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Abstract

Resilience denotes the capacity of a system to withstand shocks and its ability to re-
cover from them. We develop a framework to quantify the resilience of highly volatile, non-
equilibrium social organizations, such as collectives or collaborating teams. It consists of four
steps: (i) delimitation, i.e., narrowing down the target systems, (ii) conceptualization, i.e.,
identifying how to approach social organizations, (iii) formal representation using a combi-
nation of agent-based and network models, (iv) operationalization, i.e. specifying measures
and demonstrating how they enter the calculation of resilience. Our framework quantifies
two dimensions of resilience, the robustness of social organizations and their adaptivity, and
combines them in a novel resilience measure. It allows monitoring resilience instantaneously
using longitudinal data instead of an ex-post evaluation.

1 Introduction

Why do some social organizations succeed to persist and thrive in the presence of crises and
shocks, while others fail under the same conditions? They have different levels of resilience that
can be most generally described as a system’s capacity to withstand shocks and its ability to
recover from them. Such a description already implies different features:

(i) resilience is a systemic property, as opposed to a property of system elements,
(ii) resilience is not restricted to a specific system, it rather seems to be a general property of

different systems,
(iii) resilience is described as a response to a shock, i.e., it can be only recognized in the presence

of shocks, or perturbations,
(iv) resilience is not a static property because shocks and recovery imply time dependent pro-

cesses.
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Resilience has to consider not only the magnitude of shocks, but also different types of shocks the
system has to absorb. The same system can be robust to, e.g., the impact of an earthquake, but
not to the spreading of a disease. More importantly, to be resilient a system also needs to have
the ability to recover. A system may be robust even in the presence of various perturbations, but
once it is impacted by a critical shock it will not recover, so it cannot be seen as resilient.

Both the response to a shock and ability to recover are system specific and therefore difficult
to generalize. This also hampers a more precise or formal definition of resilience. We should
not expect that there is a universal concept of resilience, applicable to various types of systems
[25, 116, 177]. In fact, resilience concepts diverge across and sometimes even within scientific
disciplines [6, 9, 42].

We therefore do not provide a review of existing resilience concepts and refer to the literature
already available [9, 53, 86]. Instead, with our paper we want to broadly inspire researchers
from different scientific disciplines who already study social organizations by providing new
modeling perspectives. The analysis of collaborative teams and collectives is a core topic of
social psychology [14] and organizational theory [71]. Hence, case studies inform about, e.g.,
collective decisions, coordination and conflict resolution in teams.

But the models used are most often descriptive models, not generative models. Descriptive models
include statistical models, e.g., regression models, or database models, e.g., conceptual entity-
relationship models that indeed resemble our knowledge graphs (see Figure 9). In organizational
psychology there are mental models of teams and team members to describe perceived relation-
ships or the collective representation of knowledge. Descriptive models try to include as much
detail as possible. But generative models try to include as much detail as necessary to generate
a macro-social behavior from the micro dynamics of the constitutive individuals. This method-
ological approach is advocated in analytical sociology [75].

Agent-based and network models belong to the class of generative models. Stochastic actor-
oriented models (SAOM) [162] and exponential random graph models (ERGM) [95, 101, 133]
aim at combining agent-based and network approaches [48]. They also belong to the class of data-
driven models, using methods similar to logistic regression. With their focus on link prediction
to detect reciprocity, transitivity or homophily they are less suited to study systemic properties
of social systems, such as resilience. Computational issues, in particular scalability, assumptions
about utility maximization of actors and problems in model specification prevent a broader range
of applications [102].

But there are better solutions. In this overview paper we want to sketch a framework how to utilize
them for the study of social organizations. This framework provides interfaces for mining larger
and more fine grained data about interactions between individuals (Section 6.1), an analytically
tractable network ensemble to avoid computational issues (Section 4.2), statistical methods to
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infer signed relations and significant interactions from observed data (Section 4.2) and formal
ways to estimate the social impact of agents involved in these relations (Section 5.1).

But most of all, this framework allows to calculate robustness and adaptivity instantaneously, to
estimate the resilience of the organization. The attention is shifted from the micro configurations,
the dyads and triads, towards the macro-properties of social networks. These are no longer
reduced to topological features, but involve a dynamic component to describe the response to
shocks, namely the potential for change in an organization. With this the formal modeling of
social organizations can be moved to a new level. It will also impact research on resilience which
is dominated by two paradigmatic views, engineering and ecological resilience (Sections 2.2, 2.3).

So far, theoretical research on resilience and empirical research on resilience indicators have
been largely segregated [138]. Many studies restrict their focus on specific systems, in particular
engineered systems, ecological, or urban systems [43, 72, 79, 116, 157]. There are also studies
about the resilience of socio-economic systems and organizations [86, 98]. As we detail below, they
are of little help for the problems discussed in this paper, for two reasons: (i) When referring to
social systems, most often our modern human society is addressed [100]. This bears a complexity
way too large to be captured in a formal modeling approach and restricts the discussion to a
discourse level. (ii) Our research interest are social organizations at smaller scale. Organizational
resilience studies have pointed out “factors” for improving the resilience of such systems, e.g.,
integration or redundancy [110, 158] or social capital [91, 127, 159]. But they do not instruct us
what to do if such factors shall be modeled and quantified.

A major aim of this paper is to provide a framework to overcome this research gap. To de-
velop a broader foundation, we will specifically address the problems of conceptualizing social
organizations. One main issue is their volatility, i.e., the continuous change of their structure
and dynamics that makes it difficult to define stability, to measure the impact of shocks, or to
distinguish recovery from change. A second and probably more ambitious aim is to revise the
premature anxiety-laden understanding of “shocks” and “breakdowns” that dominate the discus-
sion of societal resilience. To cope with social organizations, we need to shift the focus from the
fear to breakdown towards the faith to recover.

2 What do we know about resilience?

In order to investigate the resilience of social organizations, we should first take a look at two of
the most prominent resilience concepts in engineering and in ecology. They may provide already
good starting points to formalize robustness and adaptivity. If so, we have to test weather such
formalization could be utilized to model social organizations. But even if that is not the case
we learn from the shortcomings about requirements for social resilience concepts. This helps to
further clarify the underlying assumptions.
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Questions
• Is there a difference between robustness, stability, and resilience?
• What is the relation between adaptivity and recovery?
• How is robustness related to existing systemic risk measures?
• Should a resilient system always return to equilibrium?

2.1 Robustness and adaptivity

Constituting dimensions. While the concrete meaning of resilience may vary across scientific
disciplines, there are also conceptual commonalities. As pointed out in Figure 1, resilience bears
relations to concepts of robustness and adaptivity. The former relates to the property of a system
to withstand shocks, the latter to its ability to overcome their impact. Robustness represents the
structural and adaptivity the dynamic dimension of resilience. However, we need to understand
how they constitute resilience as a function defined on these two dimensions.

Resilience
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Figure 1: Examples of resilience factors used in the literature, which we assigned to the struc-
tural and the dynamic dimension of resilience without claiming consistency across different
systems and shocks.

Topology. We argue that both dimensions need to be combined to explain resilience, but
most often they have been studied as stand-alone concepts. For instance, the robustness of inter-
connected systems is defined with respect to the failure of nodes or links. Robustness measures
then estimate the size of failure cascades after a shock [4, 12, 37, 126]. This approach uses the
complex networks perspective that we also utilize in our framework. But it assumes that simple
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topological features, like connectedness, are sufficient to describe the robustness of a system. This
leaves out the dependence on individual properties which becomes a problems when applying
the approach to social systems.

Equilibrium. In addition to topological robustness, other robustness measures build on dy-
namical stability. It analyzes how small perturbations of an assumed equilibrium state affect a
system. If the system is able to regain its equilibrium state, it is robust at least against this type
of perturbations. This approach has several limitations when applying it to social organizations.
It requires to know the dynamics of the system, to estimate its response to shocks. Further, the
underlying assumption of different types of equilibrium states can hardly be justified for very
volatile social systems.

Response. Adaptivity is often simply understood as dynamics, which neglects the quality of
change. Adaptive systems do not simply react to a shock. Their response aims at preserving the
system’s functionality, to ensure its persistence. Recovery after a shock therefore implies a certain
directedness which depends on the type of shock. Most important, the system needs to have
several options to adapt even to unexpected challenges. Therefore, adaptivity should estimate
how many options exist in a given situation. This points towards the problems of quantification
and measurement discussed later.

Creative destruction. Additionally, simply adopting existing concepts of robustness and
adaptivity may lead to misconceptions about social systems. Quite often, the understanding
of these concepts builds on a negative perception of shocks. This ignores the role of “creative
destruction” that, according to the economist Joseph Schumpeter, is instrumental for renewing
and further developing the economy. Stable systems do not evolve. Therefore, challenging their
stability is one of the driving forces of evolution. This also regards social organizations. The
leave of established members is not only a threat, it is also an opportunity for newcomers.
Creative organizations often respond to shocks with innovations. Therefore, the discussion about
robustness and adaptivity should not just focus on maintaining the status quo. Resilience means
to cope with change in a sustainable manner.

2.2 Infrastructure systems

Critical functionality. With respect to critical technical infrastructures such as power grids
or communication networks, the design of resilient systems has been studied extensively [4, 21, 83,
161, 164, 166]. Here resilience, sometimes also called “resiliency”, refers to a system’s capacity to
“maintain an acceptable level of service in the presence of [. . . ] challenges” [161]. Such challenges
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include software and hardware faults, human mistakes, malicious attacks or large-scale natural
disasters.

This concept of resilience is goal-oriented, preserving a system’s functionality after the shock
as illustrated in Figure 2. A power system has a defined functionality which remains as long as
no critical shocks are caused by internal malfunction, e.g., lack of maintenance, or by external
disruptions, e.g., an earthquake. If the system has to “absorb” a shock, this functionality is
partially or entirely destroyed because the system lost its robustness, to some degree.
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Figure 2: The common perception of resilience for engineered systems.

Adaptivity. We note that functionality is assumed here as a function of an underlying network
structure, in this case the power grid. Consequently, the focus is on the robustness of this under-
lying structure. Adaptivity refers to possible changes in the processes running on this structure,
and not to the structure itself. This can be illustrated by the following example: During the 9/11
attacks in 2001, the Internet infrastructure in downtown Manhattan was largely destroyed. This
posed a severe shock to the global Internet because of (i) the termination of transatlantic cables
in the basement of the World Trade Center (WTC) and (ii) the failure of the major Internet
exchange point NYIIX next to the WTC, which was responsible for 70 % of transatlantic traffic.
Despite these combined failures, the attack caused only minor disruptions and the global routing
infrastructure continued to operate normally within a few hours [46, 164].

This resilience of the Internet was not obtained by the robustness of the hardware, which was
heavily affected in the above example, but by the adaptive capacity of the dynamics on the
network. However, redundancies built into the underlying network, i.e., a level of robustness,
were essential to allowing for the quick rerouting of the communication flow, i.e., adaptivity.
Hence, a minimum level of robustness can be a precondition for the adaptive capacity.
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Recovery. What distinguishes resilience from robustness is the ability to recover. Infrastruc-
ture systems do not recover by themselves [63]. They have to be rebuilt by human activity,
reestablishing the functionality and often even improving it. Thus, attributing the ability to
recover to the infrastructure would reduce the concept of resilience to absurdity. Every bridge
that was rebuilt after a collapse would then be “resilient”. In engineering, hence resilience is often
used as a synonym for robustness. For example, Dinh et al. [43] define a “resilient reactor” as one
achieved by “[using] a tank designed to withstand high pressures and temperatures”. However,
once a tank has exploded, it has no ability to recover a functional state.

Systemic risk. Quantifying the impact of shocks requires to model the system’s response.
Only such models allow to estimate whether large parts of the system will be destroyed, which is
commonly denoted as systemic risk. Based on the theory of extreme events [41], one can calculate
probabilities for rare, but severe external shocks, e.g., floods or earthquakes. Using engineering
knowledge about materials [120] and constructions, then allows to propose critical values for
system properties, e.g., the minimum width of walls, or the maximum height of buildings, etc.
Systemic risk, from this perspective, is reduced to the risk that an external event with a critical
magnitude may occur. Consequently, robustness is defined only with respect to such rare events,
for instance, “the ability of power systems to withstand low-probability high-impact incidents in
an efficient manner” [92].

Loss estimation. In infrastructure systems, such as transportation networks, it is common
to measure robustness by employing loss estimation models. These models evaluate the ability of
the system elements to withstand a given level of stress or demand without suffering degradation
or loss of function [19]. Quantification allows to control the robustness of such systems to some
degree, e.g., counterbalancing shocks by a central control station. Engineered systems are designed
systems, top to bottom. Their functions are clearly defined, and therefore the impact of a shock
can be estimated.

Failure cascades. The focus on external extreme events neglects another major cause for
systemic collapse, namely the amplification of a few small failures inside the system into a failure
cascade. If such cascades reach a critical size, they can also destroy the system from inside.
Robustness in this case has to be defined with respect to (i) the probability that a few system
elements fail, and (ii) the mechanisms that can amplify such failures, e.g., by redistributing load.
Both may depend, in addition to internal conditions, also on external feedback processes. Large
scale blackouts in the U.S. have been explained by such failure cascades in the power grid [4, 178].

To study failure cascades we need an appropriate representation of the engineered system. For
power grids, communication networks or transportation infrastructure, the network approach
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is used most often [181]. System elements, e.g., transformers or responders, are represented by
nodes, and their physical connections by links in the network. Many models of failure cascades
test the robustness of networks by removing nodes or links either in a random or a targeted
manner [21, 170] and measure whether the network breaks down into disconnected components
after such attacks. A modular network is robust if shocks trigger small failure cascades [8, 18].
Targeted attacks, however, usually result in large failures as the network becomes disconnected
[10, 156].

Amplifying mechanisms. Removal tests reduce the problem of systemic risk to mere topo-
logical properties. To understand amplifying mechanisms inside a systems, we need models for
the dynamics inside the nodes, but also models for the exchange of quantities between nodes [22–
24, 107]. That means we need a framework that couples the dynamics of the network, i.e., the
failure of nodes or links, with the dynamics on the network, i.e., the rerouting of communication
or the redistribution of load.

Without such a framework, we cannot understand the robustness of the system, even less its
adaptivity, and hence, its resilience. Extreme value theory [35] can at best estimate the probability
that large-scale failure cascades happen, whereas network models can provide an explanation why
they happen. Resilience, as a systemic property, cannot be reduced to the robustness against
extreme shocks, it has to be derived from a broader perspective that helps to understand why
and when small events can be turned into big disasters.

2.3 Ecological systems

The classic view. Historically, the notion of resilience first appeared in ecology. Ecosystems
constantly change under dynamic processes of renewal and reorganization. Therefore, resilience
concepts do not primarily focus on robustness as a static property of the system, but rather on
the adaptivity as the dynamic component of resilience. For Holling [81], resilience is based on the
“ability of a system to return to an equilibrium state after a temporary disturbance”. Because
shocks and perturbations are unavoidable, emphasis is on the survival, or the persistence, of the
ecological system, regardless of the impact of a shock [176].

Dynamical systems. Such a notion of resilience essentially builds on the theory of dynamical
systems and its concept of “stability”. In different scientific areas, e.g., nonlinear dynamics, control
theory, physico-chemical reaction kinetics, or biological pattern formation, a system is said to
be stable if it returns to the equilibrium state after a shock. Approaches to assess resilience in
biological and engineered systems are based on this idea [93].
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Most systems are in factmetastable, i.e., they are stable in the presence of small perturbations, but
become unstable if these perturbations exceed a certain critical level. Then, instead of returning
to the previous equilibrium state, the system moves away from it, possibly to another equilibrium
state, as Figure 3 indicates. This new equilibrium state corresponds to a “different” system, i.e.,
to a system that has evolved and adapted to the new situation. This aspect has been studied
as robust adaption, combining the notions of robustness and adaptivity. There are analogies to
concepts of phase transitions in physics and chemistry and regime shifts in social and biological
systems.

shock

low recovery rate

State

P
ot
en
ti
al

Figure 3: Mechanical analogy for a metastable equilibrium. This figure is adapted from Fig-
ure 1 in [104].

The meaning of recovery. In the resilience concept of ecological systems recovery may have
different connotations dependent on whether a system returns to a previously attained stable
state or to a different one. Even a previous state would be gradually different because evolving
systems would never reach identical states.

In more general terms, resilience can be implicitly defined by “the amount of disturbance that an
ecosystem could withstand without changing self-organized processes and structures (defined as
alternative stable states)” [72]. To capture differences in the quality of a resilient ecosystem, the
additional factors of ecological “vulnerability” and “sensitivity” have been proposed [40, 115, 135].
They consider that species are more sensitive to perturbations in certain time periods or under
special conditions. This complements the notion of “stability” of ecosystems or “robustness” of
engineered systems.

Time scales. What matters for ecological resilience is the time scale of recovery. If it would
take forever to return to a previous state, the system is not resilient. Therefore, “the inverse of
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the length of time required for an ecosystem to return to near-normal” [70] is often used as a
resilience measure. But resilience itself can also be timescale specific [25, 39]. On a daily timescale,
the system may return to a near-normal state. But on a time scale of decades, the system may
lose this ability.

Hence, resilience cannot be reduced to some concept of “stability”, the dimension of adaptivity is
essential. Resilient ecosystems maintain a critical balance between stability and instability, the
former providing a level of robustness against small perturbations, the latter allowing them to
adapt to changing environmental conditions [176].

Connectedness and potential. To further grasp the generic mechanisms underlying ecolog-
ical resilience, two system properties have been proposed: potential and connectedness. “Potential
sets limits to what is possible - it determines the number of alternative options for the future”
[82]. Hence, potential resembles our notion of adaptivity. Connectedness, on the other hand, is
related to robustness. “Connectedness is assumed to increase over time, leading to high internal
control and limited potential to cope with disturbances” [82]. This is an important remark as it
points out to the fact that robustness above a certain critical value may have a negative impact
on resilience. “When connectedness is low, resilience is high because the system can vary over a
wide range of states and respond to disturbances in many different ways. When connectedness,
however, is high, ecosystem resilience is low because the system is more tightly organized and
has fewer options for responding to disturbances” [69]. We will return to this argument when
discussing our own concept of social resilience.

Adaptive cycles. It was argued that resilience changes in a cyclic manner because an increase
in connectedness may lead to a breakdown of the system: “Naturally such over-connected systems
crash into a release period, where they have the potential to reorganize, thereby coping with dis-
turbances. This development is believed to be cyclic” [69]. We note that the ability to reorganize
is given only if during “release phases” of low connectivity the potential, i.e., the adaptivity, is
high. This is in line with our arguments for the recovery of social organizations discussed below.

So far, adaptive cycles have not been found empirically: “Because of its very general nature, the
concept of the adaptive cycle should be considered a metaphor [25] or thinking tool rather than
a testable scientific theory” [69]. We may add here that with our approach we move the adaptive
cycle from a metaphor to a testable concept, which is also accessible to formal modeling.

Couplings between adaptive cycles on different temporal and spatial scales may lead to a nested
hierarchy, called panarchy [82].
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Losing resilience. Instead of specifying properties for resilient states, we could address the
complementary question, namely about the properties that indicate a loss of resilience or about
states that need to be avoided. This reveals critical conditions for stabilizing feedback cycles,
critical magnitudes for perturbations or critical levels of diversity. To identify factors that lead to
the loss of resilience, non-parametric regression models or machine learning tools, e.g., symbolic
regression, can be used to analyze data.

Early warning signals for losing resilience can be obtained from time series. A slower recovery
rate from perturbations, known as critical slowing down [104], right before a tipping point is
a possible indicator. Also an increase in the auto-correlation of systemic variables, e.g., order
parameters, indicates the vicinity of a regime shift.

Coupling to social systems. Insights into ecological resilience are limited if the dynamics
of ecological systems is predominantly driven by the coupling to the human sphere [11]. On the
global scale social and ecological systems are, in fact, coupled inseparably, mainly because of hu-
man interventions. In recent years, this has triggered integrative research studying the resilience
of social-ecological systems [51, 175, 176]. It relates ecological resilience with the resilience of
societies responding to environmental challenges that originate from the ecological systems into
which they are embedded.

Conclusions
Different scientific disciplines have their own understanding of resilience. We should not
expect to find a universal resilience measure. The key question is [25]: Resilience of what to
what? Answering this question requires to have a model of the respective system. Resilience
concepts for social organizations may benefit from ecological concepts, because issues of
time scales, different equilibria and adaptive cycles are already addressed.

3 Why are social systems different?

Existing concepts of resilience from engineering or ecology do not seem to provide the best basis
for social resilience. Although formal approaches exist, we cannot simply reuse them. Before
developing suitable alternatives, we may first clarify what makes social systems different from
other types of systems. This leads us to more fundamental questions about defining systems and
models. What seems to be a detour at this point will later allow us to better ground our notion
of social resilience from a methodological perspective.
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Questions
• What types of social systems do we want to investigate?
• What characterizes social organizations and collectives?
• What is the focus of organizational resilience?
• What modeling consequences entails the complex systems approach?

3.1 Social organizations

No model of society. The need to understand social resilience is often motivated by the many
crises that our societies face, today [167]. Their vulnerabilities have been widely recognized,
ranging from pandemics to political polarization, from climate change to budget crises, from
infrastructure breakdown to poverty migration. Consequently, the resilience of societies cannot
be decoupled from the resilience of ecosystems, political systems, infrastructure systems, financial
and economic systems, etc. While these connections cannot be denied, they raise a methodological
question that, unfortunately, is not addressed with the same emphasis: How should we model all
of these interdependencies?

Four steps towards a model. We aim at a quantitative understanding of social systems.
Therefore, we specify the resilience problem in a tractable manner in four steps that are sum-
marized in Figure 4. The first step is delimitation: Which types of systems should be specifically
investigated, and which ones not? This question is discussed in the remainder of Section 3.1. In
Section 3.2, we further distinguish our problem from existing concepts of organizational resilience.

The second step is conceptualization: Which approaches should we use to describe social systems?
Which of the many possible features will we focus on? This is discussed in Section 3.3. Only this
clarification will enable the third step, representation: To build a model means to represent the
system and its elements in a formal manner. In Sections 4.1, 4.2 we introduce different network
concepts as candidates to represent properties of social systems. In Section 5, eventually, we
address the fourth step, operationalization: How do we specify measures such that they can
be calculated? Again, we introduce different solutions to choose from. Finally, in Section 6, we
comment on the data required for the fourth step.

Systems of systems. For methodological reasons we distinguish social resilience from the
resilience of societies. The latter is not the target of our formal modeling. Society is a system
of systems, as described above. To understand the resilience of societies requires modeling the
interaction of these systems [130].
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Step 1: Delimination

• Type of system: Social organization

• Example: Collaborative teams

• Focus on relations between individuals

Step 2: Conceptualization

• Complex adaptive system

• Resilience as an emergent property

• Self-organization, no time scale separation

Step 3: Representation

• Combine agent-based and network models

• Multi-edge networks, statistical ensembles

• Signed relations, propensities of interaction

Step 4: Operationalization

• Social impact and importance of agents

• Structural/topological robustness

• Resilience: Robustness & adaptivity

Data Collection

• Extract interaction data from repositories

• Network regression: Propensities

• Analyzing temporal data: Causal relations

Figure 4: Our framework to quantify social resilience

Models for systems of systems exist only in rudimentary form [130]. Particular emphasis was
given to the coupling between socio-economic systems and ecological systems. More recently, also
the coupling between climate systems and socio-economic systems and/or ecological systems is
captured by formal models. Most of the systemic relations that constitute a “society” are not
formalized at all [76].

Collectives. We have to restrict our investigation of social resilience to clearly defined social
entities rather than “social systems” in general. Our focus are social organizations, or collectives.
With the term social organization we refer to formal or informal groups of interrelated individuals
who pursue a collective goal and who are embedded into an environment [80, 124].

For illustrative purposes, our running examples are project teams, in particular teams of software
developers [80, 139, 182]. These teams face numerous shocks during their development. Compet-
ing products, technical evolution, organizational problems, lack of motivation or resources put
up challenges and let them fail quite often. Their common goal, namely to develop a software
for a certain scope, is important to distinguish this type of social system from a collection of a
hundred persons who, for example, use the subway without being interrelated or contributing
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to a common good. Collective goals in most cases go beyond the mere survival [47, 124], which
would characterize ecological systems.

Beyond individual resilience. The term “social” specifically refers to human individuals
in the following, although many animal societies also have a remarkable degree of social or-
ganization. A broad range of psychological studies focuses on the resilience of an individual
[7, 45, 94, 171]. Given that we want to understand resilience as a systemic property, psychologi-
cal resilience would require us to model the individual as a system [108]. That could be possible,
but is not aligned with our aims.

Instead, we are interested in collectives of many individuals, for which we use the term social
organization synonymously. We assume collectives of the order of 102 individuals, small enough
that the impact of a few individuals can still matter, but large enough to distinguish individual
and collective in a meaningful manner. This implies that resilience, as a systemic property, is
neither identical to, nor the mere combination of the psychological resilience of its members.

3.2 Organizational resilience

Different from engineering, in psychology and organizational science the concept of resilience
focuses on the dynamic component, i.e., adaptivity as the system’s ability to cope with shocks.
But in social organizations resilience does not require to return to a previous state. Hence,
resilience is generally seen as “the ability of groups or communities to cope with external stresses
and disturbances as a result of social, political and environmental change” [2]. We note that in
such a definition shocks primarily result from other systems an organization is embedded in,
rather than from internal processes, which is the main focus of our concept of social resilience.

Community resilience. Examples for this outside orientation are studies of citizen commu-
nities in urban or rural areas [2, 109]. Their response to natural hazards or disasters [19, 38] or to
climate change [111] is of particular interest. Community resilience generally refers to the ability
of communities to cope and adjust to stresses and to engage community resources to overcome
adversity [121, 159]. An organization should not only persist after a disturbance, but also manage
to strengthen its capability for future adjustments [165]. The ability to transform challenges into
advantages is known as transformational resilience.

Whether a new state is resilient may depend on specific positive outcomes that need to be
achieved [123]. Hence, resilience comprises more than just persistence: “The capacity of actors to
access capitals in order to – not only cope with and adjust to adverse conditions (that is, reactive
capacity) – but also search for and create options (that is, proactive capacity), and thus develop
increased competence (that is, positive outcomes) in dealing with a threat” [123].
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Resilience factors. It is an open question why and how some organizations manage to thrive
and enhance core capabilities when faced with a crisis, while others fail [173]. Recent research
highlights three factors that influence the resilience of a social system: (i) its vulnerability (or
susceptibility) to disruptions, (ii) its level of anticipation, foresight, or situational awareness for
such vulnerabilities, and (iii) its adaptive capacity, flexibility or fluidity which allows to mitigate
vulnerabilities or respond to disruptions [62, 114].

To better understand the role of these factors, most empirical resilience studies have followed a
“hindsight approach”, focusing on organizations which have recovered from a shock and trans-
formed crises into advantages [55, 103, 132, 180]. For such social organizations, Sutcliffe and
Vogus [165] define organizational resilience as the ability to maintain a “positive adjustment
under challenging conditions”.

Adaptive capacity. A system’s capacity to adapt in a constantly changing environment is
also referred to as adaptive capacity [56, 160]. From a social science perspective, the adaptive
capacity is expressed in a number of different ways, for instance in terms of the ability to learn
and store knowledge, the ability to anticipate disruptive events, the level of creativity in problem
solving, or the dynamics of organizational structures [52, 160]. Some of these aspects have been
assessed by means of survey research designs, such as the learning capability [36], situational
awareness, creativity [114], or the fluidity of structures [62].

Missing macro-variables. Most notions of resilience proposed above reveal their limitations
when it comes to quantification [100, 105]. Two problems need to be solved, (i) to define a measure
for resilience that considers also the dynamics of the system, and (ii) to measure the defined
variables against available data. Many studies of social resilience, e.g., in disaster management
[38, 88, 109, 121, 129, 136, 168], monitor resources for basic needs or survey social well-being.
But we lack macro-variables to describe social organizations, e.g., to measure their adaptive
capacity and their elasticity. Such variables exist in economics, for instance productivity and
efficiency measures, but also for ecological systems, e.g., biomass production or recovery rates.
In engineering functional resilience can be computed through the integral below the function of
performance [20, 129].

In absence of these variables, tools to derive early-warning signals, e.g., the critical slowing down
or the increase of auto-correlations mentioned above, cannot be applied. Therefore, one of our
aims is to provide such macro-variables for robustness and adaptivity and to show how they can
be monitored over time. These variables will help separating the ability to resist a shock from
the capacity to recover.
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3.3 Conceptualization

In Section 3.1 we have already processed the first step towards a model of social resilience, namely
delimitation. The second step, conceptualization, now requires us to specify how to approach
highly dynamic social organizations. This particularly regards the modeling framework that
shall foster our understanding of the micro-processes to explain social resilience.

Different conceptual frameworks. Ecological systems are often modeled using concepts
from system dynamics [147], where species are described by densities. Interactions between dif-
ferent species in a food web are then formally expressed by coupled differential equations. This
approach does not focus on individuals, but mostly this is also not needed.

Models of engineered systems often use concepts from control theory. This allows to steer system
elements, e.g., transformers, from a central perspective, but requires to have precise models of
such elements and their relations to others. This is often the case because engineered systems
are designed systems.

Both of these modeling approaches cannot be applied to social organizations the way we see
them. They are much more volatile, more adaptive in response to shocks and, most importantly,
have no defined reference state. Therefore, in the following we specify what concepts we will use
to describe their structure and dynamics.

Complex systems. We start from the insight that social organizations are complex adaptive
systems. They comprise a larger number of interacting system elements, commonly denoted
as agents. Taking the complex system perspective implies that systemic properties, such as
resilience, need to be understood as emerging from the interaction of agents.

Hence, we have to develop a bottom-up perspective for social resilience, starting from the micro,
or agent, level rather than from the macro, or systemic, level. This is in line with the method-
ological principles of analytical sociology [75], which aims at explaining macro-social phenomena
from the micro-processes that generate them [49].

Agent-based and network models. To formalize both the dynamics of agents and their
relations, we combine agent-based modeling with temporal multi-layer network models. The
agents, as the nodes of the network, are characterized by different properties, such as status,
roles, knowledge, opinions, which depend on other agents and can change over time. Furthermore,
agents are heterogeneous. They can be of different types and even within one type their properties
are not identical. For instance, agents’ function and efficiency in solving tasks vary across agents.
We therefore have to model agents explicitly, to overcome approaches solely based on topological
features to describe the functioning of a social system.
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Agents’ interactions and their social relations are captured in different network layers, which
evolve over time. This requires us to also model interactions explicitly. In particular, we have
to distinguish random from meaningful interactions and to find ways to infer roles and social
relations from interaction data. This paves the ground for a statistical approach based on net-
work ensembles, which also provides the interface for data-driven modeling, which we discuss in
section 4.2.

Finite systems. Our approach explicitly addresses the finite number of agents. Focusing on
larger systems would have the advantage that we could calculate simple statistical measures, e.g.,
averages, to overcome details. For the type of social organizations discussed here details matter
and are therefore explicitly addressed. We need to consider individuals and discrete events instead
of continuous variables characterizing a whole system, such as densities.

Work teams, online chat groups, or school classes differ from large social systems not only in their
interaction structures or perceived goals, they also differ in size. Emergent phenomena of social
systems, such as coherence or cooperation, depend on size. Large systems necessarily behave
differently from smaller ones because regime shifts or phase transitions can occur. Therefore our
models for social resilience are not expected to describe very large social systems, e.g., political
parties or urban populations.

In small systems, such as collectives, stochastic influences can have a larger relative impact on
the dynamics. Further, path dependent processes in the evolution of these systems cannot be
ignored. Local effects, such as neighborhood relations become important. Therefore, known limit
cases of formal modeling, such as the mean-field approach in which all agents interact in a similar
manner, cannot be readily applied to collectives. Instead, we need to build agent-based models
that reflect agents’ heterogeneity.

Self-organized systems. An important difference to, e.g., technical systems, is the level of
adaptivity in social organizations which cannot be simply reduced to “dynamics”. Instead, emerg-
ing structures in social systems feed back on the interaction of agents and cause further change,
often denoted as second-order emergence [147]. This is related to co-evolution and learning, which
occurs on the individual and on the organizational level.

The outcome of these dynamics can hardly be predicted. Social organizations cannot be com-
pletely controlled and agents cannot be forced to behave in a predictable manner when facing
changes. Instead of central control distributed influences and self-organization play a major role.
In general, agents respond to changes both in intended and in unintended ways [144]. This makes
the response of social organizations to internal or external shocks so difficult to model.
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Figure 5: Problems defining a resilient state for volatile organizations.

No separation of time scales. Social organizations are very volatile systems which makes it
almost impossible to define a reference state, as Figure 5 illustrates. More importantly, we have to
account for the fact that the absorption of shocks and the subsequent recovery cannot be clearly
separated as in Figure 2. Instead, changes of robustness and adaptivity follow instantaneously.
This is a noted difference to ecological systems where the time scale of adaptivity is usually
much larger and an out-of-equilibrium state can be clearly separated from the equilibrium and
the relaxation time scale is well defined.

Conclusions
Our notion of social resilience focuses on social organizations and teams. To develop a formal
model we adopt the viewpoint of complex adaptive systems. Modeling resilient societies
would require a system dynamics approach, instead. Existing concepts of organizational
resilience mostly take a management perspective. We aim instead to model resilience bottom
up, as an emerging property of organizations. Our framework will combine agent-based and
network models.

4 How shall we model social organizations?

We continue to go from the general, i.e., delimitation and conceptualization, to the particular,
now addressing the problem of system representation. Once we agreed upon the complex systems
approach with its agent-based and network models, the biggest hurdle is to turn these concepts
into formal structures. Instead of presenting just one solution, we have to prepare for a broader
perspective. The following descriptions should therefore be seen as alternatives for choosing
formal approaches. In Section 4.2, when we introduce network ensembles, we want to highlight
possible options of utilizing ensembles.

18/54



F. Schweitzer, G. Andres, G. Casiraghi, C. Gote,
R. Roller, I. Scholtes, G. Vaccario, C. Zingg:

Modeling social resilience: Questions, answers, open problems
To appear in: Advances in Complex Systems, vol. 25, no. 8 (2022)

Questions
• Why is system representation a central problem for modeling?
• What are the differences between the various network representations?
• Why do we need a network ensemble? How shall it be used?
• What types of dynamics do we consider for social organizations?

4.1 Network representation

Various options. There is not the one way to construct a network, not only because of
different topologies. There are different types of networks, as we outline below. Which network
type is most suited to represent the organization depends on the context and the available
information, i.e., data.

One could argue that we should indeed start our discussion with the latter, to explain what
data we got. This is denoted as the supply driven approach in Section 6.1. We instead follow
the demand driven approach, which requires us to first identify what data we will need. Hence,
before collecting data from an empirical system, a suitable formal system representation has to
be chosen. Only then the question about the minimal set of data needed should be addressed.

Link properties. Networks are one way of representing complex systems. The nodes of the
network are the agents, and links aij between nodes i and j represent their relations or interac-
tions. Figure 6 shows one example. The network approach focuses on the topological structure,
which can be conveniently summarized in an adjacency matrix A with the entries aij . Links
between agents are usually directed, e.g., agent i assigns a task to agent j and aij ≠ aji, repeated,
e.g., there are multiple links between the same pair of agents, aij ≥ 1, and time bound, aij(t),
i.e., they have to respect causal ordering or bursts of activities.

Network inference builds on the assumption that the topological structure encodes information
about agents, i.e., individuals. Utilizing this information could reduce the model complexity
because it allows for operationalizing the structure and dynamics of social organizations. But
studying the network topology would reveal hidden information about individuals and collectives
only to some degree. Therefore, the network approach has to be extended by explicit models of
agents.

Links versus signed relations. The network reconstruction is most often based on inter-
action data to determine links, aij . Interactions may be frequent and short-lived. What matters
for the resilience of organizations are rather the social relations ωij between agents. These are
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Figure 6: Collaboration network of software developers. Larger link width indicates more in-
teractions. Node color codes individual importance, measured by coreness values as a proxy of
network integration. Blue colors correspond to higher coreness.

generally signed relations, i.e., they have positive or negative signs. It takes time to establish
social relations and they usually change on a longer time scale. Compared to interaction data,
data about signed relations is rare. Therefore we need methods to infer signed relations from
interaction data, as described below.

Signed relations crucially impact the robustness of a social network. The theory of struc-
tural balance [64, 73] considers triads involving three agents (see Figure 7). A network is
assumed to be robust, i.e., stable, if it contains balanced triads. To determine the balanced
state, the classical approach only takes the signs of the signed relations into account, Sijk =
sign(wij) sign(wik) sign(wkj). If Sijk = 1, triads are balanced, if Sijk = −1, they are unbalanced
and have the tendency to change into balanced triads as Figure 7 shows. The line index [73] mea-
sures the minimal amount of signs that need to be changed to turn all unbalanced into balanced
triads and can therefore serve as a measure of structural robustness, which is explained later.

Bipartite networks. One of the main challenges in modeling social organizations comes
from the vast heterogeneity not only in the agents’ properties, but also in their interactions.
The notion of a link, i.e., a direct interaction, is already an abstraction. Taking the developer
example, collaboration means that two developers work on the same code. This would be most
appropriately represented as a bipartite network between different entities, the developers and the
pieces of code (see Figure 8 ). The collaboration network then is a projection, where developers
have a direct link if they have changed the same piece of code. A second network results from
the projection on the code; two pieces of code are connected if they were changed by the same
developer.
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Figure 7: Unbalanced triad and the three ways to obtain a balanced triad.

Multi-edge networks. If two developers collaborate on more than one piece of code, nodes
in each network projection can be connected by more than one link, i.e., we have a multi-edge
network (see Figure 15). From this network we are able to construct an important network
ensemble, as we discuss below.
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Figure 8: (a) Bipartite network of developers (P) and software code (D). (b) Projected collabo-
ration network of developers. (c) Projected network of code changed.

Knowledge graphs. Following these considerations, the starting point for representing or-
ganizations by means of networks is not the social network between agents, which is already a
reduction. Instead we have to start from a relational graph, also known as knowledge graph, that
visualizes the various ways of connecting individuals, as shown in Figure 9.
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Figure 9: Relational graph of software development activities on GitHub

Multi-layer networks. From a knowledge graph we construct different projections, each of
which creates its own network. These networks are combined in a multilayer network, as shown
in Figure 10. In each layer the nodes and their interactions are different. If the nodes are the
same in each layer, but the links represent different types of interactions (e.g., friendship, work
relations) this is known as a multiplex network. Hence, we have now intra-layer links within each
layer and inter-layer links between layers [57].

The multilayer network is accessible to mathematical investigations, by representing the topo-
logical structure as tensors. This allows to apply methods of spectral analysis [3, 184].

Hypergraphs. A noted limitation of networks is the decomposition of any type of interactions
into bilateral interactions between two agents. For instance, in a group of five agents this proce-
dure results in ten links. To overcome this limitation in modeling group interactions, we resort
to hypergraphs [13, 125]. This is a special type of higher-order networks, in which higher-order
nodes contain groups of simultaneously interacting agents. Links between higher-order nodes
then capture group interactions.

Similar to multi-layer networks, higher-order networks can have levels of increasing order. The
first order would be then the standard network, the second order level contains groups of two
agents, the third order groups of three agents, and so forth. This way hypergraphs allow to model
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Figure 10: Multilayer network with intra-layer and inter-layer links.

interactions between groups of different sizes by means of inter-layer links. For the formation and
the dissolution of groups, however, more refined dynamic models are needed [50, 149].

4.2 Network ensembles

Probabilistic approach. A network representation of the collective constructed from avail-
able data will be only one possible realization and not necessarily a very typical one. Ideally,
we would need a probability distribution that assigns to all possible networks a probability to
occur. Such a network ensemble is largely determined by the constraints of agents to form links.
Figure 11 shows sample networks from such an ensemble.

Figure 11: Six networks sampled from a network ensemble. They look similar, but differ in
their details.

If no link constraints are taken into account but only the total number of nodes, n, and links,
m, we would arrive at a very large ensemble of random networks that all have the same n and
m and the same probability to occur. The network constructed from data will be part of this
ensemble, but it is statistically indistinguishable from the other networks, most of which will look
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very different. Hence, we need to incorporate more information to restrict the network ensemble,
and to increase the probability for our reconstructed network in comparison to others.

Generalized Hypergeometric Ensemble of Graphs (gHypEG). To model multi-edge
networks characterized by heterogenous constraints, we have proposed gHypEG [30], a broad
class of analytically tractable statistical ensembles of finite, directed, and multi-edge networks.
It introduces dyadic link propensities Ωij , which capture the preference of nodes to form links.
Precisely, the ratio Ωij/Ωik is the odds to draw a link (i, j) rather than a link (i, k). The propen-
sities reflect social mechanisms such as homophily or reciprocity [17]. Furthermore, gHypEG can
incorporate formal assignments to classes or communities [27]. To do so, it employs propensities
ΩB
kl for links between nodes i, j that are in different “blocks”, i.e., communities, k, l.

gHypEG has the benefit of being defined by closed form probability distributions. Thanks to this,
we are able to calculate the weights for all incorporated features by means of efficient numerical
Maximum Likelihood Estimation (MLE), without the need of expensive Markov Chain Monte
Carlo (MCMC) simulations.

Network regression. The challenge to obtain the propensities Ωij can be mastered by means
of a multiplex network regression [26]. Each network layer l encodes different types of known
relations between agents as explanatory variables (see Figure 12). The influence of each layer
on the interaction counts as the dependent variable is then determined by fitting the Ωij such
that the observed network has the highest likelihood. In other words, the optimal propensities
are proxies for the constraints that shape the network ensemble. As an added benefit of the
method, one can test the statistical significance of the explanatory variables for the observed
interactions [28].

Figure 12: Illustration of the network regression method [26].
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Potentiality. With the calibrated propensities, gHypEG allows to calculate how many possible
configurations of the observed network exist, given the constraints for links. This issue becomes
of importance if we later want to quantify adaptivity, i.e., the ability of an organization to attain
different configurations. Then we need to know not only the number, but also the diversity of
possible network configurations.

This information is aggregated in a new measure, potentiality which is based on the normalized
Shannon entropy [187]. Importantly, the calculation is feasible without computational problems.
The larger the potentiality, the more alternatives an organization has to respond to shocks. We
discuss below how this will impact the organization’s resilience.

Significant relations. “Social” is not “random”, therefore, social relations should significantly
differ from random interactions. To test this, we filter the adjacency matrix with the observed
number of interactions, âij , using a significance threshold α and our probability distribution for
the network ensemble. If Pr(Aij ≤ âij) > 1 − α, links are significant [32]. Figure 13 demonstrates
that removing insignificant, i.e., random, links from the network has a considerable impact on
determining, for instance, communities.

(a) (b)

Figure 13: Community detection of a social network considering (a) all links, (b) only signifi-
cant links. [32]

If the observed network is not expected from the network ensemble, we have to apply an itera-
tive procedure, to refine the probability distribution. In a first step, we measure the significant
deviations. This additional information is used in a second step to update the constraints for
the network ensemble, i.e., to generate a new ensemble. The iterative procedure reveals what
information is relevant to explain the observed network.
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Signed relations. Eventually the probability distribution for network ensembles allows to
test whether the number of observed interactions exceeds expectations. This issue is important if
we wish to map interactions to social relations which have positive or negative signs. Empirical
studies have shown that more interactions indicate a positive social relation, e.g., a stronger
friendship [85, 89, 169], whereas less interactions indicate a negative relation which causes e.g.,
avoidance behavior [74, 96].
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Figure 14: Determining overrepresented interactions [5].

As illustrated in Figure 14, we infer the weight and the sign of the social relation between
two agents from ωij = Pr(Aij < âij) −Pr(Aij > âij) [5]. This procedure allows us to obtain from
a multi-edge network of observed interactions a network with signed relations, as shown in
Figure 15. The weighted signs, on the other hand, will enter the formalism to determine the
social impact of agents in a network.

(a) (b)

Figure 15: Multi-edge network (a) and the resulting network of signed relations (b) [5].

4.3 Dynamics of social organizations

So far, we have narrowed down our investigations to social organizations of a particular type
(delimitation), which are modeled as complex adaptive systems (conceptualization). For the rep-
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resentation we have chosen the network approach, which offers a great variety of network types,
but also a statistical description using network ensembles.

This discussion has focused only on the structure, but not on the dynamics of these networks
which will be done in the following. Further, we have not addressed yet the agents and their
properties which will follow in Section 5.1.

Concurrent changes. Models of complex socio-economic systems often use the concept of
separated time scales. The dynamics on the faster time scale is assumed to reach an equilibrium
state, which allows to describe the dynamics on the slower time scale as a sequence of different
equilibrium states. Similar approaches are used to separate different network dynamics. For
instance changes of the network topology are assumed to be slow, therefore the fast dynamics
running on the network can neglect the changing topology.

As already pointed out, we cannot use such assumptions to model the dynamics of collectives.
Instead, the different processes discussed below should be seen as concurrent. This leads to a
number of issues, such as overlapping or sliding time windows, choice of the appropriate time
scale for aggregation, etc., which are not discussed here, but should be kept in mind.

Entry and exit dynamics. The most visible changes regard the network topology. For social
organizations we have to consider an entry and exit dynamics of nodes, i.e., newcomers connect
to the network [146, 149], whereas incumbents may leave. This implies also the addition and
deletion of links, as shown in Figure 16 for the case of a multiplex network. Social organizations
often exhibit a life cycle, i.e., a predominant growth of both nodes and links in early stages is
followed by a saturation and a decline caused by many nodes leaving [60, 150, 154].

... ...

time... ...

i
j

ts3ts2ts1
Figure 16: Coupled growth dynamics in a two-layer network. Intra-layer links are between
nodes of the same color, inter-layer links between nodes of different color [119].

These processes do not occur at random. Further, they impact the collective as a whole as well
as individual agents. Newcomers may not be able to connect to core nodes initially and thus
connect to the periphery. Their integration into the collective may improve over time, as can be
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measured by their coreness [58, 151, 155]. If core nodes leave, this may trigger cascades of other
nodes leaving as empirical and simulation studies have demonstrated [34, 60].

Restructuring. Next to the addition and deletion of nodes and links, the rewiring of links
between nodes plays a major role. Their impact can be measured by tracking changes in the
global and local topological measures discussed below. Structural changes often reflect changes
in the organization, e.g., in responsibilities, hierarchical positions and roles of agents. Figure 17
illustrates such restructuring processes for a developer collective in which a central developer has
assumed the main responsibilities for task assignments. Already the visual inspection makes clear
that this has lead to considerable problems in the robustness of the collective, which eventually
lead to a collapse and the establishment of more resilient structures.

(a) (b) (c)

Figure 17: Topological change of a collaboration network of developers. Aggregated interac-
tions (a) before October 2004, (b) between October 2004 and March 2008, (c) after March
2008. [183].

Temporal networks. Whereas the dynamics of networks addressed above changes the topol-
ogy, the dynamics on networks captures interactions between agents. These can be exchange
processes, e.g., load redistribution in case of an agent’s failure, but also communication of in-
formation. These processes are strongly path dependent, i.e., the sequence of interaction matters
and has to respect causal relations. Models of causal paths [97, 142] provide a formal approach.
They build on higher-order networks, where each order captures a causal path of a given length.

In addition to time directedness, temporal networks also reflect the burstiness of activities [142],
i.e., the fact that not every link in a network is active at all times. The temporal component
significantly impacts the centrality measures of individual agents [141], as Figure 18 shows.
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Betweenness preference [128] was introduced as an agent-centered measure to quantify its im-
portance in transferring information.

(a) (b)

Figure 18: Identification of important individuals (a) on the aggregated and (b) on the tempo-
ral network.

External and internal shocks. The different dynamics described above are continuously
perturbed by internal and external shocks of various size and origin. Internal shocks, for instance,
may cause agents to leave, this way triggering cascades of drop-outs and restructuring. External
shocks, e.g., directives during the pandemics, may change working conditions and collabora-
tion relationships. Because of the volatile dynamics, we cannot clearly separate shocks from the
“normal” dynamics, which both occur on the same time scale.

We note that from our modeling perspective we model shocks, but not the origin of shocks, e.g.,
the government that changes the legal regulations. But we need to have models for the impact
of these shocks and for the collective’s response to different kind of shocks. In other words, we
need to estimate the robustness, or the absorptive capacity, of the collective facing a particular
shock, and to estimate the adaptivity of the collective to overcome this shock. Only then we can
calculate the social resilience of the collective, as outlined below.
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Conclusions
Different types of networks capture different aspects of relations between individuals. It
depends on the research question and the available data which of these network represen-
tations shall be used. Building up a network ensemble allows us to go beyond the observed
network, to include constraints for the social organization. In particular, we can distinguish
significant from random interactions and infer signed relations from interaction data. These
link characteristics are important to build an agent-based model, in the next step. Our
model has to consider various concurrent dynamics, including growth, entry and exit of
individuals, internal restructuring and external shocks.

5 What should we do to calculate resilience?

After completing the steps delimitation, conceptualization and representation, we eventually have
to master the last step, operationalization, where we merge the network approach with agent-
based modeling. The overview is presented in Figure 19.

Questions
• How can we turn concepts into measures for robustness and adaptivity?
• How can we characterize agents, using topological information?
• Why do we consider the social impact of agents? How can we quantify it?
• How is resilience composed of robustness and adaptivity?

5.1 Quantifying agent properties

The major goal of our framework is a micro-perspective on resilience. This is an emerging systemic
property, that means it can neither be reduced to, nor explained by, the dynamics of the agents.
As we demonstrate below, we need to consider the network structure to calculate the robustness
and the adaptivity of the social organization. But the agents’ importance, their social impact,
will provide the right weights in calculating these two measures.

Quantifying agents’ importance. A bottom-up approach to quantify resilience has to start
from the agents. In each organization, agents have a different importance, ri, that reflects their
hierarchical status, reputation, embedding in the organization, knowledge, etc. To obtain values
for ri is a challenge in itself and depends on the available data. Because there is no general
solution, we resort to some guiding examples.
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Figure 19: Operationalization to calculate social resilience.

In the simplest case, importance is defined in the hierarchical structure of a team [148]. There
are also ways to determine hierarchies based on interaction patterns. In the absence of such
information, we may utilize topological information from the reconstructed network (see also
Figure 17). In a directed social network we can use the eigenvector centrality of agents as a
measure of their reputation [16, 152]. For undirected networks, coreness [155] or weighted k-core
centralities [58] can quantify an agent’s embeddedness in a network [151], assuming that more
important agents are closer to the core (see also Figure 6). These measures also estimate the
robustness of an agent’s network position against failure cascades.

For temporal networks different centrality measures can be used [141] (see also Figure 18). Be-
tweenness preference [128] quantifies an agent’s importance in communication processes. Func-
tional roles can be only partially inferred from communication patterns or specific topological
embeddings of agents. Existing algorithms for role detection [78] do not detect organizational
roles, but classify network positions.

Social impact. What matters in an organization is not just the importance, ri, but also
the support or opposition an agent receives from others. Their influences are combined in an
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individual social impact, Ii. The total impact of an agent is then the sum of its own importance
and the social impact exerted by others, qi = ri + Ii.

Here, we define the social impact as Ii = ∑j wijrj = I
p
i − I

n
i . The wij denote the weighted and

signed relations between agents, which can be positive, negative or zero. Ipi is the sum of all
positive contributions, while Ini sums up the negative contributions [84, 99, 122]. Ii can become
negative, reflecting the fact that an agent may not have a high esteem in an organization because
it receives little support, but strong opposition from others.

Infer signed relations. To calculate the social impact, Ii, we also have to determine the
signed relations wij . For this, we apply the method described above in Section 4.2. It returns for
every pair of agents a weight and a sign to characterize their relationship.

To conclude, our measure of the total importance, qi = ri + Ii, combines different, but rather
complete information about each agent, namely information about its topological embedding and
about its activities because its repeated interactions with other agents determine its relations.
qi aggregates in one value the positive, negative or neutral influences from all counterparties,
weighted by their individual importance. Hence, with qi we have a non-local measure about the
true impact an agent can have in the organization.

5.2 Quantifying social resilience

In order to obtain a measure for resilience, we have to solve two problems: (i) defining different
proxies to measure robustness and adaptivity based on the available information about agents and
their relations, (ii) determining a functional form for resilience dependent on the two dimensions.
Again, there is not the one way of combining available information into meaningful measures.
Therefore in the following we list a number of candidates to quantify robustness, which we can
choose from. For adaptivity instead we provide only one measure based on the assumption that
we have data available to construct a multi-edge temporal network.

Topological robustness. As noted above, robustness can only be defined with respect to a
specific shock. A software developer team can be robust against an external shock, e.g., stronger
legal regulations, but not against an internal shock, e.g., the dropout of a leading developer.
Therefore, we must consider different ways for defining the robustness of social organizations.

Topological measures are often easy to calculate and reflect specific aspects. The robustness
against agent removal can be linked to agents’ coreness [29, 58, 117, 151, 155] (see also Figure 6).
It helps understanding cascading effects from removing a specific agent. Centralization [179]
takes the concentration of interactions in a few agents into account, which increases the systemic
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risk if these agents fail [34] (see also Figure 17). Betweenness preference [128] and Eigengap
[112] indicate communication bottlenecks and identify gate keepers. These measures can be used
separately, as demonstrated for centralization [154, 183], or in combination to quantify robustness.

We can further utilize higher-order models of temporal networks to capture robustness. The
Second-Order Algebraic Connectivity, for instance, can be interpreted as a temporal-topological
robustness measure [184].

Structural robustness. A different measure of robustness is proposed by the concept of
structural balance as explained in Section 4.1. It decomposes the network into triads and deter-
mines their balance Sijk by multiplying the signs of the signed relations, sign(ωij). This approach
has several shortcomings. First, triads are evaluated independently, i.e., the fact that each agent
is likely part of different triads at the same time is ignored. Secondly, the different weights of
each signed relation, ωij , are not taken into account. Thirdly, the importance ri of the agents
composing the triad is ignored. That implies all triads have the same weight in estimating the
robustness of the organization, which is not justifiable.

Correcting for these shortcomings is an open discussion. As a possible alternative we have pro-
posed a new weighted balance measure Tijk [143, 148] that takes into account not only the
signs and the weights of the signed relations, but also the impact of the agents involved in the
triad. To determine the structural balance of the whole collective, we take the arithmetic mean,
⟨T ⟩ = ∑Tijk/N t, where N t = ∥Tijk∥ is the total number of triads in the network.

Quantifying adaptivity. Ideally a maximally resilient system would have maximal robust-
ness, i.e., it could withstand any shock, and maximal adaptivity, i.e., if a shock impacts the
system it will always recover. That means resilience R should increase both with robustness R
and adaptivity A, R(R,A) ∼ R ⋅A.

Adaptivity does not simply mean “dynamics”. Instead, it refers to the ability of the organization
to attain different states, which we also call potential. But will the system actually attain these
alternative states at random, without a response to a shock? If so, we call this the propensity to
change to indicate that it is independent of the quality of the current state. It turns out that
the propensity to change is a two-edged sword. If a team is in a bad shape, it should be able
to leave such bad state. Then a high propensity to change allows the team to attain other, and
likely better, configurations. On the other hand, if the team has reached a good state, it should
be interested in keeping it. A high propensity to change would be counter productive because the
good state could be easily lost. This means that resilience should increase with the propensity
to change if the system is in a bad state, and decrease in a good state. Figure 20(a) illustrates
the problem.
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Figure 20: Resilience R as a function of robustness R̂ and propensity to change P̂ : (a) Qualita-
tive assessment of different states. (b) Exemplary quantification of R(R̂, P̂ ). [154]

A functional form. A decomposition of resilience into robustness and adaptivity, R(R,A) ∼
R ⋅A, rests on the fact that we can capture the potential to change of the system independently
from its propensity to change, which is in fact not possible. Therefore, we use the propensity to
change P̂ as an empirical proxy for adaptivity.

Our measure of potentiality [187], introduced in Sect. 4.2, allows us to proxy this propensity. It
quantifies the probability distribution of states attainable by a system at a given point in time.
The larger the potentiality, the larger is the number of alternative states attainable by the system,
and the more likely is the system to change towards one of them. The smaller the potentiality,
the smaller the number of states attainable and the smaller the probability the system will move
away from the current state.

These considerations have determined us to propose the following functional form for the re-
silience of social organizations: R(R̂, P̂ ) = R̂(1 − P̂ ) + P̂ (1 − R̂) [148, 154]. The quantity P̂ is a
convenient transformation of potentiality P . I.e., low values of P̂ (below 0.5) map to a state
with low propensity to change, while large values of P̂ (above 0.5) map to a state with high
propensity to change. The lowest achievable potentiality is mapped to P̂ = 0, while the highest
to P̂ = 1. Similarly, the value of robustness R should be always positive and conveniently scaled
between 0 and 1. This can be achieved for most topology based measures. For structural balance
measures, however, ⟨T ⟩ can become negative. To use these measures, we have to map them as
R̂ = 1/(1+eβ⟨T ⟩), where β = 0.2 gives a rather smooth mapping. ⟨T ⟩ = 0 would then be equivalent
to R̂ = 0.5. Note that the function plotted in Figure 20(b) reflects the arguments summarized
Figure 20(a).
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Relation to ecological concepts. It is worth to get back from here to the discussion about
“potential” and “connectedness” as constituents of ecological resilience in Section 2.3. Potential
shall define the number of possible alternatives states. But so far it was only a conceptual
proposal because of the lack of operationalization. This gap is closed by our concept of adaptivity
which indeed can be calculated and also compared across different systems [187]. Connectedness
refers to the robustness of the system, capturing topological aspects. Again, with our measure of
robustness we are able to calculate and to compare the robustness of different systems. Moreover,
both adaptivity and robustness can be monitored over time, making our resilience measure an
instantaneous early warning signal.

Most interesting is the relation between low connectedness and high resilience, on the one hand,
and high connectedness and low resilience, on the other hand, discussed in Section 2.3 [82]. This
was presented together with the hypothesis about the “adaptive cycle”, which emerges if low
connectivity is met by high potentiality. While this adaptive cycle was considered a “metaphor”
[25] or a “thinking tool”, we are able to demonstrate its existence in data about real world
organizations [154].

Resilience as a compromise. Our framework reflects that high resilience requires both,
the maintenance of a valuable organizational structure to withstand shocks, and the ability
to change this structure quickly if needed. Reasons to change can result from internal or from
external problems, for instance from an incapable management or from governmental restrictions.
The resilient organization has to achieve conditions under which it can respond even without
prior knowledge about the shock. Instead of rigidity, it needs fluidity. But instead of fragility,
it also needs stability, dependent on the situation. Hence, the maximum resilience should be a
compromise to balance these different requirements in an efficient manner.

Conclusions
Turning concepts into measures is the hardest part of modeling. There are always different
options to operationalize measures, dependent on available information. Topological mea-
sures alone are not enough to estimate the robustness and adaptivity of social organizations.
Instead, we need to quantify the impact of agents, to correct structural balance. Optimal
resilience is a compromise between robustness and adaptivity.

6 Network construction and interventions

So far we have translated our concepts for the robustness and adaptivity of social organizations
into measures. As the last step we have to discuss possibilities of obtaining the data needed
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to calculate these measures. If we achieve to have a calibrated generative model of the social
organization, we can address the problem of system design [144]. That means, we can test how
possible intervention strategies impact the organization’s resilience.

Questions
• How do we construct networks from data?
• What type of data is needed to calculate our resilience measure?
• How can we obtain such data from repositories of social organizations?
• Is there a way to validate our generative model?
• How can we control resilience using network interventions?

6.1 Data acquisition and analysis

We want to emphasize that our methodology inverts the usual supply driven approach found
in computational social science. This starts from the data given, often collected without a clear
purpose and a research question in mind, to subsequently squeeze out interesting features. In
contrast, our demand driven approach has first identified in four steps shown in Figure 4 what
data will be needed to inform our models. Then, utilizing this data we can infer information
about agents and their properties, but also about their interactions with others, as shown in
Figure 19.

Such data cannot directly provide the input for our models and is not sufficient to simply
estimate social resilience. Instead, it has to be pre-processed, before we can construct the networks
that are essential for our framework. These networks are never given, and their generation and
subsequent statistical interpretation bears some of the most overlooked problems in modeling
social organizations.

Extract interactions. One of our reasons to study software developer teams as prototypes
of social organizations is the availability of vast git repositories. These contain fine-grained
records of all changes made to the software, together with information who changed it, what was
changed and when. We developed a software package, git2net [66, 67], that is able to extract
this information, to create bipartite networks and their projections into an interaction network
between developers (see Figure 21).

We note that, in addition to the co-editing network, i.e., the collaboration network of developers,
we can obtain additional information about the social organization. For instance, analyzing the
amount of code changes can quantify the productivity of developers [139] and analyzing the
sequence of code changes gives insights into their hierarchical structure.
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git2net can be also used to mine other git repositories, e.g., for publications. Additionally we
have developed the rule-based disambiguation tool gambit to solve the persistent problem of
name disambiguation occurring in most real-world user data [68].

Figure 21: Extracting the collaboration network of developers A, B, C using git2net [66].

Time window detection. To obtain interaction networks, a sliding window approach ag-
gregates interactions over a certain time interval. Choosing the right window size is a problem
in itself, because the window size impacts the network density and subsequently all topological
analyses.

Often we have no data about interactions and need to infer them from time series of observed
events. For instance, from co-location data, i.e., observations about two individuals i, j acting
at times ti and tj at a given place, we need to detect the time interval ∆t = ∣ti − tj ∣. Only
observations with a ∆t lower than a given threshold ∆tthr will count as interactions [113]. Such
considerations are important to quantify, e.g., the transmission of information within a social
organization.

Analyzing temporal data. The dynamics of temporal networks crucially depend on ∆t. The
problem, who can potentially influence whom, requires to reconstruct temporal paths of various
lengths [65], on which our networks can be generated.

We have developed different software packages to support the analysis of temporal networks. They
are combined in the toolbox pathpy [140]. It implements, for instance, statistical techniques to
find optimal graphical models for the causal topology. These models balance model complexity
with explanatory power for empirically observed paths in relational time series. As part of pathpy,
MOGen [65] is a multi-order generative model to statistically evaluate paths of various lengths.
It can be used to improve the computation of different temporal centrality measures in case of
insufficient observations.
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Infer signed relations. Signed relations ωij are instrumental to calculate the social impact
and subsequently the robustness of the organization. As described above, our framework uses
interaction data to infer signed relations. This method can be enhanced by taking additional data
sets into account that can provide information about the positive or negative relations between
individuals.

If written or spoken text is available, we can use sentiment analysis to obtain information about
the emotional content [59, 61], to infer social relations. Natural language processing (NLP) pro-
vides an extended tool box to further extract information about opinions, attitudes, or ideological
positions [1, 134]. These can help quantifying the social impact that individuals exert on others.

Information from collaboration platforms. Another important source of information are
online collaboration platforms, such as slack, zoom, or GitHub. In addition to interaction data
and text messages, they often provide information about attention, e.g., via likes, about declared
trust, recommendations, and activity patterns.

Based on reconstructed collaboration networks, one can analyze the presence of social mechanisms
like reciprocity, homophily, triadic closure [17, 131], or of other motifs [182]. This information
can be used to further characterize the importance of agents and their signed relations and to
estimate their impact on the resilience of the organization.

Network regression. If the topological information is sufficient to reconstruct an additional
network layer, it can be utilized for the network regression outlined above. To facilitate the
computation, we have developed an R package ghypernet [31]. It implements gHypEG, the
network ensemble considering propensities. In addition to network regressions, the package can
be used to infer significant relations from observed interactions [32].

Once gHypEG is calibrated, we can also compute our potentiality measure even for large en-
sembles. SciPy [172] provides an efficient implementation for computing the entropy of a given
multinomial distribution.

Calibration and validation. To find the optimal combination for the different measures
mentioned above is recognized as an open problem. Symbolic regression [44, 163] and other
machine learning (ML) techniques are increasingly used to find solutions. In many cases, ground
truth data is not available. Then, we have to rely on in-sample and out-of-sample predictions to
aggregate different information in a meaningful manner.

This issue becomes relevant if we, for instance, want to improve the importance measures for
agents. If reliable aggregation methods are not available, we have to resort on determining the
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ri values from topological measures, combined with dynamic processes as, e.g., in feedback cen-
tralities, as we will do in the following example.

6.2 Resilience and control

Improving the resilience of complex systems implies that, to some extent, we are able to influence
such systems in a way that their functionality and their stability is maintained, or even enhanced.
The formal model of social organizations described above allows testing such intervention strate-
gies.

Top-down control. Generally we distinguish between bottom-up and top-down interventions
[145]. The latter mostly focus on the boundary conditions for organizations, either to prevent
shocks or to enhance their business environment. These can be financial measures during the
Corona crisis, but also legislative measures to ensure fair competition.

In general, to use the top-down approach, one needs to identify global control parameters which
is a challenge on its own. Often they can be derived from the known macroscopic or system
dynamics. As a major conceptual drawback, control parameters usually reflect limitations of
stability, rather than of resilience.

While the top-down approach is discussed in macro-economics and recently in macro-prudential
regulations, we are interested in the bottom-up approach which is more in line with the complex
systems philosophy.

Bottom-up interventions. Our bottom-up approach to resilience uses interventions targeting
specific agents and their interactions [153]. Structural interventions focus on the interaction struc-
ture, basically changing the adjacency matrix of the network. Functional interventions change,
for instance, the interaction rules to affect timing of interactions [137].

Dynamical interventions instead influence the internal state of nodes, i.e., the agents. Such mea-
sures can include nudging or mechanism design [145], but the most promising way for us are
network interventions (see Figure 22). They require to first identify the driver nodes, i.e., those
agents that should be targeted, and secondly to decide about the type and the amount of inter-
ventions [106, 185]. Often these interventions change the agents’ utilities ui using control signals.

Indirect influence. To get access to agents, we can utilize the multi-layer structure of the
organization. For instance, if one layer contains friendship relations and the second one task
assignments, the friendship layer can be used to influence the work relations.
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Figure 22: Network control in a two-layer network. (b-d) Different couplings between the two
layers, dependent on the peripheral or central position of agents. [185]

If the impacted agent responds appropriately, changes can propagate through the network, this
way influencing agents that were not targeted directly. As the example of Figure 22 shows, we
can target agents at the periphery of the network to impact agents in the core [118, 185, 186].

Influence on decisions. Network interventions only control a small number of agents at a
comparably low cost, while utilizing the systemic feedback. But the method requires a model of
the organization to forecast the impact. Further, it assumes that the agent’s utility is known.
For the latter we can have at least reasonable assumptions.

Rational agents want to keep or even increase their impact, qi, by either increasing their impor-
tance, ri, or by decreasing a negative social impact, Ii, they experience. But changing signed
relations or maintaining collaborations is costly. Agents may decide to leave the organization if
their costs exceed their benefits. Conversely, they may decide to stay if their benefits have been
increased.

Changing agents’ utility has the advantage of influencing these decisions. If agents leave or
reorganize their links, this changes the network topology and impacts the dynamics in each
layer. Consequently, both the robustness and the adaptivity of the organization are impacted.
This can lead to counter intuitive effects. For instance, removing some agents may stabilize the
organization [33, 153]. While this is known in human resource management, models are hardly
able to reproduce such behavior.
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Figure 23: Network interventions to prevent the breakdown of a social network, indicated by the
drop of k-coreness. (a) No intervention, (b) peripherial agents targeted, (c) agents close to the
core targeted [33, 153].

Conclusions
We provide a whole tool box for mining and analyzing data of social organizations. In
particular, interaction data can be obtained from repositories. Other tools allow to calculate
temporal centralities to characterize communication, and to infer propensities for interacting
individuals. Which of the different measures are calculated depends on the available data.
There are various ways to proxy robustness, adaptivity and resilience of social organizations.
Network interventions allow to improve the resilience of organizations.

7 Conclusions

7.1 What is resilience?

Structural and dynamic dimensions. Summarizing our tour through the modeling of
social organizations, some important insights should be noted. First, resilience is a concept that
combines two dimensions, robustness and adaptivity. Robustness, as the structural dimension,
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captures the ability of a social system to withstand shocks. Adaptivity, as the dynamic dimension,
captures the ability of a social system to recover from shocks. Neither maximal robustness,
nor maximal adaptivity alone are sufficient to warrant resilience for social organizations. Both
dimensions create a tension, because increasing robustness may lower adaptivity and the other
way round. Therefore, a resilient state is a compromise balancing the influence of both dimensions.

This insight is important because, following arguments from engineering, resilience is too often
just treated as a synonym for stability. This leads to the conclusion that maximizing resilience
means maximizing robustness. Such a perspective may hold for designed infrastructure systems,
but not for self-organizing systems such as social organizations.

Resilience measure. To turn a concept into a measure requires operationalization which
points to a different problem domain [77]. Even if we agree about our resilience concept, there may
be different proposals to operationalize it. They have to solve two problems. Firstly, the functional
form of resilience dependent on robustness and adaptivity should be specified. Secondly, measures
for robustness and adaptivity have to be proposed and subsequently operationalized.

The latter is the real difficulty. What should we measure to quantify robustness or adaptivity?
A system may be robust against some specific shocks but will fail for others. Therefore, the
question cannot be answered without an appropriate formal model of the social organization. In
this paper, we made an operationalization proposal based on networks which can be constructed
from data. In general, these are multi-edge, temporal, multiplex and dynamic networks. From
these networks, topological information can be used to calculate robustness. Using the ensemble
approach, we are further able to calculate adaptivity.

Resilience as an emergent property. For our modeling framework of social organizations
we have adopted the complex systems perspective, in general, and the complex networks ap-
proach, in particular. This implies to explain resilience as an emerging property of the social
organization. Following the bottom-up approach, we have to focus on the micro level of inter-
acting agents. Measures for resilience need to be derived from this perspective. It requires to
characterize agents in some detail regarding their importance, their signed relations and their
social impact on others. Simple network measures that treat agents as dots to just calculate their
network position are not sufficient to estimate robustness, even less to understand adaptivity as
the dynamic component of resilience.

Resilience as a systemic property has to be constantly maintained, which requires the activity
and the cooperation of the members of the social organization. Conversely, big threats to social
resilience are not coming only from external shocks, but from internal challenges as well. As
our model framework demonstrates, negative signed relations and negative social impact hamper
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robustness and adaptivity. Biased interactions, the lacking integration of newcomers and low
connectivity undermine the conditions under which resilience can be established.

7.2 The policy dimension

Science versus policy. Our framework for modeling the resilience of social organizations
helps to understand under which conditions resilience is lost. Our reasoning does not refer to
the loss of “robustness” and “adaptivity” in an abstract manner. It instead relates these losses to
the underlying properties of agents and their dynamic interactions. Only this way we are able to
propose network interventions for improving resilience.

But do these models, while successful from a scientific perspective, benefit policy makers in any
way? Are we able to tell them what to do? To put this challenging question into perspective, we
remind on some preconditions and some findings.

Our models focus on a specific type of social organizations, namely teams of collaborating mem-
bers sharing a common goal. This means that we are not considering societies and, hence, our
models neither aim at, nor are suited for, making suggestions on how to improve the resilience
of societies against political, economic or environmental shocks. Delimitation was the first step
for developing our framework. With these restrictions in mind, our models indeed support some
general insights.

Awareness. The most important insight is probably about the role of awareness for what
resilience really means. This requires distinguishing it from concepts of robustness, stability,
functionality, or optimality. Resilient systems are not obtained by maximizing or optimizing
specific functions or key figures. A resilient organization has to withstand various kinds of shocks
and to recover from them. That means it needs to be prepared for the unknown, instead of being
specialized to fit the known.

This addresses a policy issue: Instead of improving resilience, organizations have strong incen-
tives to rather improve performance as the most visible indicator of success. This reminds on
the classical conflict between short-term benefits and long-term deterioration and points to the
misallocation of limited resources needed for maintaining resilience. Ideally, a social organiza-
tion should be able to anticipate possible shocks to some degree, and to prepare in advance
for this, also by securing resources. This requires collective awareness, a state of consciousness
that is based on continuously analyzing and recognizing the situation inside and outside the
organization.

Flexibility. Next to robustness, our models highlight the role of adaptivity. It proxies the num-
ber of options that an organization may have to respond to shocks. Consequently, we measured
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adaptivity by potentiality. It does not imply that these options are taken, but that they exist
in a current situation. Resilience depends on alternatives. That means, concepts like flexibility
or fluidity become increasingly important. We remind on the concept of adaptive capacity which
already refers to the ability of an organization to adapt either in preparation, or in response to
perturbations.

Quantifying resilience principles. Ten years ago, Biggs et al. [15] identified seven principles
for building resilient socio-ecological systems:

(1) maintain diversity and redundancy,
(2) manage connectivity,
(3) manage slow variables and feedbacks,
(4) foster complex adaptive systems thinking,
(5) encourage learning,
(6) broaden participation,
(7) promote poly-centric governance systems.

These principles already highlight the importance of a complex systems perspective, the role
of adaptivity and decentralized control. But now we provide a modeling framework for social
resilience where formal models allow to quantify the value of redundancy and connectivity using
multi-edge and multi-layer networks. They show how agents’ diversity, i.e., their heterogeneity,
their social impact and their signed relations impact social resilience.

From a broader perspective, our paper wishes to contribute to a better concept of resilience
management. This requires both an understanding of the system that should be managed and an
active involvement of those who are managing and those being managed. Social organizations
are a prime example for those systems. We are the system elements, the agents, of our own social
organization. We are in the position to change our organization to improve resilience. At the
same time, we are also affected by these changes, as well as by internal and external shocks.
Our modeling framework helps to raise attention for the role of diversity and feedback processes,
the power of decentralized network interventions and collective learning. In the end, however, it
depends on us how much of these insights can be implemented in our social organizations.
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