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When the CEO of a major Swiss telecommunication pro-
vider was asked about the long-term goal of his com-
pany, he replied, “Still being in the market in 5 years.” 
This statement could well serve as a shorthand descrip-
tion of resilience. Being there in 5 years means that the 
company has the ability to either withstand shocks or 
recover from them if they could not be avoided. Disrup-
tions can result, for instance, from competitors, legal 
regulations, technological innovations, and so on. What 
makes them shocks is their unpredictability. Hence, to 
cope with the unforeseeable and to adapt to any changes 
quickly is a core element of resilience.

Instead of companies, in this article we focus on infor-
mal collectives, which refers to informal groups of inter-
related individuals who pursue a collective goal and are 
embedded into an environment (Hoegl & Gemuenden, 
2001; Ostrom, 2009). Unlike hierarchical organizations 
or companies, informal collectives self-organize their 
activities around a varying number of members. We 
denote them simply as “collectives” herein. Our running 
example is a team of developers of the open-source 
software project Gentoo, which we introduce later.

The resilience of informal collectives is a challenging 
scientific problem because we need to integrate resil-
ience concepts from social psychology and individual 
psychology, on the one hand, and from ecology, 

engineering, and mathematics (Hosseini et  al., 2016) 
on the other. This requires clarifications about the ter-
minology. Although resilience is a topic in various sci-
entific disciplines, its precise meaning differs across 
and sometimes even within these disciplines (Baggio 
et al., 2015; Fraccascia et al., 2018). To start with psy-
chology, resilience has been a topic of interest in vari-
ous domains, including developmental (Masten, 2014), 
clinical (Mancini & Bonanno, 2006), disaster (Norris 
et al., 2008), and organizational psychology (Kašpárková 
et al., 2018). Resilience is usually defined as an indi-
vidual’s ability to do well in the face of adversity, trag-
edy, or stressors (Khurana et  al., 2022; R. Newman, 
2005). Their stability is indicated by the fact that they 
can master these challenges and still are “there” despite 
a very demanding life (Kirmayer et al., 2009). Resilience 
can improve the mental health of individuals by reduc-
ing rates of depression, anxiety, and posttraumatic 
stress disorder (Connor & Davidson, 2003). By success-
fully living through disruptions, individuals can achieve 
personal and professional growth (Caza & Milton, 2012; 
Richardson, 2002). Various articles have highlighted  
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the importance of ordinary processes in enhancing an 
individual’s resilience (Bonanno, 2004; Masten, 2001; 
Richardson, 2002) through, for example, an optimistic 
attitude or self-confidence.

Moving the perspective from the individual to the 
group level, we see that the social embedding of indi-
viduals (e.g., supportive family, relationships, and com-
munities) further enhance resilience. Psychological 
mechanisms, such as group identity, help to stabilize 
the group once individuals identify themselves with the 
group and derive a sense of self-worth from their mem-
bership. Specifically, individuals strive for a feeling of 
shared identity (van Zomeren et al., 2008) that provides 
emotional benefits and fulfills their “need to belong” 
(Severt & Estrada, 2015). Social creativity is involved in 
developing social substructures, such as in-groups 
nested inside a larger out-group, to ensure “distinctive-
ness” (Tajfel & Turner, 1979) and to stabilize larger 
groups (Bezouw et al., 2021).

Group cohesion (i.e., the degree to which group 
members are attracted to each other and are motivated 
to stay together) is positively related to group stability 
because members are more committed to the group and 
less likely to leave (Severt & Estrada, 2015). Group sta-
bility is further promoted by creating a sense of predict-
ability and order. Social norms to regulate individual 
behavior and shared expectations about how group 
members should behave (Sherif, 1948) play an important 
role. Effective conflict resolution is essential for reaching 
consensus and group harmony (Wall et al., 1987).

These psychological mechanisms to enhance group 
stability are complemented by insights from social-
network analysis. We name just the “big four”: reciproc-
ity, transitivity, popularity, and homophily. These 
concepts help to explain how social networks are struc-
tured and kept stable. Reciprocity refers to the trans-
formation of one-sided relationships into balanced, 
reciprocal bonds; transitivity reinforces a group’s struc-
ture by favoring new relationships between members 
through shared acquaintances; popularity means that 
those who are already well connected in a group are 
likely to attract even more connections, stabilizing the 
network around them; and homophily explains how 
individuals who are more similar tend to form more 
cohesive groups (Stadtfeld et  al., 2020). Moreover, 
smaller groups are more stable (Akçay, 2018; Carley, 
1991) because they can better utilize these mechanisms. 
On the other hand, it was shown that “weak ties” to 
individuals outside a group may foster efficient com-
munication (Granovetter, 1973; Hansen, 1999) but can 
destabilize the group (Carley, 1991).

Our own contribution starts from the observation that 
these research strands mostly aim to explain group sta-
bility rather than group resilience. We miss the dynamic 

perspective of how groups respond to shocks and over-
come adverse situations. To address this research gap, 
we aim at a more formal approach. At this point, resil-
ience concepts developed in engineering or the natural 
sciences come into play. In ecology, for example, a 
system is said to be resilient if, after a perturbation, it 
returns to a previously assumed stable state (Grodzinski 
et al., 1990; Gunderson, 2000). This idea borrows from 
classical mechanics and thermodynamics with their 
definitions of equilibrium states as minima of some 
potential energy. Collectives, however, are inherently 
open nonequilibrium social systems. Stationary states 
in nonequilibrium can be kept only if they are con-
stantly maintained, and collectives are no exception. 
Their resilient state has to be actively managed. Other-
wise, it dissolves over time like any other ordered state.

We argue that the difficulties of tackling the resil-
ience of collectives with a formal approach result from 
two dynamical problems. The first is the fast and con-
tinuing change within collectives, and the second is the 
additional feedback cycle resulting from their response 
to changes induced by themselves. Most collectives 
have in common that they are very volatile. They may 
experience fast changes in their structure (e.g., in the 
number of individuals and their relations), fluctuating 
task volumes or frequent interruptions, constant envi-
ronmental impacts, and so on. This volatility makes 
them different from, for example, engineered systems, 
which are built to last. The common notion of resilience 
for engineered artifacts, such as bridges, is illustrated 
in Figure 1a. A bridge is planned for a defined func-
tionality (e.g., a given number of cars per hour passing 
the bridge). This functionality remains as long as no 
critical shocks appear either caused by internal mal-
function (e.g., lack of maintenance) or external disrup-
tions (e.g., an earthquake). If the shock happens, the 
bridge’s functionality is partially or entirely destroyed. 
Nonetheless, the bridge can be rebuilt, recovering the 
functionality and often even improving it.

The assumption underlying Figure 1a is a known 
reference state (i.e., the planned functionality) that 
remains relevant over time. For highly volatile systems, 
shown in Figure 1b, we cannot define such a reference 
state, partly because it is hardly quantifiable and partly 
because it is constantly changing. This implies that we 
are also unable to specify what we mean by a “shock.” 
Unlike the bridge, in which shocks result in a measur-
able dropdown of functionality, we always have shocks 
of varying sizes. The ability to recover is not restricted 
to the aftermath of a breakdown. Instead, it requires a 
continuous effort from the collectives to adapt to all 
sorts of challenges. Most importantly, the recovery is 
not an external intervention like the repair of a bridge 
but the result of an internal response of the collectives. 
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Consequently, we need a new and dynamic approach 
to the resilience of such social systems.

A New Resilience Measure

Describing robustness and adaptivity

We propose that resilience [ ( ), ( )]A t R t  is composed of 
a structural component that captures the robustness, 
R t( ), and a dynamic component that captures the adap-
tivity, A t( ), of a system, which can change over time. 
The idea that resilience relies on both a structural and 
a dynamic component has been well established for 
some time (Sterbenz et  al., 2010; Wang et  al., 2022; 
Wood et al., 2019). For example, traditional strategies 
of companies focused on maximizing robustness, 
whereas more recent approaches emphasize maximizing 
adaptivity. This shift is exemplified by the rise of agile 
companies and the significant trend within management 
to transform organizations into more “agile” entities 
(Dingsøyr et al., 2010; Highsmith & Cockburn, 2001).

We identify robustness as the ability of a collective 
to withstand a specific type of shock unscathed. Dif-
ferent types of shocks require different types of robust-
ness. If it were possible to define some “functionality” 
as in Figure 1a, robustness would quantify the strength 
of a shock that the collective can absorb before its 
functionality is impaired.

Collectives can function only if they build on social 
structures. In the example of a software-developer team, 
these structures are reflected by their work relations, com-
munication channels, and so on. These structural features 
can be represented by a social network. Links in this 
network are time stamped, directed, and weighted (Gote 
et al., 2021), and multiple relationships can be captured 

by multiedge (Casiraghi et al., 2017) and multilayer (Garas, 
2016) networks. This social network evolves if nodes or 
links are added or deleted or links are rewired. Collec-
tives utilize this social structure for their activities, as 
exemplified in Figure 2. A well-maintained social network 
will allow developers to, for example, write more code, 
fix bugs faster, and reduce coordination overhead. Net-
work science provides a large family of measures to 
quantify the robustness of networks against a variety of 
shocks such as node or edge removal by means of dif-
ferent centrality measures (M. Newman, 2018).

Although the interpretation of robustness becomes 
intuitive when representing the collective’s structure as 
a network, defining adaptivity remains a challenge. As 
the dynamic component of resilience, adaptivity cap-
tures the ability of the collective to recover from shocks. 
Hence, a direct measurement would require isolating a 
collective under different shocks to observe its response. 
Adaptivity, however, cannot be reduced to the recovery 
from a breakdown. It requires a continuous effort from 
the collectives to adapt to all sorts of challenges. Spe-
cifically, recovery is not based on an external interven-
tion such as the repair of a bridge but becomes the 
result of an internal response of the collectives.

Therefore, we propose to proxy adaptivity by the 
propensity of a collective to change. In essence, pro-
pensity describes the ability of the collective to attain 
different states (Schweitzer et al., 2021), which is not 
trivial to operationalize. One way to measure this ability 
is potentiality (Zingg et al., 2019), which quantifies how 
many different states become potentially available in a 
given situation. This strongly depends on existing con-
straints for the collective. We have developed stochastic 
models to encode such constraints into network ensem-
bles (Casiraghi & Nanumyan, 2021) that make it 
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Fig. 1. Problems defining a reference state for resilience understood as the ability to absorb shocks and to recover: (a) engineered system 
(e.g., a bridge) and (b) social system (e.g., a collective).
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possible to calculate these states. Knowing these states, 
however, does not imply predicting the future. Rather, 
it means knowing which options a collective has to 
escape from an impaired situation. The more options 
there are, the more likely it should be able to recover 
from a shock (e.g., by rearranging its structure or incor-
porating new individuals).

Composing resilience from robustness 
and adaptivity

To answer the question of how the resilience of collec-
tives depends on their robustness and their adaptivity, 
we come up with a proposal rather than with a formal 
definition. The proposal is informed by the following 
arguments. Ideally, a maximally resilient system would 
have maximal robustness (i.e., it could withstand any 
shock) and maximal adaptivity (i.e., if a shock impacts 
the system, it will always recover). That means resil-
ience P should increase both with robustness R  and 
adaptivity A: ( , ) ~R A R A⋅ . This decomposition rests 
on the assumption that we can capture the potential to 
change a collective independently from its propensity 
to change, which in fact is not possible. Therefore, we 
propose to empirically proxy adaptivity by a collective’s 
propensity to change, Â.

This choice requires a more intricate relation between 
robustness R  and Â to quantify resilience. We state that 
a large propensity to change has detrimental conse-
quences: It would allow the collective to recover from 
a shock but also to abandon a state of high robustness. 
This would render the collective more susceptible to 
future shocks and thus result in a lower resilience, 
which is unfavorable. This means that whether a large 
propensity to change is desirable for the collective 
depends on its robustness. Thus, we postulate that the 
relation between R  and Â defines four regions, which 
we depict in Figure 3a.

Fig. 2. Network of task assignments between Gentoo developers in 
September 2007. A node’s size and color intensity are proportional 
to its degree.
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Fig. 3. Resilience P as a function of robustness R and adaptivity proxied by propensity to change Â : (a) qualitative assessment of 
different states and (b) quantification using Equation 1 with Â Rmax max= = 1 for illustration.
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Region (1) is characterized by a low resilience 
because the robustness and propensity to change 
are both low. Hence, there is nothing to build on, 
and the collective has only a few alternatives to 
change. This is a bad situation for the collective.

Region (2) is characterized by a high robustness, 
which implies a solid, structured social network. It 
can hardly be destroyed but also hardly be changed. 
If a collective in Region (2) would still change, it 
risks losing its robustness. Thus, in Region (2) the 
propensity to change should be low to keep this 
state and achieve a high resilience.

Region (3) is also characterized by a high robustness, 
but the high propensity to change increases the risk 
to lose this robustness. Therefore, such states have 
low resilience and are bad for a collective. Moreover, 
if the propensity to change needs to be high because 
a collective needs many different options to adapt 
to a shock, the high robustness could even work 
against the necessary change. Again, this means a 
lower resilience.

Region (4) is characterized by a low robustness. The 
collective has nothing to lose, and alternative states 
will be better. The high propensity to change enables 
the collective to reach these alternative states. There-
fore, a collective in Region (4) has a high resilience.

To formalize the relations postulated, we propose 
quantifying resilience as the convex combination of R  
and Â, as proposed in (Schweitzer, 2022) and shown 
in Figure 3b:

   ˆ ˆ ˆ ˆ,A R R A A A R R( ) = −( ) + −( )max max  (1)

This formulation assumes that R  and Â are defined 
in intervals [ , ]0 Rmax  and [0, Âmax]. If this were not the 
case, they can be rescaled with a suitable transforma-
tion. Further, Equation 1 ensures that P is 0 when both 
R  and Â are 0.

To summarize, adaptivity as proxied by a collective’s 
propensity to change Â is a double-edged sword. It 
bears the chance to improve the bad states of collec-
tives with low robustness and the risk of destroying 
good states with high robustness. We also note that 
robustness or adaptivity alone cannot guarantee that a 
collective is resilient. Unlike robustness, which describes 
the current state, resilience has to reflect the ability to 
improve in the near future. Conversely, without the 
ability to adapt, collectives can be robust or fragile, but 
they are not resilient (i.e., they cannot respond to inter-
nal or external challenges).

A formal model to build up resilience

We now proceed in two directions. First, we study a 
formal model of generating resilience from robustness 
and adaptivity. This will result in hypotheses for the 
behavior of collectives. Second, in the next section, we 
test these hypotheses using data from a team of soft-
ware developers.

From the above discussion, it becomes clear that 
robustness has to lead the improvement of the resilience 
of collectives because all further activities depend on the 
existing social network. At the same time, maintaining 
the social network also requires adaptivity. New nodes 
have to be integrated. Links have to be rewired or rein-
forced. Therefore, the dynamics of robustness R  and 
adaptivity proxied by Â are coupled in a nonlinear man-
ner. For convenience, we introduce reduced variables 
r R k rr= −logistic 1

0( , , ), a = −logistic 1 (Â, ka, a0),
1 for which 

the dynamics are specified in the following paragraphs 
in this section. This choice allows expressing the dynam-
ics in terms of unbounded reduced variables, that is, 
defined in ( , )−∞ ∞  and then transformed back to the 
variables R  and Â bounded in [ , ]0 1 .

Both r  and a require a positive maintenance term. 
On the other hand, both cannot grow infinitely but are 
bound to a maximum value that depends on the system 
under consideration. Therefore, a negative decay term 
must be considered. In the case of robustness, too much 
propensity to change could destroy a resilient state. 
Therefore, large values of a should lead to a decrease 
in r . Further, robustness can be established and 
increased only on the basis of the existing structure. 
Thus, robustness has a positive impact on its own 
growth. In addition, the ability to change requires func-
tionality and, therefore, a certain level of robustness. 
These considerations lead directly to

dr

dt
I t r t a tr r r a= + −α γ β( ) ( ) ( )

     da

dt
I t a t r ta a a r= ( ) − ( ) + ( )α γ β  (2)

where the parameters γr , γa, βr , and βa  define the 
strength of the coupling between r  and a and Ir  and Ia 
denote the amount of effort the collective is willing to 
put into maintaining r  and a , respectively. We further 
assume that such an effort is constant over time and 
shared between the maintenance of robustness and 
adaptivity using a model parameter 0 1< <q :

    I t q I t qr a( ) = −( ) ( ) =1 ;  (3)

Eventually, the impact of robustness on its further 
increase is not a constant but a nonlinear function of  
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r , γ γ γr r r r= −
0 2

2 . This assumption reflects the primary 
importance that the positive impact of robustness has 
is if no social relationships or established organizational 
structures exist yet and becomes less critical if already 
higher levels of robustness are obtained. This leads to 
a nonlinear coupled dynamics for r  and a in the fol-
lowing form:

dr

dt
q r r ar r r a= − + − −α γ γ β( )1

0 2

3

    
da

dt
q a ra a r= − +α γ β  (4)

Table 1 provides an overview of the parameters and 
their respective interpretation. Moreover, we created an 
interactive website2 that enables users to explore the 
impact of each parameter on the coupled dynamics.

Figure 4 demonstrates that the formal model defined 
in Equation 4 generates distinct trajectories in the phase 
space of R  and Â. They resemble cycles (i.e., life cycles 
in the development of collectives). We show two differ-
ent trajectories starting in Region (1) of low resilience 
characterized by low robustness and low propensity to 
change. The trajectories then quickly turn toward Region 
(2) of high resilience characterized by high robustness, 
while the propensity to change is low enough not to 
destroy the resilient state. This region would be fortu-
nate for the collective if it could stay there. This, how-
ever, is not the case. Our model predicts two scenarios 
exemplified in Figure 4 that are then compared with the 
data from the software-developer collective.

Starting from Region (2), in Figure 4a, robustness 
remains high, but the propensity to change further 
grows such that Region (3) is reached. In this region, 
resilience is low because the robust social structure is 
at risk of being lost: The propensity to change to alter-
native states is too large, and too little attention is spent 
to maintain the current state. Consequently, a failure 
follows, and the trajectory returns to the initial Region 
(1), where the robustness and propensity to change are 
both low. There, a new life cycle could start.

In Figure 4b, starting from Region (2), robustness 
decreases at the expense of Â, which increases such 

Table 1. Explanation of the parameters in Equation 4

Parameter Interpretation

αr q⋅ − >( )1 0 Constant increase in robustness r
αa q⋅ > 0 Constant increase in propensity to  

change a
γr0

0> Robustness growth rate from collective’s 
self-driven processes

γr2
0> Decay in robustness

γa > 0 Decay in propensity to change
βa > 0 Influence of propensity to change on 

robustness
βr > 0 Influence of robustness on propensity to 

change

Note: The online visualization website (Schweitzer et al., 2023) 
provides an interactive dashboard for examining the effect of each 
parameter.
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Fig. 4. Resilience trajectory in the phase space of R and Â . The scenarios (a, b) are both obtained from Equation 4 for two different 
parameter sets exemplifying the two extreme dynamics described in the text: (a) q = 0 29. , αr = 0 12. , γr0

1 27= . , γr2
2 07= . , βa = 0 68. ,  

αa = 0 07. , γa = 0 24. , βr = 0 34. , kr = 3 31. , ka = 3 13. , r0 0= , and a0 0 39= . ; (b) q = 0 29. , αr = 0 26. , γr0
0 7= . , γr2

0 63= . , βa = 0 33. , αa = 0 01. , 

γa = 0 01. , βr = 0 51. , kr = 1 98. , ka = 1 84. , r0 0 73= . , and a0 1 84= . . The color code refers to the regions defined in Figure 3a.
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that Region (4) is reached. R  and Â are both coupled 
and, for certain parameter regions, cannot be increased 
simultaneously. Such a coupling first leads the collec-
tive to another state of high resilience in which robust-
ness does not work against Â. However, this state 
cannot be kept for long because robustness, the pre-
condition of adaptivity, is low. Therefore, after Â has 
decreased, a failure follows, and a new cycle can start 
from Region (1).

These two scenarios are different in their sequence 
of resilient () and nonresilient () states. Figure 4a 
follows ( ) ( ) ( ) ( )� � � �→ → → →. . ., whereas Figure 4b 
follows ( ) ( ) ( ) ( )� � � �→ → → →. . . . We take these two 
scenarios as hypotheses about the life-cycle dynamics 
of a collective. Therefore, in the next section, we test 
them against data from the developer collective and 
discuss the reasons for its failure in more detail.

Resilience at Work: an Application

Measuring resilience for a collective

To demonstrate the applicability of our resilience 
model, we analyze data from the bug-handling collec-
tive of Gentoo, a computer operating system based on 
the Linux kernel. Between October 2004 and March 
2008, a central developer named Alice in the literature 
(Garcia et  al., 2013; Zanetti et  al., 2013) became the 
most central figure in this collective (see also Fig. 2). 
She assigned most bug reports to other developers for 
a while but left the project suddenly in March 2008. 
Her unforeseeable dropout was a severe shock for the 
collective, which struggled for several years to restore 
a comparable level of operation. Zanetti et al. (2013) 
studied how different network measures reflect the 
dropout of Alice, whereas Casiraghi et al. (2021) devel-
oped a load-redistribution model of task reassignments 
to study the likelihood of team failure. For us, the 
recorded data, containing 45,086 task assignments 
between 8,591 developers from January 2003 to Octo-
ber 2008, allows studying the resilience of the collective 
during this period. Such data can be extracted directly 
from online sources with state-of-the-art data-mining 
tools such as git2net (Gote et al., 2019).

First, we construct a social network from the avail-
able interaction data, where nodes indicate developers 
and directed links task assignments. Because this net-
work changes daily, we use a 30-day sliding window 
for aggregation. Applying our quantitative model for 
resilience requires operationalizing the two main fac-
tors, robustness and adaptivity, for this network. In 
accordance with Zanetti et al. (2013), we quantify 
robustness, the structural component, as the ability of 
the collective to withstand the loss of developers. The 

more centralized the collective, the more fragile it is 
against the loss of important members. In network 
terms, R  is large if the nodes in the network have a 
similar degree. That means everyone in the collective 
processes roughly the same number of tasks either by 
solving or reassigning them, and nobody gets over-
loaded. We operationalize such a measure as the com-
plement of the normalized degree centralization 
(Wasserman & Faust, 1994), that is, the extent to which 
the total number of connections in a network are con-
centrated around a few key nodes.

The propensity to change, our proxy for the dynamic 
component of resilience, is measured as the difference 
between the number of developers actively assigning 
tasks in a given time window and the same number 
computed half a year before. If this difference increases, 
more developers become potentially involved in bug 
handling. Thus, the workload is better balanced, alter-
native members for task processing are available, and 
the time to process them becomes shorter (Zanetti 
et al., 2013). Â therefore reflects the change of available 
developers over time and proxies the ability of the col-
lective to embed newcomers, adapting to the intrinsic 
volatility of open-source software communities.

The results in Figure 5 reveal the following scenario 
of how this collective copes with change. Initially, Â is 
low because the collective first has to establish a robust 
social structure for collaboration. As this progresses, 
the propensity to change also increases because more 
options become available for performing tasks. In the 
same way, if R  decreases, Â follows the decrease with 
a time lag of several months. That means robustness is 
instrumental for generating activity and ensuring resil-
ience. This is also reflected in our formal approach 
presented above.

Our attention shall focus on the time interval after 
2004 when robustness started to decrease. According to 
our operationalization, this indicates that the task assign-
ment became more centralized. It was the time when 
the developer Alice started to assign most of the tasks. 
Interestingly, this concentration led to an increase in Â 
(i.e., the number of developers who got tasks assigned 
still increased). That means Alice effectively utilized the 
collective’s workforce, involving more members. How-
ever, the further concentration of the responsibilities 
eventually led to a decrease in the propensity to change 
(i.e., fewer options for the collective to contribute).

Discussion

Explaining the failure in Gentoo

The findings from our case study are remarkable in 
different respects. First, in Figures 4 and 5 we observe 
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a life cycle (i.e., the resilience of the collective first 
increases to decrease afterward rapidly). After returning 
to the initial low resilience state, the collective starts to 
consolidate again by building up robustness and adap-
tivity. Our formal model is compatible with such a life-
cycle behavior. As a deterministic model, however, it is 
not suited to forecast unforeseeable perturbations such 
as the temporary suspense of the central developer in 
2007. We note deviations between the model and the 
data during this period, but eventually the life-cycle 
dynamics dominate.

Second, thanks to our dynamic-resilience concept, 
we can understand the reasons behind the life cycle. 
These are the adaptive processes inside the collective 
that push it out of the resilient state and eventually 
cause the failure. This is reminiscent of self-organized 
criticality, a dynamic phenomenon in nonequilibrium 
complex systems and networks (Kuehn, 2012; Watkins 
et al., 2016) in which feedback processes drive a system 
into unstable states. However, different from mechani-
cal or physical systems, the dynamics approaching the 
critical state are not universal but depend on the goal 
of the collective and the social mechanisms at work.

Specifically, the two states of high resilience for the 
collective are of different natures. The state with high 
robustness in Region (2) is characterized by balanced 
interactions between developers, who were all similarly 
involved in assigning, redistributing, and solving tasks. 
However, little changes to the social network occurred 
because strategies to integrate new developers were 
missing. Following the advent of Alice, the collective 
evolved to a second resilient state in Region (4). In this 
state, adaptivity increased because more developers 
were involved in solving the tasks, and new members 
could be quickly and easily integrated into the organi-
zational structure. However, the effort to assign tasks 
became more centralized, and links that had become 

redundant disappeared from the social network. There-
fore, robustness decreased, and an increase in adaptiv-
ity eventually destroyed the previous resilient state.

This development reflects an internal reorganization 
in the workflow. With Alice as the central developer, the 
collective obtained a hierarchical organization. It became 
highly efficient regarding the task assignments but also 
highly vulnerable because the collective depended on a 
single individual (i.e., adaptivity has lead to intended as 
well as unintended consequences). The intended one 
was the increased efficiency in utilizing the workforce, 
thanks to the central developer. The unintended one was 
the increased dependency on this central developer, 
causing the unnoticed erosion of robustness.

The life cycle observed allows us to characterize 
resilience in a more general manner. Collectives could 
be seen as resilient only if they follow more than one 
round of the life cycle. This denotes a higher order, or 
long-term, resilience. A first-order, or short-term, resil-
ience in contrast refers to only one cycle. There, we 
already observe resilient states of the collective that can 
last for a long time but are eventually destroyed by the 
adaptive dynamics. Long-term resilience addresses the 
question of how a collective is able to cope with a col-
lapse. The collective of the Gentoo developers was able 
to recover, albeit on a longer time scale that is not 
covered in our data set. But other software-develop-
ment projects were not able to build up this long-term 
resilience and disappeared after a few years (Avelino 
et al., 2019; Coelho & Valente, 2017).

Comparison with existing approaches

Our analysis clarifies why existing resilience concepts 
cannot provide a comparable, quantifiable insight into 
the failure of the developer collective. They largely miss 
the coupling between structure and dynamics, expressed 
in the nonlinear relation between robustness and adaptiv-
ity. Instead, they treat these dimensions as independent, 
or, more often, focus only on robustness and stability.

In fact, many network models that could in principle 
be applied to the developer collective are prime exam-
ples of such lopsided resilience concepts (Burkholz 
et al., 2016; Casiraghi & Schweitzer, 2020; Cohen et al., 
2000; Garcia et al., 2013; Kitsak et al., 2018). They cap-
ture only the robustness of the networks but leave out 
the ability of the network to respond. Adaptivity, which 
we have identified as the second dimension of resil-
ience, is often discussed only as a synonym for dynam-
ics (e.g., as a relaxation process after a perturbation; 
Grodzinski et  al., 1990; Wang et  al., 2022). What we 
need instead are models for the adaptive capacity that 
can also reflect the volatility of collectives. Such an 
adaptive capacity can be expressed, for instance, in 
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Fig. 5. Robustness R and adaptivity proxied by Â over time. Points 
indicate the values obtained from the social network. Using a kernel-
density estimation, we reduce this information to the empirical curves 
(dashed) from which the fits to the dynamic model of robustness and 
adaptivity (solid) are obtained.
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terms of the ability to learn and store knowledge, the 
ability to anticipate and plan for disruptive events, the 
level of creativity in problem-solving, or the dynamics 
of organizational structures (Folke et al., 2002; Lee et al., 
2013; Smit & Wandel, 2006). Some of these aspects have 
been assessed through survey research designs. Exam-
ples are learning capability (Chiva et al., 2007), situa-
tional awareness, creativity (McManus et al., 2007), or 
the fluidity of structures (Goggins & Valetto, 2014).

The problem in measuring adaptive capacities is usu-
ally operationalization. Moreover, in most approaches 
a formal relation between adaptivity and robustness is 
missing to understand resilience fully. We wish for mea-
sures that can be automatically and instantaneously 
calculated on the basis of available data about collec-
tives to monitor resilience continuously. In contrast, 
almost every existing resilience measure is based on an 
ex-post evaluation. This approach may help us to 
understand why some failures have happened, but it is 
not sufficient to see them coming.

It is one of the main achievements of our framework 
that it allows precisely this: quantification, monitoring, 
and early warning in the case of risky situations. More-
over, the concepts of robustness and adaptivity underlying 
our resilience approach also allow a better understanding 
of the reasons for decreasing resilience. Still, we have to 
keep in mind that resilience is a system-specific response 
to a specific shock, necessitating contextualization for 
particular collectives. Therefore, specific measures must 
be developed with concrete collectives and data in mind. 
Ideally, these measures should capture microprocesses 
that generate social resilience, paving the way for mecha-
nism design to improve resilience in collectives.
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Notes

1. The logistic function is defined as logistic( , , ) .( )x k x
e k x x0
1

1 0
=

+ − −  

The parameter k defines the logistic growth rate (i.e., how 
quickly the function reaches the asymptotes), whereas x0 

specifies the midpoint of the curve. ( , , )Logistic−1 0x k x  denotes 
the inverse of the logistic function with parameters x, k, and x0.
2. See https://www.sg.ethz.ch/extra/cz/resilience_dashboard 
(Schweitzer et al., 2023).
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