-structured interviews with five team members validate our findings: while the team 
was aware of one community smell and employed measures to address it, it was not aware of the second. This highlights 
the potential of our approach as a robust tool for identifying and addressing community smells in software development 
teams. More generally, our work contributes to the social network analysis field with a powerful set of higher-order network 
centralities that effectively capture community dynamics and indirect relationships.
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1 Introduction

We are woken up by the alarm app on our phones; we use 
navigation software to commute to work; we use social 
media to interact with friends and collaborators around 
the world. These seemingly trivial everyday activities 
demonstrate our reliance on software and the resulting 
importance of its effective creation and maintenance for 
our modern society.

Software is typically created by teams. When joining 
a team, developers have different specialisations and past 
experiences. Thus, all developers have personal knowl-
edge unique to them. For example, team members could 
be familiar with different programming languages, have 
expertise in frontend or backend development, or have an 
elaborate knowledge of a product’s past design decisions. 
The key to a software team’s success is the effective com-
bination of the unique knowledge of its members (Blackler 
1995).

When team members leave their team, they take their 
unique knowledge with them. Therefore, if knowledge is 
not adequately shared and managed, this unique knowl-
edge is lost to the remaining team. In software develop-
ment, such perils are referred to as social debt. Social debt 
is defined as the “unforeseen project cost connected to a 
‘suboptimal’ development community” (Tamburri et al. 
2013). The sources of social debt within a team are called 
community smells (Tamburri et al. 2013; Caballero-Espi-
nosa et al. 2023).

Community smells can only be addressed once they 
have been identified and understood. To this end, social 
network analysis (SNA) on static networks, in which 
nodes represent developers and edges dyadic interactions 
between them, are a widely used tool (Meneely et al. 2008; 
Bird et al. 2009; Tamburri et al. 2015, 2019; Tamburri 
2019; Almarimi et  al. 2020). However, static network 
models only allow insights into direct relations between 
team members. Therefore, they cannot consider patterns 
in development processes. As we show in this paper, this 
means they can only be used to study patterns in the team’s 
direct interaction topology and, thus, that trivial things 
such as bottlenecks in software development processes—
i.e. in the sequences of actions team members need to per-
form to create software—would be completely overlooked.

To capture patterns in the dynamics between team 
members, higher-order generalisations of network models 
have been proposed (Lambiotte et al. 2019; Battiston et al. 
2020; Torres et al. 2020). While the specific assumptions 
about the higher-order patterns captured by those models 
differ, they have in common that they generalise network 
models towards representations that go beyond pairwise, 
dyadic interactions.

This paper explores the use of higher-order network 
analysis to identify community smells in the development 
processes of software teams. Specifically, we analyse the 
development activities of a product team at the German 
IT security company genua GmbH using centrality meas-
ures computed on the higher-order network model MOGen 
(Gote et al. 2020), which captures non-Markovian patterns 
in paths in complex networks, i.e. patterns that require 
memory to be modelled. Our contributions are as follows:

• We mine a unique curated dataset comprised of fine-
grained time-stamped path data from two issue trackers 
and a code review platform tracking the actions of a 
product team at genua over 20 years.

• To identify community smells, we consider five cen-
trality measures that serve as proxy for the influence of 
specific nodes and node sequences in dynamical pro-
cesses. For these centrality measures, we demonstrate 
that utilising a path model results in improved predic-
tions of influential nodes in time-series data compared 
to a simpler network-based model, provided there is 
enough training data. However, this approach results in 
a significant generalisation error for smaller datasets.

• To address this problem, we define equivalent measures 
for MOGen, a higher-order generative model for paths 
in complex networks (Gote et al. 2020). We show that 
our MOGen-based centrality measures effectively miti-
gate the generalisation error, i.e. they balance between 
underfitting and overfitting the data.

• We apply our five MOGen-based centrality measures to 
identify team members consistently taking over tasks 
that no other team members perform, identifying two 
community smells in the dynamic development process 
that could have not been identified using static SNA.

• We validate our findings in semi-structured interviews 
with five developers from genua. The team is aware 
of one of these community smells and employs active 
measures against it. However, the team was not aware 
of the second community smell but could confirm it 
ex post. Thus, we prove that our approach successfully 
uncovers community smells and can aid software teams 
in countering them.

This article is an extended version of the ASONAM 2022 
contribution “Predicting Influential Higher-Order Patterns 
in Temporal Network Data” (Gote et al. 2022). In this ver-
sion of our work, we extend our previous development and 
assessment of MOGen-based centrality measures by apply-
ing them to the empirical software engineering domain 
(Sects. 3, 6, 7). In doing so, we show the capability of 
higher-order network methods in a real-world application.
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2  Related work

2.1  Community smells

Social debt in software development refers to the “unfore-
seen project cost connected to a ‘suboptimal’ development 
community” (Tamburri et al. 2013). The sources of social 
debt are called community smells, which have been identi-
fied as a cause of issues in the source code (Palomba et al. 
2017, 2018), e.g. using them to predict bugs (Eken et al. 
2021).

The empirical software engineering literature has iden-
tified a wide variety of community smells (see Caballero-
Espinosa et  al. 2023 for a recent review). Community 
smells are usually caused by a lack of communication and 
knowledge exchange between individuals or subgroups 
within the team (Lin et al. 2017). This can be due to highly 
independent development tasks, in which developers work 
without communicating with others. Such developers are 
referred to as “lone wolves” (Tamburri et al. 2019). Simi-
larly, groups of developers not communicating with the 
remaining team constitute “organisational silos” (Rilling 
et al. 2008). Over time, this lack of communication can 
create a large “cognitive distance” between team mem-
bers, obfuscating and impeding interactions (the “black 
cloud effect”). Ultimately, such problems result in a fur-
ther lack of interactions, referred to as “bottlenecks” or 
“radio silence” (Tamburri et al. 2015). Additionally, a 
large cognitive distance between team members can pro-
mote the emergence of other community smells, such as 
“prima donnas”, “sharing villainy”, or “code-red” situ-
ations, which adversely impact development and reduce 
overall trust within the team (Tamburri et al. 2015). Here, 
prima donnas are developers who believe that their work 
is superior to that of their colleagues and are unwilling 
to collaborate or share knowledge with others. Similarly, 
sharing villainy is the tendency of some developers to 
hoard knowledge and resources, making it difficult for oth-
ers to access and use them (Tamburri et al. 2015). Finally, 
code-red (Palomba et al. 2018) refers to situations where 
only a few developers are capable of maintaining certain 
areas of the codebase.

Several studies have shown that community smells can 
have a significant negative impact on software develop-
ment projects, including delays, lower productivity, and 
increased technical debt (Sedano et al. 2017; Ma et al. 
2020). For example, community smells can predict if and 
which developers stop contributing to a project (Huang 
et  al. 2021, 2022). The consequences are particularly 
severe if the departing developers were lone wolves, part 
of an organisational silo, or maintainers of code-red code. 
This is expressed in the “bus number” or “truck factor” 

which counts the number of developers that have to be “hit 
by a bus”, before a software development project would 
come to a halt (Izquierdo-Cortazar et al. 2009; Avelino 
et al. 2016; Cosentino et al. 2015; Ricca et al. 2011; Fer-
reira et al. 2016, 2019). Through the dependency network, 
community smells can further be amplified resulting in 
a negative impact across the entire software ecosystem 
(Schueller et al. 2022; Schueller and Wachs 2022).

Once community smells have been identified, measures 
can be employed to counter them. For example, if the com-
munity smell is due to insufficient knowledge distribution, 
the team can enhance task assignment (Etemadi et al. 2022) 
through the use of agile methodologies such as Scrum 
(Schwaber and Sutherland 2020) or Extreme Programming 
(Beck 1999). Moreover, effective communication strategies 
such as regular team meetings, code reviews, and pair pro-
gramming can help to reduce cognitive distance and promote 
knowledge sharing within the team (Lin et al. 2017). In sum-
mary, the identification and mitigation of community smells 
are crucial for managing social debt in software development 
projects.

2.2  Social network analysis

Social network analysis (SNA) is an established method to 
study community smells. These works typically study static 
networks, where nodes represent developers and edges 
dyadic interactions between them. For example, Meneely 
et al. (2008) investigated collaboration structures using 
developer networks derived from code churn information 
to predict file-level failures. Similarly, Bird et al. (2009) 
employed SNA to study coordination among groups of 
developers with socio-technical dependencies and dem-
onstrated that network properties of a software component 
could predict fault-proneness more accurately than depend-
ency or contribution information alone. Tamburri et al. 
(2019) developed an automated approach to identify com-
munity smell types based on SNA. In related work, Tam-
burri (2019) suggested that studying social debt and com-
munity smells at the architecture level could help software 
development communities eliminate critical organisational 
flaws and reduce costs. Almarimi et al. (2020) showed that 
network centralities were among the most influential char-
acteristics identifying community smells.

Conventional SNA methods are highly effective in iden-
tifying patterns within direct relationships captured in net-
work topology. However, in most networked systems with 
sparse interaction topologies, the actual complexity stems 
from higher-order patterns representing indirect influ-
ences (Lambiotte et al. 2019), which cannot be explained 
by network topology alone. To account for these patterns, 
higher-order generalisations of network models have been 
proposed. These higher-order models capture information 
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about the network structure beyond pairwise, dyadic inter-
actions. Researchers have used higher-order methods to 
model memory in paths on networks. For example, when 
modelling itineraries through a transportation system, we 
need to not only consider where passengers are and where 
they can go (i.e. the transportation network), but also where 
they came from (i.e. memory). To study random walks and 
diffusion processes (Scholtes et al. 2014; Rosvall et al. 2014; 
Lambiotte et al. 2015), detect communities and assess node 
centralities (Rosvall et al. 2014; Scholtes et al. 2016; Xu 
et al. 2016; Edler et al. 2017; Peixoto and Rosvall 2017) 
analyse memory effects in clinical time-series data (Palla 
et al. 2018; Krieg et al. 2020; Myall et al. 2021), generate 
node embeddings and network visualisations based on tem-
poral network data (Saebi et al. 2020a; Tao et al. 2017; Perri 
and Scholtes 2020), detect anomalies in time-series data on 
networks (Saebi et al. 2020b; LaRock et al. 2020), enhance 
deep learning models for networks (Qarkaxhija et al. 2022), 
or assess the controllability of networked systems (Zhang 
et al. 2021).

Furthermore, recent research has demonstrated the advan-
tages of multi-order models, which combine multiple higher-
order models, for various applications such as the generali-
sation of PageRank to time-series data (Scholtes 2017) and 
path prediction in networks (Gote et al. 2020). By account-
ing for paths of different lengths, multi-order models offer a 
more comprehensive understanding of complex networked 
systems than higher-order models alone (Gote et al. 2020). 
Gote et al. (2022) introduce centrality measures based on 
multi-order models. In this paper, we show that such central-
ity measures enable a deeper analysis of team interactions, 
information flow, and knowledge-sharing patterns. In the 
context of software development processes, this means that 
we can better identify potential bottlenecks, organisational 

silos, and lone wolves, thus enhancing our ability to detect 
and address community smells.

3  Data

To develop and test an approach to detect community smells 
in software development processes, we require fine-grained 
temporal data. In particular, the ideal dataset contains infor-
mation on which team member performed which action at 
which point in time. To obtain such data, we collaborated 
with genua GmbH, a German IT security company. As part 
of this collaboration, genua gave us full access to the devel-
opment repository, the corresponding issue trackers, and the 
code review platform for one of their core projects with a 
development history of more than 20 years. In addition, we 
had the opportunity for several extended discussions and 
interviews with multiple members of the development team.

3.1  The development process at genua

Based on the availability of extensive and long-running 
data, we focused our data collection efforts on a single team 
developing one of genua’s core products over the past 20 
years. In the following, we summarise the team’s develop-
ment process, which we visualise in Fig. 1. The development 
team differentiates between bugs and features as two funda-
mental issue categories. However, while the prioritisation 
process differs, the development process for features and 
bugs is identical. Therefore, in the following, we refer to 
both as issues.

Whenever a team member finds a new bug or identifies 
a need for a new feature, an issue is created on the issue 
tracker. Issues can be created by anyone with a technical 

Fig. 1  Simplified representation 
of the process to resolve a typi-
cal issue at genua. The process 
takes place over multiple 
platforms. Backward loops have 
been removed
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or development-related position. However, most new issues 
are created either by customer managers reporting bugs 
or feature requests from clients using genua’s products or 
by developers identifying new bugs while working on the 
codebase.

In weekly bug meetings and daily Scrum meetings, the 
team discusses the prioritisation of currently open issues. 
Subsequently, potential issue resolutions are discussed pri-
marily on the issue tracker. Once a promising issue reso-
lution has been identified, the issue is assigned to a team 
member. Similar to OSS projects (Crowston et al. 2007), this 
commonly occurs through self-assignment.

After being assigned the issue, the team member starts 
developing the corresponding change on the team’s code 
review platform. As an IT security company, one of genua’s 
primary aims is to ship code with as few bugs as possible. 
Therefore, each developed change is reviewed by a second 
team member and integrated into the release version of the 
codebase by a third team member. Following this process, 
each change has been worked on by at least three separate 
team members. Our data shows that for around 60% of all 
issues, development, review, and integration are successfully 
completed in direct succession. However, for the remain-
ing issues, either the code review or the integration fails, 
requiring further development, thus repeating the process. 
For readability, the resulting backward loops are not shown 
in Fig. 1. However, we note that all completed changes 
start with the development of a change and end with its 
integration.

After successfully integrating a change, the correspond-
ing issue is marked as resolved on the issue tracker. Before 
closing the issue, final quality assurance tests are performed 
to ensure that the bug or feature works as intended in a wide 
range of application scenarios. If this test is successful, the 
issue is closed. Otherwise, the process continues with fur-
ther discussion or development.

3.2  Extracting paths capturing the development 
process

Until 2010, the team used Bugzilla (Mozilla Foundation 
1998) to track their issues. From then onwards, the team 
transitioned to Redmine (Lang 2006). For code review, the 
team uses the tool Aegis (Miller 2013). To obtain all actions 
performed by team members for all issues and changes, we 
developed crawlers processing the internal databases and 
data storage structures of Bugzilla, Redmine, and Aegis. 
Bugzilla’s and Redmine’s backends use a MySQL database. 
To obtain time-stamped records of team members’ actions, 
labelled by issue, we accessed these databases and selected 
the respective columns. Aegis instead uses a tree of text files 
as internal data storage. Here, we use a simple text-parsing 
tool that extracts the issues and the developer actions from 

these files. We performed name disambiguation to uniquely 
identify each team member across all platforms. Finally, we 
used a text-based approach to match the issues between the 
three platforms. All team members and issues are repre-
sented by pseudo-anonymised IDs. For privacy and security 
reasons, we were not allowed to process any user informa-
tion or the content of team members’ actions.

We capture the development process for each issue as a 
time-resolved path, sequentially connecting all team mem-
bers contributing to it. To obtain paths, we order all actions 
according to their time-stamp for each issue in ascending 
order. We show an example of a resulting path in Fig. 2a. 
Here, team member A reports an issue and engages in a dis-
cussion with B and C, each leaving a comment. After the 
discussion, C self-assigns the issue and starts developing the 
change required to resolve the issue. Once C completes the 
development process, B reviews the changes. However, the 
review fails as the code still contains errors. After C fixes the 
errors in a renewed development process, B passes the code 
review, and D integrates the changes into the main develop-
ment branch. Once integrated, team member D marks the 
issue as resolved on the issue tracker, and E performs a qual-
ity assurance test before closing the issue.

We split the path into separate paths for issue tracker 
(Bugzilla and Redmine) and code review (Aegis) platforms 
(cf. Fig. 2b). This is done for three reasons: First, while the 
development, review, and integration of each change must 
be performed by three different team members, no such con-
straint exists for issue tracker platforms. Second, the code 
review platform is only used by team members with develop-
ment responsibilities—a subset of all team members. Third, 
we can expect that team members adapt their behaviour to 

t
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reports issue
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self-assigns issue

develops change
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a) b) Extract paths from issue tracker
and code review data.

Issue Tracker Path:

Code Review Path:

A B A C C D E E

C B C B D

c)Merge consecutive actions by
same teammember (self-loops).

Issue Tracker Path:

Code Review Path:

A B A C D E
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Fig. 2  Process of extracting issue tracker and code review paths for 
an issue. Nodes on paths represent actions by different team members 
A to E. The required consecutive actions to start and end develop-
ment, review, and integration in the code review process have been 
merged into single steps
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the platform they work on, which could lead to different 
behaviours of team members on the two platforms, which 
should be distinguished (Lisiecka et al. 2016). In total, we 
extract a combined total of 18,949 paths from Bugzilla and 
Redmine, and 24,360 paths from Aegis1.

3.3  Characteristics of the software development 
team

In Fig. 3, we show the extracted path counts for a one-year 
rolling window shifted by three-month increments. Apart 
from the very beginning of our data, we have at least 500 
paths for each platform in any given one-year interval. In 
the issue tracker data, we observe a peak at around 2,500 
paths per year in 2006. Afterwards, the number gradually 
declines until stabilising at around 500 paths per year. With 
path counts averaging 1,800, the number of code review 
paths are significantly more consistent over time.

Figure  3 also shows the number of team members 
involved in the issue tracking and code review processes. 
Only those team members directly involved with the devel-
opment of changes to resolve issues interact on Aegis. 
Therefore, with 20 to 30 team members, this core team is 
significantly smaller than the full team interacting on the 
issue trackers, which also includes customer managers, the 
developers responsible for quality assurance, and members 
of other product teams. While the size of the full team grew 
significantly from around 25 team members in 2000 to 
around 60 team members in 2018, the size of the core team 
has been relatively stable over time.

In Fig. 4, we show interaction networks derived from all 
issue tracker paths in 2005 and 2015, respectively. To allow 

a comparison of the two teams, we fixed the network layout 
between the two years. For reference, Figure 4 also shows 
the network derived from all paths occurring in either 2005 
or 2015. The node sizes correspond to the node degree—i.e. 
the number of interaction partners—of each team member. 
The figure highlights that the team has changed substantially 
within the ten years, from 2005 to 2015. Only around 25% 
of the team members present in 2005 are still part of the 
team in 2015. Instead, we see a large number of new team 
members in 2015. In addition, the activity of team members 
has changed significantly. In 2005, team members A and B 
are among those with the highest number of interaction part-
ners. In contrast, C, with a relatively small degree, is in the 
network’s periphery. By 2015, the roles are reversed, with 
C and E—who was not even a part of the team in 2005—
being the most connected nodes in the network, whereas the 
degrees of A and B have shrunk. Overall, 176 unique people 
contribute to either the issue tracker or the code review plat-
forms during our 20-year observation period.

0

1,000

2,000

nu
m
be

ro
fp

at
hs

Issue Tracker (Bugzilla/Redmine) Code Review (Aegis)

2003 2006 2009 2012 2015 2018
0

20

40

60

time

te
am

si
ze

Fig. 3  Path counts and team size for the issue tracker and code review 
data over time. Counts were obtained for a rolling one-year window 
shifted by three-month increments

Fig. 4  Issue tracker interaction networks for a 2005 and b 2015. The 
network layout is identical for both networks, i.e. all nodes appear 
in the same positions in (a) and (b). The full layout is shown above. 
The node sizes correspond to the number of interaction partners in 
the given year. Five team members A–E that we analyse in detail in 
Sect. 6 are highlighted. All team members that appear in both 2005 
and 2015 are shown in . The team members only appearing in 2005 
and 2015 are displayed in  and , respectively

1 Note that some issues take multiple changes to resolve, explaining 
the higher path count for Aegis.
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4  Methods

In the following, we introduce the methods used throughout 
this manuscript to analyse genua’s development process. 
Specifically, in Sect. 4.1, we first introduce some terminol-
ogy formally defining networks and paths. In Sect. 4.2, we 
motivate the use of higher-order models before introducing 
the multi-order model MOGen (Gote et al. 2020) in Sect. 4.3. 
Finally, we introduce the MOGen-based centrality measures 
predicting influential nodes and higher-order patterns to ulti-
mately detect community smells in Sect. 4.4.

4.1  Paths on network topologies

We mathematically define a network as a tuple G = (V ,E) , 
where V is a set of nodes and E is a set of edges. As a real-
world example, let us consider a public transport system. 
Here, the individual stations are the nodes, and an edge 
exists between two nodes if there is a direct connection 
between the two stations. A user of the system moves from 
a start to a destination following a path that is restricted 
by the network topology. A path is defined as an ordered 
sequence s = v1 → v2 → ⋯ → vls of nodes vi ∈ V  , where ls 
is the length of the path, and nodes can appear more than 
once. We refer to a set of paths constrained by the same 
network topology as path dataset P.

While empirical paths can come from various sources, we 
can differentiate between two main types: (i) data directly 
recorded in the form of paths; (ii) paths extracted from data 
on temporal interactions, i.e. a temporal network. Examples 
for the first case include clickstreams of users on the Web 
or data capturing passenger itineraries from public transport 
systems. The primary example of temporal data are records 
on human interactions, which are a common source for stud-
ying knowledge transfer or disease transmission.

A temporal network is a tuple G(t) = (V ,E(t)) , where V is 
a set of vertices, and E(t) is a set of edges with a time-stamp 
E(t) ⊆ V × V × ℕ . We can extract paths from a temporal 
network by setting two conditions. First, for two temporal 
edges ei = (v1, v2;t1) and ej = (v2, v3;t2) to be considered con-
secutive in a path—i.e. s = ⋯ → v1 → v2 → v3 → ⋯—they 
have to respect the arrow of time, i.e. t1 < t2 . Second, con-
secutive interactions belong to the same path only if they 
occur within a time window � , i.e. t2 − t1 ≤ � . Using these 
conditions, we can derive a set of paths P from any temporal 
network.

In summary, the network topology constrains the paths 
that are possible in real-world systems, such as transport 
or communication systems. However, empirical path data 
contain additional information on the start- and end-points 
of paths and the specific sequences in which nodes are 
traversed. Thus, the real paths by which nodes indirectly 

influence each other can differ significantly from what we 
would expect solely based on the network topology.

4.2  Modelling higher‑order patterns in path data

In the previous section, we showed that empirical paths 
capture information not contained in the network topology. 
Based on our arguments, one might assume that paths are 
always better for capturing the dynamics on a networked 
system compared to the topology alone. However, the valid-
ity of this argument strongly depends on the number of paths 
that we have observed.

Let us consider the example shown in Fig. 5. As we can 
infer from the colour-coded paths, a path in D will always con-
tinue to E if it started in A. In contrast, if the path started in B, 
it will continue to F. But does this mean that paths from A to 
F do not exist, despite being possible according to the under-
lying network topology? To address this question, we need to 
consider how often we observed the paths from A to E and B 
to F. If, e.g. we observed both paths only once each, we would 
have little evidence suggesting that a path from A to F is not 
be possible. In a nutshell, we should not mistake absence of 
evidence as evidence of absence. Hence, in this case, using the 
observed paths as indicators for all possible paths would over-
fit the data, and a network model that additionally accounts 
for theoretically possible but unobserved paths may be more 
appropriate. In contrast, observing both paths many times 
without ever observing paths from A to F would indicate that 
paths from A to F do not exist or are at least significantly less 
likely than the observed paths. In this case, a network model 
would underfit the data by not adequately accounting for the 
patterns present in the empirical path data.

These examples underline that to capture the influence 
of nodes in real-world networked systems, neither a net-
work model nor a limited set of observed paths is suf-
ficient. Instead, we require a model that can both capture 
the memory in the path data and allow transitions that are 
consistent with the network topology and cannot be ruled 
out because path data have not provided enough evidence.

A

B

C D

E

F

Fig. 5  Exemplary set of paths on a network topology. We observe 
three colour-coded paths from A to B ( ), from A to E ( ), and from 
B to F ( ). The underlying network topology is shown in grey ( )



 Social Network Analysis and Mining          (2023) 13:129 

1 3

  129  Page 8 of 28

4.3  MOGen

Our work is based on MOGen, a multi-order generative 
model for paths (Gote et al. 2020) that combines infor-
mation from multiple higher-order models. In addition, 
MOGen explicitly considers the start- and end-points of 
paths using the special initial and terminal states ∗ and † . 
MOGen represents a path v1 → v2 → ⋯ → vl as

where K denotes the maximum memory the model accounts 
for. Going back to the example from Fig. 5, a MOGen model 
with K = 2 would represent the  path from A to E as

Hence, it would model the transition from D to E while con-
sidering if the path originated from A or from B (cf. our 
discussion in Sect. 4.2).

Combining the representations of all paths in a set P, 
the resulting MOGen model is fully described by a multi-
order transition matrix T(K) shown in Fig. 6. The entries 
T
(K)

ij
 of T(K) capture the probability of a transition between 

two higher-order nodes.
Considering no memory, a MOGen model with K = 1 

is equivalent to a network model but for nodes ∗ and † 
that additionally consider the starts and ends of paths. In 
turn, a MOGen model with K matching the maximum path 
length observed in P is a lossless representation of the set 
of paths. Thus, MOGen allows us to find a balance between 
the network model—allowing all observed transitions in 
any order—and the observed set of paths—only allowing 
for transitions in the order in which they were observed.

4.3.1  MOGen: Fundamental matrix

Building on the original model (Gote et al. 2020), we inter-
pret the multi-order transition matrix T(K) of MOGen as an 
absorbing Markov chain, where the states (v1,… , vn−1, vn) 
represent a path in node vn having previously traversed nodes 
v1,… , vn−1 . Using this interpretation allows us to split T(K) 
into a transient part Q representing the transitions to dif-
ferent nodes on the paths and an absorbing part R describ-
ing the transitions to the end state † . We can further extract 
the starting distribution S . All properties are represented in 
Fig. 6.

This representation allows us to compute the fundamental 
matrix F of the corresponding Markov chain.

(1)∗→ v1 → (v1, v2) → ⋯ → (vl−K+1,… , vl) → †,

(2)∗→ A → (A,C) → (A,C,D) → (C,D,E) → †.

(3)F =
(
I(m×m) −Q

)−1

Here, I(m×m) is the m × m identity matrix, where m is the 
number of nodes in the multi-order model without counting 
the special states ∗ and † . Entries (i, j) of this fundamen-
tal matrix F represent the expected number of times a path 
in node i will visit node j before ending. The fundamental 
matrix F is essential as it allows us to compute path central-
ity measures for the MOGen model analytically.

4.4  Centrality measures

We now introduce five MOGen-based centrality measures 
that we use throughout the subsequent analyses. For all 
MOGen-based centrality measures, we also introduce the 
corresponding measures for a network and a path model.

4.4.1  Betweenness centrality

Betweenness centrality considers nodes as highly influential 
if they frequently occur on paths connecting pairs of other 
nodes.

Network model In a network, the betweenness centrality 
of a node v is given by the ratio of the shortest paths �st(v) 
from s to t through v to all the shortest paths from s to t �st 
for all pairs of nodes s and t:

Path model Standard betweenness centrality calculated 
in a network model relies on the assumption that only the 

(4)bv =
∑

s,t∈V

�st(v)

�st
.

00

T1,2

...

TK−1,K

TK,K

0

0

T0,1

T†

V 1 V 2 . . . V K †
∗

V 1

...

V K−1

V K

T(K) =

Fig. 6  Multi-order transition matrix T(K) of a MOGen model with max-
imum-order K. We split T(K) into a transient part Q ( ) and an absorb-
ing part R ( ). S ( ) represents the starting distribution of paths
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shortest paths are used to connect two nodes. Using path 
data, we can drop this assumption and consider paths that 
are actually used. Therefore, we can obtain the betweenness 
of a node in a given set of paths P by simply counting how 
many times a node appears between the first and last node 
of all paths.

MOGen For MOGen, we can utilise the properties of the 
fundamental matrix F . Entries (v, w) of F represent the num-
ber of times we expect to observe a node w on a path con-
tinuing from v before the path ends. Hence, by multiplying F 
with the starting distribution S , we obtain a vector contain-
ing the expected number of visits to a node on any path. To 
match the notions of betweenness for networks and paths, we 
subtract the start and end probabilities of all nodes, yielding

Equation (5) allows us to compute the betweenness central-
ity for all nodes in the MOGen model—i.e. higher-order 
nodes. The betweenness centrality of a first-order node v can 
be obtained as the sum of the higher-order nodes ending in v.

4.4.2  Closeness centrality (harmonic)

When considering the closeness centrality of a node v, we 
aim to capture how easily node v can be reached by other 
nodes in the network.

Network model For networks, we are therefore inter-
ested in a function of the distance of all nodes to the target 
node v. The distance matrix D capturing the shortest dis-
tances between all pairs of nodes can be obtained, e.g. by 
taking powers of the binary adjacency matrix of the net-
work where the entries at the power l represent the exist-
ence of at least one path of exactly length l between two 
nodes. This computation can be significantly sped up by 
using graph search algorithms such as the Floyd–Warshall 
algorithm (Floyd 1962) used in our implementation. As 
our networks are based on path data, the resulting network 
topologies are directed and not necessarily connected. We, 
therefore, adopt the definition of closeness centrality for 
unconnected graphs, also referred to as harmonic central-
ity (Marchiori and Latora 2000). This allows us to com-
pute the closeness centrality of a node v as

where Dvi is the entry in the v-th row and i-th column of D.
Path model For paths, the distance between two nodes v 

and w can be obtained from the length of the shortest sub-
path starting in v and ending in w among all given paths, 
also resulting in a distance matrix D . Again, the closeness 
centrality is then computed using Eq. (6), however, with 
the modified distance matrix.

(5)bv = (S ⋅ F)v − Sv − Rv.

(6)cv =
∑

i∈V ,i≠v

1

Dvi

,

MOGen As MOGen models contain different higher-
order nodes, D captures the distances between higher-
order nodes based on the multi-order network topology 
considering temporal correlations up to length K. While 
we aim to maintain the network constraints set by the 
multi-order topology, we are interested in computing the 
closeness centralities for first-order nodes. We can achieve 
this by projecting the distance matrix to its first-order 
form, containing the distances between any pair of first-
order nodes but constrained by the multi-order topology. 
For example, for the distances d{(A,B), (C,A)} = 3 and 
d{(B,B), (C,A)} = 2 , the distance between the first-order 
nodes B and A is 2. Hence, while for the network, the 
distances are computed based on the shortest path assump-
tion, multi-order models with increasing maximum-order 
K allow us to capture the tendency of actual paths to devi-
ate from these shortest paths. Based on the resulting dis-
tance matrix D , the closeness centrality is again computed 
following Eq. (6). Therefore, while for all representations, 
we compute the closeness centrality of a node using the 
same formula, the differences in the results originate from 
the constraints in the topologies considered when obtain-
ing the distance matrix D.

4.4.3  Path end

The path end ev of a node v describes the probability of a 
path to end in node v.

Network model Path end cannot be computed for a net-
work model as the information on the start and end of paths 
is not captured by this representation.

Path model For paths, ev is computed by counting the 
fraction of paths ending in node v.

MOGen For MOGen, all paths end with the state † . There-
fore, ev is obtained from the transition probabilities to † of 
a single path starting in ∗ . This last transition can—and is 
likely to—be made from a higher-order node. We can obtain 
the path end probability for a first-order node by summing 
the path end probabilities of all corresponding higher-order 
nodes.

4.4.4  Path continuation

When following the transitions on a path, at each point, the 
path can either continue or end. With the path continuation 
fv , we capture the likelihood of the path to continue from 
node v.

Network model As path information is required, no com-
parable measure exists for networks.

Path model Similarly to the path end, we obtain path 
continuation from a set of paths P by counting the fraction of 
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times v does not appear as the last node on a path compared 
to all occurrences of v.

MOGen For MOGen, path continuation is given directly 
by summing the probabilities of all transitions in the row 
of T(K) corresponding to node v leading to the terminal 
state † . As for other measures, for MOGen, the continuation 
probabilities are computed for higher-order nodes. We can 
obtain continuation probabilities for a first-order node v as 
the weighted average of the continuation probabilities of 
the corresponding higher-order nodes, where weights are 
assigned based on the relative visitation probabilities of the 
higher-order nodes.

4.4.5  Path reach

Finally, we consider path reach. With path reach, we capture 
how many more transitions we expect to observe on a path 
currently in node v before it ends.

Network model Again, the path reach requires informa-
tion on path ends. Therefore, it cannot be computed using 
the network model.

Path model To compute the path reach �v for a node v, we 
average the number of remaining transitions before the path 
ends for all occurrences of v.

MOGen For MOGen, we can again use the properties of 
the fundamental matrix F and obtain the expected number of 
remaining transitions for any node v as the row sum

where Fvi is the entry in the v-th row and i-th column of 
the fundamental matrix F . We subtract 1 to discount for 
the occurrence of node v at the start of the remaining path. 
Analogous to path continuation, we obtain the path reach of 
a first-order node v by weighting the path reach of all cor-
responding higher-order nodes according to their respective 
relative visitation probabilities.

5  Evaluating MOGen‑based centralities 
in empirical path data

In Sect. 4, we argued that network models are likely to 
underfit patterns in observed paths that are due to some paths 
occurring less often (or not at all), while others appear more 
often than we would expect based on the network topology 
alone. Similarly, we expect the centralities computed directly 
on the paths to overfit these patterns. We, therefore, expect 
that when computing centralities based on the network or 
the paths directly, we misidentify the nodes that are actually 
influential. We further conjecture that the errors caused by 

(7)�v = −1 +
∑

i∈V

Fvi,

overfitting are particularly severe if the number of observed 
paths is low, i.e. if we have insufficient data to capture the 
real indirect influences present in the complex system.

5.1  Experimental setup

We now test our MOGen-based centrality against network- 
and path-based measures in five empirical path datasets. We 
refer to Appendix A for further information and summary 
statistics of these datasets. For each path dataset, we com-
pare three types of models: First, a network model contain-
ing all nodes and edges observed in the set of paths. Second, 
a path model which precisely captures the observed paths, 
i.e. the model is identical to the set of paths. Third, MOGen 
models with different maximum-orders K that capture all 
higher-order patterns up to a distance of K.

We operationalise our comparison in a prediction exper-
iment in which we aim to predict influential nodes and 
higher-order patterns in a set of test data based on train-
ing data. Figure 7 provides an overview of our evaluation 
approach.

5.1.1  Train‑test split

For our prediction experiment, we first split a given set of N 
paths into a training and test set while treating all observed 
paths as independent. We denote the relative sizes of the 
training and test sets as ntr∕N and nte∕N , respectively.

5.1.2  Ground truth ranking

As introduced in Sect. 4, our path-based centrality meas-
ures exclusively capture the influence of nodes in a set of 
observed paths. While we expect this to lead to overfitting 
when making predictions based on training data, they yield 
precise ground truth influences when applied to the test data 
directly. To obtain a ground truth ranking (see Fig. 7b), we 
sort the nodes and node sequences according to their influ-
ence in descending order.

5.1.3  Prediction of influential nodes and node sequences

The network model is the least restrictive model for a set of 
paths. In contrast, the path model always considers the entire 
history. With K = 1 , a MOGen model resembles a network 
model with added states capturing the start- and end-points 
of paths. By setting K = lmax , where lmax is the maximum 
path length in a given set of paths, we obtain a lossless repre-
sentation of the path data. By varying K between 1 and lmax , 
we can adjust the MOGen model’s restrictiveness between 
the levels of the network and the path model. We hypoth-
esise that network and path models under- and overfit the 
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higher-order patterns in the data, respectively, leading them 
to misidentify influential nodes and node sequences in out-
of-sample data. Consequently, by computing node centrali-
ties based on the MOGen model, we can reduce this error.

To test this, we train a network model, a path model, 
and MOGen models with 1 ≤ K ≤ 5 to our set of training 
paths. We then apply the centrality measures introduced in 
Sect. 4.4 to compute a ranking of nodes and node sequences 
according to each of the models. In a final step, we compare 
the computed rankings to the ground truth ranking that we 
computed for our test paths.

5.1.4  Comparison to ground truth

While our models are all based on the same set of train-
ing paths, they make predictions for node sequences up to 
different lengths. We allow the comparison of the differ-
ent models’ predictions through an upwards projection of 
lower-order nodes to their matching node sequences. To this 
end, we match the prediction of the closest matching lower-
order node vl ∈ L as the prediction of the higher-order node 
vh ∈ H . Here, L is the set of lower-order nodes, e.g. from 
the network model, whereas H is the set of higher-order 
nodes from the ground truth. We define the closest matching 
lower-order node vl as the node with the highest order in L 
such that vl is a suffix of vh.

We evaluate how well the predictions match the ground 
truth using an AUC-based evaluation approach. Our 
approach is built on a scenario in which we aim to predict 
the top 10% most influential nodes and node sequences in the 
ground truth data. By considering this scenario, we trans-
form the comparison of rankings into a binary classification 
problem, where for each node or node sequence, we predict 
if it belongs to the top 10% of the ground truth or not. All 
results reported throughout this manuscript refer to averages 
over at least five validation experiments.

5.2  Comparison of the prediction quality

We now present the results of our prediction experiments 
comparing the performance of network, path, and MOGen 
models to predict the influence of nodes and node sequences 
in out-of-sample data. For ease of discussion, we start our 
analysis by focusing on the two datasets, BMS1 and HOS-
PITAL. Figure 8 shows the results for our five centrality 
measures. For betweenness and closeness, we do not require 
information on the start- and end-point of paths. Therefore, 
equivalent measures for the network model exist. In con-
trast, no equivalent measures for the network model can be 
computed for path end, path continuation, and path reach.

We show the AUC values for the different models and 
for different relative sizes for our training and test sets. The 
models shown on the x-axis are sorted according to the 

Fig. 7  Overview of our approach to predict influential nodes and 
node sequences based on path data. We start from path data which we 
split into training and test sets. We learn three different models based 
on the training data: (i) a network model containing all transitions 
from the training data, (ii) a multi-order generative model containing 
observed higher-order transitions up to a maximum order of K, and 

(iii) a path model containing the full paths in the training set. Based 
on these models, we predict the influence of nodes or node sequences 
according to a broad range of centrality measures. We compare the 
ranking of node sequences to the ground truth rankings obtained from 
the test paths using AUC-based evaluation
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maximum distance at which they can capture indirect influ-
ences. Thus, starting from the network model (N), via the 
MOGen models (MK) with increasing K, the models become 
more restrictive until ending with the path model (P).

Overall, the MOGen models outperform both the network 
model and the path models. With less training data, the AUC 
scores of all models decrease. However, as expected, these 
decreases are larger for the network and path models. For 
the betweenness and closeness measures, this results in AUC 
curves that resemble “inverted U-shapes”. For the remain-
ing measures, for which no equivalent network measures 
are available, we generally find that MOGen models with 
K between 1 and 3 perform best, and the prediction perfor-
mance decreases for more restrictive models, such as the 
path model. Our results highlight the risk of underfitting 
for network models and overfitting for path models. We fur-
ther show that this risk increases when less training data are 
available.

In Table 1, we show the results for all datasets and cen-
trality measures for a 30/70 train/test split. In general, we 
find similar patterns to those discussed with Figure 8. How-
ever, for WORK and TUBE, the difference in prediction 
quality between the MOGen and path models decreases, and 
for some measures, the path model even yields better perfor-
mance. WORK and TUBE are those datasets for which we 
have the highest fraction of total observed paths compared 
to the number of unique paths in the datasets. As shown in 
Table 4, BMS1 contains 59,601 total paths, of which 18,473 
are unique. This means that, on average, each unique path is 
observed 3.2 times. These counts increase to 4 for SCHOOL, 
4.6 for HOSPITAL, 6.7 for WORK, and 132.9 for TUBE. 
The good performance of the path model for these datasets 
shows that the error we found with fewer observations is 
indeed due to overfitting. In other words, if we have a suf-
ficient number of observations, we can compute the cen-
tralities on the path data directly. However, if the number of 
observations is insufficient, the path model overfits the pat-
terns in the training data and consequently performs worse 
on out-of-sample data. How many observations are required 

to justify using the path model depends on the number of 
unique paths contained in the dataset.

In conclusion, our results support our hypothesis. By not 
capturing the higher-order patterns present in path data and 
not considering the start- and end-points of paths, the net-
work model consistently underfits the patterns present in path 
data. Similarly, the path model overfits these patterns. Con-
sequently, when using either model to rank the influence of 
nodes and node sequences in path data, we obtain rankings 
that are not consistent with out-of-sample observations. Pre-
diction performance can be significantly improved by using 
MOGen models that prevent underfitting by capturing higher-
order patterns up to a distance of K while simultaneously 
preventing overfitting by ignoring patterns at larger distances.

6  Detecting community smells at genua

The data from genua contain up to ∼2,000 paths for any 
one-year interval (cf. Fig. 3). This means that analysing the 
path data directly is likely to overfit the interaction patterns. 
Therefore, in the following, we apply the MOGen-based cen-
trality measures to identify community smells within the 
development process. We visualise our approach in Fig. 9. In 
addition, we provide a detailed sequence of steps in Table 2.

6.1  Higher‑order interaction patterns

First, we infer the optimal maximum order for the issue 
tracker and code review data using MOGen’s built-in model 
selection approach. To account for changes over time, we fit 
a separate MOGen model to all paths starting in a given one-
year period. We then move the one-year window by three-
month increments and repeat the process.

For the issue tracker, we detect an optimal maximum 
order of one over the entire data. We conclude that issue 
tracker interactions occur relatively unrestricted. This is 
aligned with our knowledge of the development process 

Fig. 8  Prediction results for 
five centrality measures for the 
BMS1 and SCHOOL datasets 
and different train/test splits. N 
and P indicate the network and 
path model, respectively. M1 
through M5 are MOGen models 
with maximum orders between 
1 and 5
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at genua. Importantly, even a first-order MOGen accounts 
for the start- and end-points of paths. The results presented 
later will show that the consideration of these start- and end-
points, neglected by static network models, is essential.

For the code review process, we consistently find second-
order patterns over the entire 15-year observation period2. 
This indicates that the subsequent step in the code review 
process is influenced by the previous two steps. This implies 
that to accurately predict who will perform the integration 

task—incorporating code changes into the main codebase—
information about both the developer and the reviewer of a 
change is necessary.

Based on these results, we analyse the issue tracker and 
code review data using first-order and second-order MOGen 
models, respectively.

Table 1  AUC values for all 
models and measures on five 
datasets for a 30/70 train-test 
split (color figure online).

N and P indicate the network and path model, respectively. M1 through M8 are MOGen models with 
maximum orders between 1 and 8 (shown in ). The best-performing result for each dataset and measure 
is highlighted in bold
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Fig. 9  Overview of our approach to detect community smells in 
the development process at the German IT security company genua 
GmbH. a For each one-year time window, we extract paths for all 
issues and their related changes. b We fit the MOGen model to the 
extracted paths and identify the most central team members according 
to the centrality measures introduced in Sect. 4.4. c We identify those 
team members that are most central to the team and track them over 

time. d We identify community smells by comparing the centralities 
of those members with the values obtained for the remaining team. e 
We validate the detected community smells in semi-structured inter-
views with team members from genua. f As our centrality measures 
are computationally effective, they can be employed in real-time to 
provide actionable insights on existing and emerging community 
smells to software development teams

2 The code review data only start approximately five years after the 
data from the issue trackers.
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6.2  Identifying community smells in software 
development processes

Our aim is to identify lone wolves, bottlenecks, organisa-
tional silos, and code-red situations in genua’s development 
process—i.e. individual developers or small subgroups tak-
ing over specific tasks that nobody else takes over. To this 
end, we compute the five centrality measures introduced in 
Sect. 4.4. In addition to these five measures, we also com-
pute visitation, capturing the frequency of observing each 
team member in any position on a path. As a result, we 
obtain individual time-series for all team members and all 
centrality measures over the 20 years.

To identify those team members that are more likely to 
create community smells, we focus on individuals exhibiting 
consistently high deviations from the team’s average cen-
trality scores. This is because such deviations suggest these 
members may have unique or unbalanced roles within the 
team, potentially leading to communication or collaboration 
issues that contribute to the emergence of community smells. 
To this end, we define a deviation score Sp,i , which aggregates 
over all time-points t ∈ T  and centrality measures c ∈ C:

In Eq. (8), i identifies the developer for whom the deviation 
is computed and p ∈ P = {IT ,CR} denotes the development 
platform, i.e. issue tracker or code review, for which the 
score is computed. vp,c,i(t) and v̄p,c(t) represent the centrality 
value of a developer and the mean centrality value across 
all developers at time t, respectively. Aggregating across the 
two platforms, we get a final score Si for each developer as

(8)Sp,i =
∑

t∈T

∑

c∈C

|||||

vp,c,i(t) − v̄p,c(t)

v̄p,c(t)

|||||

(9)Si =
1

|P|
∑

p∈P

Sp,i.

Based on Eq. (9), we select five team members (A–E) with 
the highest values for Si as the focal point of our analysis.

6.2.1  Community smells in the issue tracking process

Figure 10 visualises the centrality values for the five selected 
team members in the issue tracking data.

Visitation. From the visitation, we observe that all selected 
team members have high activity levels. A and B have high 
visitation probabilities until 2011, then are surpassed by C 
and E. Developer C is responsible for over 30% of actions 
from 2016 onwards. With the team having over 50 active 
team members during this period, this is a notable finding. 
We also observe a transition in activity from A to E, with A 
dropping to 0% and E reaching around 15% from 2012.

Betweenness. Betweenness centrality allows us to capture 
a team member’s importance as a transmitter of information. 
We observe a substantial change in betweenness centrality in 
2011, with many team members’ scores increasing signifi-
cantly, especially for C and D. This change could be due to 
longer paths on the issue tracker, which would result in more 
team members appearing in the middle of a path.

Closeness. The above-average values for closeness cen-
trality show that all highlighted team members are central 
to the development process. It further indicates that they 
closely collaborate with a large part of the remaining team. 
When team members change roles and become less active 
(e.g. A in 2012), they deviate back towards the median.

Path end. Path end quantifies how frequently team mem-
bers appear at the end of a path. From Section 3.1, we know 
that for the issue tracker, this relates to quality assurance 
and issue closing. Path end reveals that starting in 2011, E 
appears at the end of over 60% of all paths, with other mem-
bers’ appearances significantly reduced. This changed in 
2016 when also C appeared more frequently in this position.

Path continuation and reach. Finally, path continua-
tion indicates if the development process continues after an 

Table 2  Sequence of steps to detect community smells in the development process at the German IT security company genua GmbH 

1.   Start with development platforms storing team’s time-stamped actions, labelled by issue.
2.   Extract all actions from the databases.
3.   Sort all actions according to their time-stamp.
4.   Aggregate them at issue-level to form sequence of actions, i.e. paths.
5.   Assign paths to rolling time windows (one-year long with three-month shifts, cf. Section 3).
6.   Fit a MOGen model for each time window.
7.   Compute path centralities for team members (cf. Section 4.4).
8.   Identify members consistently deviating from average centrality (cf. Section 6.2).
9.   Examine these members’ centrality score time-series.
10.   Detect time-series anomalies.
11.   Explain anomalies, forming community smell hypotheses.
12.   Validate hypotheses through semi-structured interviews.
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action from a team member, and path reach quantifies how 
many steps are still left. Here, we find that most highlighted 
developers show around average values. However, as already 
indicated by path end, E represents an exception to this as 
the development process rarely continues after E, and even 
if it does, it still only does so for a few steps.

Hypotheses for the issue tracking process We summarise 
our findings as a set of hypotheses regarding the issue track-
ing process. Firstly, the significant increase of betweenness 
and average path reach in 2011 points to a notable change in 
the development process at that time. As E joined the team 
in 2011 and has held the final position in 60–80% of all 
paths for over 10 years since we hypothesise that E took on a 
new role in quality assurance or issue closing. Therefore, we 
hypothesise that the knowledge of this aspect of the devel-
opment process is primarily concentrated in E, potentially 
creating a bottleneck or organisational silo.

In addition, we have identified C as a highly active and 
important transmitter of information within the team. How-
ever, other team members also frequently appear in the same 
positions as C. Consequently, based solely on the current 
data, we cannot definitively determine if C contributes to a 
community smell.

6.2.2  Community smells in the code review process

In Fig. 11, we show the centrality values for the code review 
data. Unlike in the issue tracker data, E does not appear in 
the code review data at all. The absence of E from the code 

review data provides further evidence for the unique position 
of E we hypothesised based on the issue tracker data.

Visitation. Team members A–E exhibit similar visitation 
probabilities and thus maximum activity levels, maintaining 
them over multiple years. Their highest activity levels occur 
at different times, with clear handoffs between members (e.g. 
B and D from 2012 to 2014). Similar to the issue tracker 
process, we again find C to be very active and highly central.

Betweenness and path end. Based on our knowledge of 
genua’s code review process (cf. Sect. 3.1), we can interpret 
the betweenness centrality as code review activity and path 
end as integrations. The betweenness shows that from 2007 
onwards, C performs more code reviews than any other team 
member. Analysing the time-series of betweenness and path 
end together, we observe that upon joining the team, mem-
bers initially focus on development and review tasks. They 
only begin to take on integration tasks after several years 
with the team. For instance, C assumes this role after six 
years, while D does so after seven years. Notably, path end 
reveals that only B, C, and D perform integration tasks (i.e. 
appear at the end of paths) at any given point in time.

Closeness. As for the issue tracker process, we find 
above-average closeness values of developers A–E. Although 
we do not gain any additional insights regarding community 
smells at this stage, this substantiates the validity of our 
focus selection.

Path continuation and reach. Path continuation and path 
reach are below average for all highlighted team members. 
This is consistent with their high path end, indicating that 
they perform integration tasks.

Fig. 10  Centrality values for 
the five selected team mem-
bers in the issue tracker data 
(Bugzilla/Redmine) over time. 
The significant increases in 
betweenness and average path 
reach in 2011 point to a notable 
change in the development pro-
cess at that time. As indicated 
by path end, path continuation, 
and path reach, E has held the 
final position in 60–80% of 
all paths since 2011. The high 
visitation and betweenness of 
C identify C as a highly active 
and important transmitter of 
information within the team, 
although other team members 
also frequently appear in similar 
positions
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Hypotheses for the code review process We find that team 
members need multiple years of project experience to perform 
integration tasks. This makes the team potentially vulnerable 
when experienced members leave. With only very few people 
performing integrations at any point in time, we hypothesise 
that this represents a code-red situation.

As for the issue tracker, we have identified C as highly active 
and an important transmitter of information. Even the study of 
node centralities in the code review process has not given us 
conclusive insights on the role of C, therefore motivating fur-
ther analyses. Uniquely, our MOGen-based centralities allow us 
to quantify the importance of not only nodes, but also edges 
in the network. In Sect. B, we examine the centralities of all 
edges, where C is either the target or the source to determine the 
extent of C’s interactions with various team members. Through 
this analysis, we assess whether C’s interactions are limited to 
a small subset of the team or if they involve a broader range of 
team members. This ultimately helps us understand the extent 
of knowledge sharing involving C. Our results show that while 
C is holding significant project knowledge, C’s broad interac-
tions with various team members, both as sender and recipient, 
indicate that C is not a lone wolf, and the team likely has active 
measures in place to promote knowledge exchange. Therefore, 
we do not consider C as a potential community smell.

7  Validating our results in semi‑structured 
interviews

Based on the analysis of the data, we have hypothesised that: 
(i) E constitutes a bottleneck or organisational silo in the issue 
tracker process related to either the quality assurance process 
or the closing of issues. In addition, we found that (ii) the inte-
gration task in the code review process represents a code-red 
situation, as only very few team members with extensive expe-
rience perform it. However, based on the second-order interac-
tion patterns, we conjectured that (iii) the team has measures 
in place to promote broad interactions between team members.

To test these hypotheses and simultaneously validate the 
performance of our evaluation approach, we conducted semi-
structured interviews with five members of genua that were 
or currently are members of the analysed team. In particular, 
we had the opportunity to interview three of the highlighted 
team members—B, D, and E. Besides those, we spoke with 
two additional team members, which we refer to as F and 
G. All interviews lasted approximately one hour and were 
conducted without the aid of any supplementary material. 
The interviews were conducted in March of 2021 in German, 
with the transcripts subsequently being translated into Eng-
lish. Following each interview, we debriefed the interviewee 
and discussed the set of figures shown throughout the previ-
ous sections. We performed all evaluations and the selection 
of highlighted team members solely based on their pseudo-
anonymised ID (cf. Sect. 3.2). After sending our results to 

Fig. 11  Centrality values for 
the five selected team members 
in the code review data (Aegis) 
over time. Visitation shows that 
team members have similar 
maximum activity levels which 
they maintain over multiple 
years. Betweenness and path 
end can be interpreted as code 
review activity and integrations, 
respectively. Their time-series 
indicate that upon joining, team 
members initially focus on 
development and review tasks 
and take over integration tasks 
only after multiple years. From 
path end, we further observe 
that only very few people per-
form integrations at any point 
in time
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genua, the team de-anonymised the five highlighted team 
members for the subsequent interviews.

All interviews started with general questions about the 
team and the interviewee’s role and career within the pro-
ject. Based on our quantitative findings, we designed our 
subsequent questions around the two community smells 
we detected. Following this structure, we first report 
the responses to questions aimed at validating that our 
approach is capable of identifying those team members 
most central to the development process. Subsequently, 
we present our findings concerning the community smell 
in the issue tracker process. Finally, we summarise the 
responses to our questions addressing the code-red situa-
tion in the integration task during the code review process.

7.1  Essential team members

To validate our approach of detecting influential team 
members using centrality measures, we asked every inter-
viewee to name three team members essential for the pro-
ject, which cannot include themselves. The aggregated 
results from all five interviews are shown in Table 3.

In total, only two interviewees mentioned a team member 
not highlighted in our data. Interestingly, both interview-
ees mentioned the same team member, which we refer to 
as H. When we asked why this team member was critical, 
we learned that H took over a large part of the work from D 
after D changed teams in 2018. As our data end at the end of 
2018, most of this period is outside our observation period. 
Thus, overall, we could confirm that our approach is effec-
tive at detecting essential team members.

The counts with which different team members were 
mentioned also match our expectations. A who stopped 
contributing in 2012 is mentioned only once. Instead, most 
interviewees consider current or more recent team members 
as more important. That said, E, whom we hypothesise to be 
a bottleneck or organisational silo, is only mentioned once. 
We further discuss this result in the following section.

7.2  The quality assurance process

In Sect. 6.2.1, we found that both the betweenness centrality 
and the path reach increased substantially for some of the 
team members. We hypothesised that this is due to a newly 
introduced or significantly extended quality assurance pro-
cess headed by E. However, we could not fully rule out that 
the increases were related to the transition from Bugzilla to 
Redmine, which occurred around 2010.

As we found during our interviews, the transition from 
Bugzilla to Redmine did not modify the development 
process.

“The process didn’t change much. The categories and 
priorities may have looked minimally different, but the 
process itself [...] there nothing has changed.” (state-
ment by D)

B confirmed that the development process itself did not 
change, arguing that

“[t]his [Bugzilla] was just a tool.” (statement by B)

When asking for the reason behind the transition, we learned 
that

“[t]he switch [from Bugzilla to Redmine] was made 
mainly because they wanted to track features that were 
promised to customers, which was not possible with 
Bugzilla.” (statement by E)

Further, the team is not aware of any causal relationship 
between the transition and E joining the team:

“No, I think this was pure chance.” (statement by E)

Thus, we conclude that the transition from Bugzilla to Red-
mine was not accompanied by any significant change in the 
development process.

Next, we aimed to determine how the quality assurance 
process worked before and since E joined the team. Here, 
we found that before E joined, the team used an internal 
testing setup:

“A unique aspect of Aegis is that for each bugfix or 
feature that you develop, you have to write a test. You 
then need to execute this test twice—once with your 
changes and once without your changes. Without your 
changes, the test needs to fall on its nose and fail. With 
your changes, the feature is now there, and the test 
is successful. Through this process, we have already 
tested the code. Not only developed but simultaneously 
also tested.” (statement by D)

In addition to the testing by the development team,

“[t]he customer managers have a natural interest to test 
new features before installing them for a customer.” 
(statement by B)

Table 3  Number of times 
each team member was 
mentioned when asking our five 
interviewees to name the three 
team members most important 
for the development process 
(excluding themselves)

The congruence with our 
highlighted team members is 
remarkable as, in total, 176 dif-
ferent people contributed to 
either the issue tracker or the 
code review platform during our 
20-year observation period

A B C D E other (H)

1 4 4 3 1 2
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However, with both the product and the customer base grow-
ing significantly, the team eventually introduced an external 
quality assurance process:

“The BSI [Federal Office for Information Security] 
responsible for the certification of [the product] 
requested an additional quality assurance process con-
ducted by an external person not part of the develop-
ment team. I became this person.” (statement by E)

Over the last ten years, E has developed a meticulous testing 
setup allowing the evaluation of new releases in environ-
ments similar to those used by genua’s clients. However, as 
we hypothesised,

“[n]obody apart from E knows how the testing envi-
ronment works.” (statement by B)

E confirmed this, stating:

“I am effectively the entire quality assurance depart-
ment for [the product]. In moments where I don’t feel 
like doing it, go on holiday, or am busy with other 
things, it [new changes] remains without quality assur-
ance.” (statement by E)

So what happens if E can no longer perform the work?

“Certainly, nobody would know my test environment 
and my tests at a deeper level. One or two people 
have performed tests of patches—this means they 
have effectively tested a new version of the software 
with the existing set of tests. However, I am the only 
one who knows the setup in depth and knows how 
to properly create new tests or adapt tests for new 
features.” (statement by E)

In other words, there would be severe consequences for 
the team:

“If [E] is absent or unable to perform the work, 
we have a massive problem. Quality assurance is 
undoubtedly something where we have [E] who has 
done this for many years and is genuinely the only 
one.” (statement by G)

Despite these consequences, only G, who has also worked 
in quality assurance, mentioned E as one of the most 
important team members. Also, no steps are taken to miti-
gate the potential consequences:

“Concerning me, if there are any steps taken to moder-
ate the consequences if I was no longer there? I don’t 
know; I haven’t witnessed any.” (statement by E)

We argue this is particularly critical as the external quality 
assurance process, which E is responsible for, was explicitly 
requested by the Federal Office for Information Security and 
is thus required to obtain the product’s certification.

In conclusion, the interviews confirm our hypothesis that 
E is crucial for the quality assurance of the product. We 
further learned that E is the only team member with detailed 
knowledge of the testing environment. Hence, our quanti-
tative analysis correctly identified E as a bottleneck in the 
issue tracker process and as an organisational silo regarding 
the quality assurance process. Interestingly, when asked to 
name team members essential to the development process’ 
functioning, E was only named once. This shows that espe-
cially the core team, responsible for the development of new 
features, is not actively aware of this community smell. It 
also explains the lack of measures in place to mitigate the 
consequences emerging if, for any reason, E drops out.

Overall, we validate that our method successfully detects 
community smells. We were further able to show that in 
this case, the team was not widely aware of the community 
smell and the corresponding risk. But what can a team do 
to mitigate the risk? To address this question, we next look 
at the integration task in the code review process.

7.3  The integration of changes

Our quantitative analysis revealed that the integration task is 
only performed by a few team members with multiple years 
of experience in the project. However, our analysis of sec-
ond-order nodes showed that these team members not only 
interact with each other but instead with a broad spectrum of 
other team members. Therefore, we hypothesised that there 
are active processes present in the team to (i) ensure that 
there are sufficient team members to perform integrations at 
all times and (ii) facilitate the spread of knowledge among 
team members.

During our interviews, everyone confirmed that indeed, 
to perform integrations, deep insights into the structure and 
development history of the product are required, which are 
very hard and time-consuming to obtain:

“[The product] is now significantly older than 20 years, 
and it still exists, [...], but there were multiple gen-
erations of developers that have worked on it. Those 
are now gone again, which means that there is quite a 
lot of knowledge—especially undocumented knowl-
edge—concentrated in just a few team members.” 
(statement by D)

This rich history also contains numerous design decisions 
that might look wrong initially but were made for good 
reasons.

“With certainty, things that look peculiar at first glance 
[today] had to be done exactly like this for reasons that 
date back six, eight, or ten years. The longer you are 
part of the team, the more corners of the product you 
get to know, allowing you to make changes relatively 
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efficiently without running the risk of breaking every-
thing in another place.” (statement by E)

This complexity makes it very difficult for newcomers to 
get started contributing to the project, and even experienced 
team members have a hard time understanding all aspects 
and use cases:

“I think the initial barrier of entry is very high for 
[the product]. This means that while experienced 
Unix, Pearl, and C developers can collaborate on a 
small subarea, they lack the bigger picture of how the 
product works as a whole and how it is deployed with 
our clients.”
“I would personally argue that even a long-term devel-
oper of [the product] could not put the product in oper-
ation or configure the product for a client. Even those 
developers don’t know how the different components 
interact and how they, therefore, need to be configured 
as a whole.” (statements by F)

To cope with this complexity, the team has defined multiple 
roles corresponding to different tasks in the development 
process.

“There are three different roles: the role of the devel-
oper, the role of the reviewer, and the role of the inte-
grator. All those who participate are, in any case, first 
developers. A few less are reviewers. For example, 
new trainees are initially not allowed to review.” (state-
ment by D)

To become an integrator, team members indeed need multi-
ple years of experience working on the product.

“We only assign the integrator role to experienced 
developers who see the bigger picture.” (statement by B)

We note that commonly a single team member has multiple 
roles, with experienced team members taking over all three 
roles depending on the need.

Over the 20 years of development history included in our 
analysis, we found that three to four team members perform 
integrations at all points in time. However, this count is not 
something the team consciously keeps track of but rather a 
result of the code review process in which the developer, 

reviewer, and integrator of a change cannot be the same team 
member.

“It’s purely a practical problem as if one [integrator] 
is on holiday and another one is sick, nobody can inte-
grate. Therefore, you need a third one that can inte-
grate.” (statement by D)

If there is a lack of integrators, the tasks are given to the next 
most experienced team member.

“You have to keep the process going. When you real-
ise, ok, we have one resource that integrates and five 
developers waiting for someone to integrate, then you 
say, ok, who is the second most experienced now? If 
it still doesn’t work, you say, who is the third most 
experienced now? And then you give the integrator 
role to so many people until it works.” (statement by B)

However, the constraints of the review process do not 
explain why the team does not form subgroups that con-
tinuously review and integrate the changes developed by 
each other. Here B, who has been with the team for the full 
observation period, told us:

“In the beginning, everyone had their own area. There 
was one who did the WWW relay, and the other one 
had to do the IP relay. When we wanted to do five 
features in one release, then everyone was assigned a 
different feature.”
“Then we restructured the whole thing by introducing 
the Scrum process where now the team as a whole is 
responsible for all things that are done. Thus we tried 
to break the whole thing up a bit.” (statements by B)

Thus, by introducing Scrum, the team actively and con-
sciously tries to spread knowledge about the product 
throughout the team.

“One of the philosophies of Scrum is that everyone can 
do everything to address exactly the problems arising 
when the bus comes [referring to the truck factor, which 
is also known as the bus factor], or Google simply pays 
more. Thus we try to counteract exactly these problems 
in advance through XP [Extreme Programming] and 

Table 4  Summary statistics for 
our five empirical path datasets

Paths Nodes on path Network topology

Total Unique Mean median Nodes Links

BMS1 59,601 18,473 2.51 1 497 15,387
TUBE 4,295,731 32,313 7.9 7 276.0 663
SCHOOL 103,260 25,831 2.5 2 242 8,297
HOSPITAL 62,676 13,578 4.8 5 75 1,137
WORK 7,832 1,170 2.5 2 92 753
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pair programming [deliberate pairing of team members 
with different expertise].” (statement by D)

In addition, the review process also contributes to knowledge 
sharing within the team.

“Given the complexity of [the product], we only have 
relatively few developers. Whenever something is 
changed, someone has to look at it [review and inte-
grate it], which means that there is inevitably a mix of 
what people see.” (statement by G)

However, while, as we could show, these efforts lead to a 
strong mixing of interaction partners, there remain some 
areas in which team members specialise.

“However, I think there are still comfort zones where 
people make initial changes and whom you let do it 
[make changes in a certain area of the codebase].” 
(statement by G)

Also, as D experienced in another project, even three experi-
enced team members can leave in short succession, causing 
trouble for the remaining team.

“I had the plan to switch from [the analysed project] to 
[the project I’m in now] for two months to have a look 
at the other project. They have a different programming 

language, a different framework etc. We were in the pro-
cess of scheduling when we would start when one of the 
colleagues from that project quit. Then we said, ok, let’s 
do that right away as then I’ll get some more information 
from him. Because he quit, we decided that I’d switch 
completely. Afterwards, it didn’t take long, and two more 
core developers from the team quit, and that was pretty 
hard. A lot of knowledge left very quickly, and it often 
happens that I read some code that I don’t know and 
that I don’t understand right away. Then it takes me a lot 
longer. Also, the other remaining core developers need 
to look these things up because it’s not their expertise. In 
that situation, I felt the bus factor very hard. There you 
notice that there was quite a bit of sand in the gears.” 
(statement by D)

Thus, based on our MOGen-based centrality measures, we cor-
rectly identified the integration process as a code-red situation.

In conclusion, our quantitative analysis revealed that the 
team succeeded at enabling at least three team members to 
perform integrations at any point throughout our 20-year 
observation period. Integrations are the most challenging part 
of the code development and review process. They require 
an in-depth overview of the project that due to its long and 
complex history, even experienced newcomers need multiple 
years to obtain. To facilitate the diffusion of knowledge, we 

Fig. 12  Centrality of all edges 
in the MOGen model with K = 2 
in the Aegis data. All edges to 
C that reach a total visitation of 
at least 2% in any given year are 
highlighted. The median and the 
25% to 75% quantile are shown 
in grey
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have identified three key measures employed by the team: 
First, a strict code review process in which all three parts of 
introducing a new change to the product must be performed 
by different team members. Second, Scrum, where the whole 
team is involved and responsible for new milestones in the 
project. Third, the team employs Extreme Programming and 
pair programming, where team members with different areas 
of expertise are deliberately paired to jointly develop a change 
and share knowledge in the process.

As we found during our quantitative analysis, these meas-
ures allow the team to significantly reduce the reliance on any 
individual team member. We argue that applying these already 
established measures to the quality assurance process would 
also reduce the risk concentration in E that we observed there. 
However, it would also come with increased costs as an addi-
tional team member would need to be involved in the quality 
assurance process. The resulting additional communication 
overhead would further lead to a reduction in individual pro-
ductivity (Gote et al. 2021). Finally, as we saw with the last 
example, risks can never be entirely eliminated. Also, the impor-
tance of cascade processes, where the departure of one team 
member causes other team members to leave, needs to be further 
explored (Burkholz and Schweitzer 2018; Callaway et al. 2000). 
Thus, the best strategy that a team can take is to continuously 
evaluate the team’s risk concentrations, allowing it to be aware 

of the risks and act accordingly. Through our interviews, we 
could validate that the centrality measures around the MOGen 
model proposed in this manuscript are a powerful, versatile, and 
fine-granular way to capture and quantify who holds knowledge 
and performs certain aspects of the development process and 
how this knowledge is shared within the team.

8  Threats to validity

We now discuss the threats to validity for our empirical 
study identifying community smells, which we discussed 
in Sects. 3,6,7.

First, applying our approach and the centrality measures 
to software development data ranging over more than 20 
years yields an immense amount of detail, as shown in the 
result figures throughout this manuscript. As mentioned in 
Sect. 6.2, this amount of detail is both a major strength and 
weakness of our analysis. On the one hand, it allows us to 
gain deep insights into any aspect of the development pro-
cess. However, on the other hand, it makes selecting the 
focus of our analysis challenging. We have opted to per-
form a detailed analysis for a subset of team members. Here, 
we specifically looked for instances where team members 
show extreme values—both low and high—for our centrality 

Fig. 13  Centrality of all edges 
in the MOGen model with 
K = 2 in the Aegis data. All 
edges from C that reach a total 
visitation of at least 2% in any 
given year are highlighted. The 
median and the 25% to 75% 
quantile are shown in grey
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measures. Our results demonstrate that this approach works 
well to identify essential members of the team. However, as 
we found with the quality assurance process, team members 
are not necessarily aware of all community smells within the 
team. Thus, while the community smells we identified were 
confirmed in our interviews, our analysis approach cannot 
guarantee that these are the only ones present in the team.

The second potential threat to validity originates from the 
data used for our analyses. Here, we assessed all available 
data from the issue trackers and the code review platform. 
In our interviews, we further confirmed that the vast major-
ity of development processes appear on these platforms. 
However, with personal communication, email, or online 
chat, there are additional communication channels used for 
knowledge exchange that are not available for our analyses. 
We further learned that processes such as Scrum meetings or 
pair programming that we identified to be essential in avoid-
ing community smells are not recorded and, therefore, do not 
appear in our data. Through our interviews, we were able 
to corroborate our quantitative findings made without this 
data. Nevertheless, there are likely other team members in 
crucial roles, such as the chairs of the Scrum meetings, that 
are not captured by the present data. In future work, we will 
extend our community smell detection method to include 

additional data sources, e.g. by also tracking developers’ 
activity directly in the codebase (Gote et al. 2019).

Third, throughout our analysis, we make the critical 
assumption that not observing a team member performing a 
task means that this team member cannot perform the task. 
Conversely, we assumed that if we only observe a specific sub-
set of team members performing a task, these are the only team 
members who can take over the task. Basing our evaluation on 
this assumption, our quantitative approach cannot be used in 
an unsupervised manner to detect community smells entirely 
independently. Instead, our method aims to inform software 
development teams and their managers on where community 
smells are likely to exist. Subsequently, similar to our inter-
views, the team itself can perform an informed further inves-
tigation and draw the appropriate consequences. We argue that 
this is the best we can do, as due to privacy and intellectual 
property considerations, we do not have any data on the con-
tent of interactions—i.e. the comments written by team mem-
bers and the developed source code—and, as mentioned above, 
we are missing all data on personal interaction channels. While 
this presents a threat to the external validity of our approach, it 
does not affect the results presented here, as all findings could 
be validated in our semi-structured interviews.

Finally, our methodological approach to detect commu-
nity smells is based on our knowledge about the development 

Fig. 14  Centrality of all edges 
in the MOGen model with K = 2 
in the Aegis data. All edges to 
A that reach a total visitation of 
at least 2% in any given year are 
highlighted. The median and the 
25% to 75% quantile are shown 
in grey
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process applied at genua that we discussed in Sect. 3.1. This 
means that it is not possible to directly carry over our inter-
pretations of the different centrality measures to teams using 
a different development process. However, at its core, our 
method is able to identify central nodes and structural bottle-
necks in any path data set. Therefore, while the development 
processes might differ, we are convinced that our method 
is applicable to other teams. In fact, it should apply to any 
system for which we can observe path data. Nevertheless, 
this needs to be tested in an extended study considering data 
from additional teams and systems in future work.

9  Conclusion

In this paper, we proposed a new approach to locate commu-
nity smells in software development processes using higher-
order network centralities. Our work expands the current 
understanding of social network analysis (SNA) by address-
ing the limitations of static network models and demonstrat-
ing the benefits of higher-order network analysis in capturing 
the dynamics of software development teams.

Based on the higher-order model MOGen, we proposed 
measures to quantify the influence of both nodes and node 
sequences in path data according to five different notions of 

centrality. Our centrality measures range from simple concepts 
like betweenness to complex measures such as path reach. We 
demonstrate in a prediction experiment with five empirical 
datasets that utilising our MOGen-based centrality measures 
results in improved predictions of influential nodes in time-
series data compared to both network and path models.

Finally, we showed how our method could be applied to 
detect community smells, i.e. sources of unforeseen project 
cost connected to a “suboptimal” community structure, within 
a product team at the German IT security company genua 
GmbH. With our analysis, we identified a developer acting 
as a bottleneck and organisational silo in the quality assur-
ance process and a code-red situation in the code review pro-
cess. The validation of our findings through semi-structured 
interviews with genua developers confirmed the presence 
of the identified community smells. The team was already 
aware of one community smell and was actively addressing 
it. However, they were not aware of the second community 
smell, which our approach helped uncover. This means that 
our analysis enables the team to take counter measures against 
it. This highlights the potential of our methodology in aiding 
software teams to identify and address hidden community 
smells, ultimately improving the overall development process.

In conclusion, this paper advances SNA by introduc-
ing higher-order network centralities to effectively capture 

Fig. 15  Centrality of all edges 
in the MOGen model with 
K = 2 in the Aegis data. All 
edges from A that reach a total 
visitation of at least 2% in any 
given year are highlighted. The 
median and the 25% to 75% 
quantile are shown in grey
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dynamics and indirect relationships. This enhances the 
detection of patterns not captured by static network mod-
els—the most popular models for relational data. Our 
findings reveal that higher-order network centralities can 
effectively identify community smells that would remain 
undetected using traditional SNA. The approach proposed 
in this work can be applied in real-time to warn the teams 
of community smells before they cause harm, emphasising 
the real-world value that higher-order models can provide.

10  Archival and reproducibility

Sources for all data used in this manuscript are provided. A 
reproducibility package is available at https:// doi. org/ 10. 5281/ 
zenodo. 71394 38. A parallel implementation of the MOGen 
model is available at https:// github. com/ pathpy/ pathp y3.

Appendix A General path datasets

We test our hypothesis in five empirical path datasets con-
taining observations from three different categories of sys-
tems: (i) user clickstreams on the Web (BMS1: Brodley 

and Kohavi (2000)), (ii) travel itineraries of passengers 
in a transportation network (TUBE: Transport for Lon-
don (2014)), and (iii) time-stamped data on social interac-
tions (HOSPITAL: Vanhems et al. (2013); WORKPLACE: 
Génois et al. (2015); SCHOOL: Stehlé et al. (2011)). BMS1 
and TUBE are directly collected in the form of paths. For 
SCHOOL, HOSPITAL, and WORKPLACE, we extracted 
paths following Sect.  4.1, using � as 800s, 1,200s, and 
3,600s, respectively. The raw data for all datasets are freely 
available online (cf. references above). We provide summary 
statistics for all datasets in Table 4.

Appendix B Interaction broadness at genua

C holds a significant amount of knowledge on the project, 
which, if not adequately spread within the remaining team, 
would make C a lone wolf and possibly cause issues with 
future development. Therefore, in this appendix, we study 
the broadness of C’s interactions with the rest of the team.

For this, we recall that in Sect. 6.1, we detected an optimal 
order of K = 2 for the code review process. In other words, 
we found that in the code review process, previous interac-
tions have a statistically significant impact on subsequent 

Fig. 16  Centrality of all edges 
in the MOGen model with K = 2 
in the Aegis data. All edges to 
B that reach a total visitation of 
at least 2% in any given year are 
highlighted. The median and the 
25% to 75% quantile are shown 
in grey

https://doi.org/10.5281/zenodo.7139438
https://doi.org/10.5281/zenodo.7139438
https://github.com/pathpy/pathpy3
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Fig. 17  Centrality of all edges 
in the MOGen model with 
K = 2 in the Aegis data. All 
edges from B that reach a total 
visitation of at least 2% in any 
given year are highlighted. The 
median and the 25% to 75% 
quantile are shown in grey

Fig. 18  Centrality of all edges 
in the MOGen model with K = 2 
in the Aegis data. All edges to 
D that reach a total visitation of 
at least 2% in any given year are 
highlighted. The median and the 
25% to 75% quantile are shown 
in grey
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interactions. Our MOGen-based centralities uniquely allow 
us to study the importance of these interactions, as, next to 
the centrality of nodes, we can also compute the centrality 
of edges.

In Figs. 12 and13, we show the centralities of all edges 
where C is either the target or the source, respectively. With 
12 target edges and 13 source edges with similar values for 
all centralities, our results clearly show that C’s interactions 
are not limited to a small subset of the remaining team. 
Instead, C interacts with a broad range of other team mem-
bers both as sender and recipient. This means that when-
ever C develops or reviews code for a change, no specific 
other team member reviews or integrates it. Similarly, C 
reviews and integrates code from a wide range of other team 
members.

In conclusion, we find that C is a highly central and pro-
lific member of the team. However, C is heavily involved 
in interactions with a large part of the remaining team. In 
addition, many other team members also appear in posi-
tions where C is central. This suggests that C is not a lone 
wolf.

We further show that similarly broad interaction patterns 
can be found for all other highlighted team members (see 

Figs. 14,15,16,17,18,19)3. Finding such broad interactions 
for all analysed team members suggests that the team has 
active measures in place to promote knowledge exchange 
within the team.
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