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a b s t r a c t

We evaluate the robustness and adaptivity of social groups with heterogeneous agents
that are characterized by their binary state, their ability to change this state, their
status and their preferred relations to other agents. To define group structures, we
operationalize the hexagrams of the I Ching. The relations and properties of agents
are used to quantify their influence according to the social impact theory. From these
influence values we derive a weighted stability measure for triads involving three agents,
which is based on the weighted balance theory. It allows to quantify the robustness of
groups and to propose a novel measure for group resilience which combines robustness
and adaptivity. A stochastic approach determines the probabilities to find robust and
adaptive groups. The discussion focuses on the generalization of our approach.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The aim of our paper is a formal analysis of the relations and the resilience of social groups. Different from communities,
hese groups are of rather small size which requires to consider the properties of their members, denoted as agents in the
ollowing, in more detail. In social systems these agents are heterogeneous, i.e., they have a different character, social status,
nfluence on others. We are particularly interested in the feedback between agent properties and their relations because
f its social relevance. For instance, studies about political polarization acknowledge a feedback between the opinions of
ndividuals and the evolution of their mutual relations which may then lead to an increasing polarization [1–3]. But a
ramework that combines the internal dynamics with the evolution of relations is still under development [4–9].

To model the impact of heterogeneous properties on other agents and the group as a whole, we need assumptions
bout the group structure, its dynamics of change, the relations between agents and their importance. Instead of arbitrary
d hoc assumptions we resort on the I Ching, a classic Chinese text about ‘‘change’’ introduced in Section 3. Specifically,
e interpret the hexagrams of the I Ching as descriptions of group relations. We note that our analysis can be easily
eneralized if other information about agents and their relations shall be taken into account.
Our work contributes to a formal modeling of groups as the smaller building blocks of social systems. While large

ocial networks can be reasonably described by a statistical approach that averages over many individual details, the
ormation of groups requires to understand the social mechanisms that lead individuals to join or to leave, to form or to
elete links [5,10–13]. Social network analysis has already studied some of these mechanisms, for instance reciprocity,
omophily and triadic closure among individuals [6,14–16]. Recent work also discusses the costs and benefits of being
art of a group to derive individual utility functions [17]. These factors are important to assess the stability of groups as
precondition to their further growth and merger into larger networks. At the same time, we also need to consider the

mpact of relations on the stability of a social system.
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Fig. 1. Possible configurations of the wij in triads Tijk . (a), (c) are considered stable triads, (b), (d) unstable triads following Eq. (2).

The core of our approach is a new measure for the stability and the resilience of groups. In line with other
orks [5,14,18–20] we estimate group stability from the stability of so called triads, i.e., building blocks of groups

nvolving three agents. Triadic closure is seen as a generative mechanism for social communities [5,12,14,21–23]. Models
or structural balance [12,18,20,24,25] determine the stability of these triads from the signs of the relations between
gents (see Fig. 1). To ease analytic investigations, these triads are often considered to be independent [19,20], ignoring
he fact that agents are part of different triads at the same time.

Different from these works, to calculate the group stability we first weight these triads by considering the importance
nd the social impact of the involved agents. For this, we build on two social theories. The social impact theory [26,27,27–
2] tries to quantify the influence that a focal agent experiences from other agents in the group. This depends on the
tatus of the agents involved (strength), their direct or indirect relations (immediacy) and their supporting or opposing
ttitude. Hence, with our computation of influence values for each agent we already have their mutual relations and their

status taken into account. To subsequently determine the weight of a triad, we use the weighted balance theory [4]. It
extends Heider’s cognitive balance theory [33] to encompass multiple weighted attitudes. In our context this approach
allows to weight the influence values of agents in addition to the signs of their relations. In other words, agents contribute
to a different degree to the in/stability of triads, which can now be quantified with a continuous measure instead of a
dichotomous distinction between stability and instability.

This fine grained stability measure allows us to further quantify the resilience of a group. Resilience differs from
conventional notions of stability because it additionally reflects the ability to respond to change. To capture this function,
we introduce two dimensions of resilience, namely robustness and adaptivity. Robustness, as the structural component
of resilience, can be derived from our stability measure. Adaptivity, the dynamic component of resilience, is a two-edged
sword. It bears the chance to improve the robustness of the group, but also the risk to reduce it. If a robust system changes
too much it can lose its robustness. On the other hand, the ability to adapt is beneficial for systems with low robustness,
because it allows them to obtain a better state. Hence, different from stability, resilience also considers the ability to
improve in a future state.

The paper is organized as follows. In Section 2, we introduce the basic dynamics of our agent-based model and discuss
the structural balance of triads. Agents are characterized by a binary internal state which can change under certain
circumstances. Relations between agents may depend on their states which indirectly determine the stability of triads.
A didactic example presented in the Appendix further illustrates the concept and the resulting problems. In Section 3,
we summarize facts about the I Ching and explain the hexagrams composed of 6 lines, which we take as descriptions of
group structures. To map explanations from the I Ching with our agent-based model, we formalize the concept of the I
hing. This is a challenge on its own, described in Section 3, which will lead us to a description of the signed relations in
small group of 6 agents.
In Section 4, we build on these relations to calculate the social impact for each agent based on the supporting and

pposing influences from other agents. Taking the status into account, this determines the influence of each agent. In
ection 4.2 we use ideas from weighted balance theory to calculate the weighted stability of triads and the resulting
tability of the group. This allows us in Section 5 to estimate the group resilience. A stochastic approach presented in
ection 5.2 informs about the probability to find certain group configurations and about their possible change. Section 6
s devoted to a detailed discussion of our modeling approach and possible extensions.

. Dynamics in small groups

Let us consider a small group of N = 6 agents which are identified by their number i ∈ {1, 2, . . . , 6}. Each agent can
have relations to other agents, which are represented as a network (see Fig. 6). Agents are the nodes in this network and
the variable wij ∈ {−1, 0, +1} indicates their relation. Positive relations, for instance support or consensus, are indicated
by wij = +1, negative relations, for instance conflict or repression, by wij = −1. wij = 0 if agents in the network are not
connected. Each agent is characterized by a binary state variable si ∈ {−1, +1}, which may change over time. Whether
this possibility exists is indicated by a variable ai ∈ {−1, +1}, which denotes the ability to change. In this paper, we
consider only two times, t0 before and t1 after the change. The dynamics for each agent reads
si(t1) = si(t0)ai (1)

2



F. Schweitzer Physica A 603 (2022) 127630

W
t
i
c

r
f
r

Fig. 2. Hexagram with primary trigrams T123 , T456 and nuclear trigrams T234 , T345 .

ith ai = −1, the state at t1 becomes the opposite of the state at t0, with ai = +1, the state does not change. We note that
he value ai = −1 only occurs with a rather small probability which is determined in Section 3.1. The group configuration
s expressed by a vector S(t) = {s1, s2, . . . , s6}. We can then compare the current situation of the small group, before the
hange, given by S(t0), with the situation in the near future, after the change, given by S(t1).
Before we can discuss the stability of the group and how it is affected by the change, we have to determine the

elations wij and their dependence on the agent variables. This is carried out in detail in Section 3. In the Appendix, we
urther discuss a didactic example of a fully connected network where the states si are interpreted as agents’ opinions. The
elations result from wij = sisj. I.e,. they are positive if agents have the same opinion, denoted as consensus, and negative
if they have different opinions. Assuming that consensus positively affects stability, such a setup allows to investigate
whether change would lead to more or to less stable groups. This can be captured by measuring the fraction of positive
relations in the network at the two different time steps.

Models of structural balance often assign the values of the binary relations wij ∈ {+1, −1} randomly, i.e. without
considering the states of agents si [18–20]. The focus is then on the emerging triads Tijk, involving any three agents i, j, k,
as shown in Fig. 1. Whether a triad Tijk is assumed as structurally stable or unstable depends on the product of the signs
of the relations:

Tijk = wij wik wkj =

{
+1 stable
−1 unstable

(2)

Most models of structural balance postulate a dynamics in which agents have the ability to change the signs of their wij
such that an unstable triad becomes a stable one [5,18–20,24,34]. To capture the change, one can compare the fraction of
balanced triads in the network as shown in Appendix. We want to deviate from this approach by considering a feedback
between agents’ states si and their relations wij in a more subtle manner. This is where the I Ching comes into play.
Precisely, we will interpret the hexagrams from the I Ching as group structures, as discussed in Section 3.2.

3. The I Ching

3.1. Basic features

The I Ching, or Yi Ying, translated as ‘‘The Book of Change’’, is a classic Chinese text with roots frommore than 2000 years
ago. It tries to describe a current situation by means of hexagrams, i.e. symbols composed of six lines (see Fig. 2). It is not
the purpose of this paper to summarize the origins, developments and multifaced interpretations of the I Ching. We restrict
ourselves to the very basics needed to explain its relation to group formation, the way we see it. The interested reader is
referred to the extensively commented I Ching edition by Richard Wilhelm [35], from which we quote in the following.
It was translated to English by Cary Baynes and still serves as a main reference point, despite newer editions, because of
its deep and insightful explanations.

The six lines in each hexagram form a hierarchy from bottom to top, indicated by their ascending places 1, . . . ,6. Each
line can appear in two different states, indicated by a broken and an unbroken line. Broken lines are also referred to as
weak, earthly, receptive, dark, negative, yielding, yin. Unbroken lines are referred to as strong, heavenly, easy, creative,
light, positive, firm, yang. One has to refrain from associating these lines with notions of ‘‘good’’ or ‘‘bad’’. According to
Chinese philosophy, the principles of yin and yang are complementary rather than contradictory, i.e. both are needed to
constitute the world and their balance is essential for harmony. Subtle relations to the Greek concepts of logos and eros
cannot be denied.

From the combinations of broken and unbroken lines 26
= 64 possible hexagrams result. They are seen as combinations

of lower order structures, trigrams of three lines each. The 23
= 8 possible trigrams are shown in Fig. 3. They can be divided

into two groups. The dark trigrams, shown in the top row, contain more solid than broken lines, while the light trigrams
from the bottom row contain more broken than solid lines.

As shown in Fig. 2, each hexagram is formed by a lower (inner) trigram, T123, and an upper (outer) trigram, T456. These
are referred to as primary trigrams. Thus, the 64 hexagrams can be conveniently placed in a 8 × 8 matrix, which has both
the rows and columns ordered by the 8 trigrams. The correct order for the hexagrams is one of the most debated issues
in the I Ching literature. As a side note, Gottfried Wilhelm Leibniz, who developed early concepts of binary numbers,
became interested in the I Ching after the French Jesuit Joachim Bouvet sent him a map with the 64 hexagrams in Fu
Xi order, which reflects their binary values. Following the convention, we use instead the so called King Wen order. It
3
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Fig. 3. 8 possible trigrams: (a)–(d) dark, (e)–(h) light trigrams.

Fig. 4. (a) Initial hexagram No. 47, red lines are changing (b) resulting hexagram No. 48.

ssigns to each hexagram a number from 1 to 64, which is used for reference. Additionally, each hexagram has a ‘‘name’’,
or example No. 21 Shih Ho ‘‘Biting Through’’, a ‘‘judgement’’ and an ‘‘image’’.

It is important to note that the meaning of a hexagram cannot be simply decomposed into the meaning of the
onstituting two trigrams, even less into the meaning of the constituting six lines. As shown in Fig. 2, each hexagram
lso contains two inner trigrams, referred to as nuclear trigrams, T234 and T345. Therefore, the structure of each hexagram
eflects the overlapping influence of four trigrams in total, which we make use of in Section 3.2.

The name ‘‘Book of Change’’ comes from the fact that the lines, under certain conditions, can change their character,
rom yin to yang, or from yang to yin. To explain these conditions we note that the assignment of lines to places occurs
by means of a random process. The abridged procedure uses 3 coins. The heads of each coin, which usually shows the
ortrait of the ruler, counts 2, the tails which usually shows the value, counts 3. The character of each line is determined
y flipping these 3 coins together in one toss. Summing up the outcome for the three coins can only result in numbers
, 7, 8, or 9, albeit with different probabilities. Table 1 shows the possible combinations. The even numbers 6 and 8 refer
o yin and are represented by a broken line, the odd numbers 7 and 9 refer to yang and are represented by a non-broken
ine. 6 and 9 appear with a smaller probability. They are referred to as the ‘‘old yin’’ and the ‘‘old yang ’’, which can change
heir character into the (young) yang and the (young) yin, respectively.

A hexagram is built ‘‘bottom up’’ by consecutively assigning lines to places in ascending order. Hexagrams can only
hange if they contain lines representing the numbers 6 or 9. We have decided to color such lines in red, for convenience.
ig. 4 illustrates the change using the hexagram No. 47 K’un ‘‘Oppression (Exhaustion)’’. In the I Ching, a commentary about
ines and places is only given if a respective place contains a line that can change. All other lines, while being important
o constitute the hexagram, do not receive an interpretation.

For illustrative purposes, this hexagram has by chance ‘‘Six in the third place’’ and ‘‘Nine in the fourth place’’. The
ommentary then states: ‘‘Six in the third place means: A man permits himself to be oppressed by stone, And leans
n thorns and thistles. He enters his house and does not see his wife. Misfortune’’ [35, p. 407]. ‘‘Nine in the fourth place
eans: He comes very quietly, oppressed in a golden carriage. Humiliation, but the end is reached’’ [35, p. 408]. Obviously,
iscovering the meaning of these comments is beyond our interest. They are reprinted here for those, who value content
ver form and, hence, should feel comfortable with them. Our aim is to solely build on the insights that can be deduced
rom the structure of the hexagrams.

As the result of the change, we obtain the hexagram No. 48 Ching ‘‘The Well’’. So, if No. 47, with the additional
nformation about the changing lines, characterizes the present situation, then No. 48 indicates the (possible) future.
ts meaning is left, to a large degree, to the interpretation, but the extensive commentaries to the I Ching, known as the
en Wings, provide additional clues.

.2. Social relations

We now want to utilize the structural complexity of the I Ching for capturing the relations between agents in our small
roup. To this end, we see each hexagram as the encoding of one specific group structure involving six social agents.
able 1 summarizes the connection between the lines and the agents. Agent i is described by its state, si, and its ability
o change, ai. The binary state variable is si = +1 for unbroken lines, and si = −1 for broken lines. The ability to change
s ai = −1 if the line in the respective place represents either a 6 or a 9, and ai = +1 otherwise.

The first question regards the appropriateness of matching agents of a social group with lines from a hexagram. Here
we emphasize that the I Ching explicitly refers to social structures when interpreting the trigrams and the hexagrams.
4
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Table 1
Relation between line characteristics of the I Ching and agent variables. The symbols are used in the
network diagrams of Figs. 6, 7.
Sum 6 7 8 9

Three coin toss 2+2+2
2+2+3 3+3+2
2+3+2 3+2+3 3+3+3
3+2+2 3+3+2

Lines

Probability 0.125 0.375 0.375 0.125

Symbol
variables si = −1 si = +1 si = −1 si = +1

ai = −1 ai = +1 ai = +1 ai = −1

For example, the 8 trigrams shown in Fig. 3 represent a family with father (a), mother (e), eldest daughter (b), middle
daughter (c), youngest daughter (d), eldest son (f), middle son (g) and youngest son (h).

Further, the 6 different places are attributed to different hierarchies of governance. The 5th place is the place of the
uler, the 4th place is the place of the minister. The 3rd place has a transitional position of limited power, but not a central
ne. The 2nd place is the place of an official far from the court, but in direct dependence from the ruler. The 1st and the
th place have no specific role, although the 6th one is sometimes associated with the exalted sage, who nevertheless
lays no active role.
The second question regards information about the relation between lines. Most effort in the I Ching is devoted

o explain the meaning of changing lines on their respective places. But the commentaries, notably the Ta Chuan and
ilhelm’s explanations of these commentaries, also provide some overarching insights, which we will use to define

ariables to characterize agents and their relations.

tatus. In addition to their state si agents are characterized by their place (see Fig. 2), which determines their rank, or
tatus, ri ∈ {1, 2, . . . , 6}. We will later use the status to weight the influence of different agents. Both agents 1 and
are considered of less importance, therefore we define r6 = r1 = 1. Higher status shall indicate more importance,

1 < r2 < · · · < r5. That means agent 5 has the highest status in the group, i.e. it has the place of the ruler. Additionally,
agent 5 is most often the ruler of a hexagram, which means that it defines the meaning of the hexagram, i.e. the whole
group.

Correctness. To characterize the matching of agents to their places we assign a variable ci, which is called correctness in
the I Ching commentary. ci = 1 if agents represented by weak lines are in weak places and agents represented by strong
lines are in strong places. Otherwise, if agents do not occupy correct places, ci = −1. Formally,

ci = (−1)i+1si (3)

This gives, as expected, ci = +1, for ranks 1, 3, 5 if si = +1, and for ranks 2, 4, 6, if si = −1. Otherwise, ci = −1.
The correct assignment reflects the principle that yang is associated with odd numbers and yin with even numbers.

Important for us, this is considered as an equilibrium state, which Wilhelm explains as follows: ‘‘When the firm lines
are in firm places and the yielding lines in yielding places, a state of equilibrium exists. However, this abstract state of
equilibrium must yield to change and reorganization when the time demands it. The time, that is, the total situation
represented by a hexagram, plays an important role in regard to the positions of the individual lines.’’ [35, p. 626] We
note that (i) the equilibrium is not necessary the most stable state and (ii) in an equilibrium state both yin and yang
alternate and are present in equal proportion.

Correspondence. While ci and ri characterize the agent, the I Ching also mentions some special relations between agents,
shown in Fig. 5(a). ‘‘The close relationships between the lines are those of correspondence and of holding together.
According to whether the lines attract or repel one another, good fortune or misfortune ensues, in all the gradations
possible in each case’’. [35, p. 666]. Correspondence, denoted by gij, occurs between triads, i.e. between agents of the
lower and the upper trigram, provided they have different si. ‘‘As a rule, firm lines correspond with yielding lines only,
and vice versa. The following lines, provided that they differ in kind, correspond: the first and the fourth, the second and
the fifth, the third and the top line. Of these, the most important are the two central lines in the second and the fifth
place, which stand in the correct relationship of official to ruler, son to father, wife to husband.’’ [35, p. 677] Fig. 5(a)
shows the respective network.

Whether correspondence relations are seen as favorable or not results to some extent already from the equilibrium
principle, with a noticeable exception. The relation between agents 2 and 5 can be favorable even if agent 5 is represented
by a weak line and agent 2 by a strong line, because this can be interpreted as ‘‘support’’. A correspondence relation
between a strong line in the 1st place and a weak line in the 4th place is also considered favorable, while the same
relation between a weak line in the 1st place and a strong line in the 4th place is not favorable, because these agents
5
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Fig. 5. Group with (a) correspondence relations gij , Eq. (4) (cyan) and hold together relations hij , Eq. (5) (purple). Dashed lines indicate negative
elations, solid lines indicate relations that can switch between positive/negative. (b) Triadic group structures following from the primary trigrams
123 , T456 and the nuclear trigrams T234 , T345 shown in Fig. 2. The networks (a) and (b) form a two-layer network.

ccupy the wrong places, according to the equilibrium condition. Correspondence relations between agents 3 and 6 are
onsidered rare and not favorable.
To formalize these relations, we specify the resulting signs gij as follows:

g25 = +
{
1 − Θ[s2s5]

}
g36 = −

{
1 − Θ[s3s6]

}
(4)

g14 = c4
{
1 − Θ[s1s4]

}
[x] is the Heaviside function which returns 1 if x > 0 and 0 if x ≤ 0. 1 − Θ[s2s5] = 0 because the principle of
orrespondence would be violated if both s2 and s5 have the same sign. If they have different signs, it does not really
atter whether agents 2 and 5 are at their correct places, therefore we do not have a dependence on ci.
For g36 follows a similar argument, but it should always be negative. g14 can be positive or negative dependent on

hether the agents occupy their correct places. This can be indicated by either c4 = ±1 or c1 = ±1 because a configuration
with c4 ̸= c1 implies s4 = s1 and is therefore excluded.

Holding together. A second set of relations hij involves neighboring agents within triads, also shown in Fig. 5(a). Again, it
is required that neighboring agents have opposite si. Favorable relations occur between a weak line in 4th place and a
strong line in 5th place, which again matches the equilibrium condition. The opposite, a strong line in the 4th place and
a weak line in the 5th place, is considered less favorable in many cases, but exceptions exist.

Additionally, holding together is also favorable between agents 5 and 6, provided that agent 5 is represented by a weak
line and agent 6 by a strong line. The opposite relation is considered negative. For the lower triad, a holding together
between agents 1 and 2, 2 and 3, 3 and 4 is considered as rare and never positive.

To formalize these relations, we specify another set of signs hij as follows:

h45 = +c4
{
1 − Θ[s4s5]

}
h56 = −c6

{
1 − Θ[s5s6]

}
h12 = −

{
1 − Θ[s1s2]

}
(5)

h23 = −
{
1 − Θ[s2s3]

}
h34 = −

{
1 − Θ[s3s4]

}
It should be noted that the two sets of relations are only partially aligned to the equilibrium condition. For instance,

a weak line in 4th place would increase both h45 and g14. On the other hand, a strong line in 5th place would result in a
negative h56. It is precisely this tension between different relations which now makes the question about the stability of
the group much more interesting.

4. Evaluation of group structures

4.1. Social impact

The group relations gij, hij shown in Fig. 5(a) are now specified. To have some illustrative examples for group
configurations Fig. 6 depicts two slightly different configurations at time t0. Because some agents have the ability to change
their state, i.e. a = −1, we obtain different configurations at time t , which are also shown in Fig. 6. We can still not
i 1

6



F. Schweitzer Physica A 603 (2022) 127630
Fig. 6. Group configurations at times t0 (a,c) and t1 (b,d). □ indicate agents with si = −1, ⃝ agents with si = +1. Red borders indicate agents with
ai = −1 (ability to change), black borders agents with ai = +1 (no change). Comparing these plots with the network of social relations, Fig. 5(a),
we see that some of the gij , hij (colored in gray) are equal to zero, depending on the configuration.

estimate the stability of these groups because, from our perspective, the signs of the relations are not sufficient for this.
Instead, relations should depend on the respective agents, specifically on their state, their correctness, their status. Further,
all agents have more than one relation and therefore are subject to different influences at the same time. To decompose
the network of relations shown in Fig. 6 is therefore not appropriate. We need to find ways to aggregate these different
influences on the level of agents and to also include the diverse agent features.

To this end we resort to social impact theory [26–28] which quantifies the social impact Ii as the difference between
positive and negative ‘‘forces’’ impacting agent i from its neighbors [29,30,36]. Taking the example of agent 5, it receives
influences from agent 4 via h45, from agent 6 via h56 and from agent 2 via g25. These influences have to be multiplied
with the weights expressing the importance of the counter parties. Hence the impact on each agent can be calculated as
follows:

Ii =

6∑
j=1

(
gijrj + hijrj

)
(6)

To operationalize gij, hij we need to express the Heaviside functions. We verify that

Θ[sisj] = sign(si) · sign(sj) ·
⏐⏐si + sj

⏐⏐ /2 (7)

Thus, if si = sj, then Θ[sisj] = 1 and the rhs gives +1 as well. If si ̸= sj, then Θ[sisj] = 0 and the rhs gives (−1) × 0.
Whether the Ii are positive or negative depends on the particular configuration. The influence of state si and correctness

ci is implicitly considered already in the gij, hij. In addition to the status of the counter parties, rj, the impact further
depends on the status ri of agent i itself, which is called ‘‘self-support’’, or ‘‘self-confidence’’ in social impact theory. I.e.
the influence of a single agent is given by qi = ri + Ii.

Table 2 lists the respective values of qi for the different configurations discussed so far. The group structure is
conveniently summarized by means of the respective hexagrams.

The qi have a clear interpretation. Without any social impact, the importance of each agent is reflected in its status ri.
But group relations increase or decrease this influence. In the favorable case, i.e. with positive social impact, the agent is
supported and therefore its importance is increased. Negative social impact, on the other hand, indicates that unfavorable
7
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Table 2
Influence qi = ri + Ii , Eq. (6) of each agents in the respective group configuration.

t q1 q2 q3 q4 q5 q6
(2) t0 −1 +3 0 +4 +6 −7

(4a) t0 −5 −2 −3 −3 +4 −4

(4b) t1 −1 +1 −2 +6 +8 −7

(6a) t0 +3 +3 −4 +10 +10 −7

(6b) t1 +1 −1 −4 +1 +5 −2

(6c) t0 +1 +7 +3 +9 +10 −4

(6d) t1 +5 −1 +1 +13 +8 −4

relations dominate and therefore weaken the influence of the agent. This information needs to be taken into account if
we want to evaluate the stability of the group structure.

We note that group configurations in which all agents have the same si, either +1 or −1, do not generate any social
mpact. The reason is in the definition of relations in the I Ching, discussed in Section 3.2, which requires agents to have
pposite si. Hence in such cases the influence of an agent is simply given by its status, ri.

.2. Weighted balance condition

So far, we have achieved to aggregate the social impact on each agent, to determine its influence, and to specify
he nature of relations between agents. But we remind that information about agents, i.e. about lines, is not sufficient to
xplain a hexagram. Instead, we need to consider that the group structure is determined by the 4 different trigrams shown
n Fig. 2. One could rightly argue that these trigrams should be represented as open triads in a network, simply because
he lower and the upper line are not directly connected. We nevertheless decide to represent these trigrams as closed
riads, because the trigrams shown in Fig. 3 are seen as the constituting units of each hexagram. Trigrams are building
locks, not open structures, and their meaning comes from their connectedness and relatedness.
The network representing our group is now composed of four overlapping triads, shown in Fig. 5(b). We note that these

riads only contain the correspondence relations shown in Fig. 5(a), but not the hold together relations. Hence, triads
annot be reduced to relations, or the other way round. The two networks shown in Fig. 5 form a multi-layer network,
hich has the same agents in both layers, but the links in each layer describe different types of influences. On the ‘‘lower’’

ayer agents are impacted by other agents via social relations, which are the gij, hij in our case. This layer determines their
nfluence values qi, which in turn feed back to the ‘‘upper’’ layer by determining the stability of the triads, which can now
e estimated.
Building on the calculated influence qi of each agent, we first introduce the weight of a triad as a new variable:

Ωijk =
(
2Θ[qi] − 1

) (
2Θ[qj] − 1

) (
2Θ[qk] − 1

) (
|qi|

⏐⏐qj⏐⏐ |qk|)1/3 (8)

e note that
(
2Θ[qi] − 1

)
is equal to sign(qi) which is needed for the operationalization.

Ωijk is the signed geometric mean of the three qi. It is used in weighted balance theory [4] to consider, in addition to the
igns, also the magnitude of agents’ influences. We emphasize that Ωijk results from the properties of agents, not of their
elations, i.e. it aggregates in one value the extent to which agents receive support in the whole group. An agent with
negative qi is mainly determined by the negative influences from the group. Thus, it is reasonable to assume that this
gent does not actively contribute to the stability of a triad, on the contrary. With two agents with negative qi, on the
ther hand, it becomes obvious that the agent with positive qi rules the triad. This would not hamper the stability. As the
ommentary to the I Ching states it: ‘‘ Where one alone rules, unity is present, whereas when one person must serve two
asters, nothing good can come of it. ’’[35, p. 643]
As seen in Table 2, the qi can become zero because of the integers used for the ri. To correct for this artifact, we set

= 0 to the small nonzero, but positive value 0.1. This value is chosen arbitrarily to ensure that q = 0 would neither
ullify the weight of the triad, nor change its stability.
Structural balance theory has calculated the stability of triads Tijk using simply the product of the signs of the weights

ij, Eq. (2). We have already added the weight Ωijk reflecting the influence of agents, but it remains to specify the
espective weights wij for our four triads. From Fig. 5(a,b) we verify that the gij do not play a role in the respective
riads, but the hij do. Thus we can use information from hij to determine some of the wij, but we have to take into account
hat these hij become zero whenever the involved agents have the same si. The expressions for wij have to be corrected
or such cases, which is achieved by defining:

wij =
[
δ0,hij + hij

]
(9)

1,si is the Kronecker delta for discrete variables, δx,y = 1 if x = y. Therefore wij = hij if hij ̸= 0 and wij = +1 if hij = 0.
his can be operationalized as follows:⏐⏐ ⏐⏐
δ0,yij + hij = 1 − sign( hij ) + hij (10)

8
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Table 3
Weighted stability of triads and groups discussed so far.

t T123 T234 T345 T456 T1−6

(2) t0 −0.67 −1.06 +1.34 +5.52 +1.28
(4a) t0 −3.11 −2.62 −3.30 −3.63 −3.17
(4b) t1 −1.26 +2.29 +4.58 +6.95 +3.14
(6a) t0 −3.30 −4.93 +7.37 +8.88 +2.00
(6b) t1 −1.59 +1.59 +2.71 −2.15 +0.14
(6c) t0 +2.76 +5.74 +6.46 +7.11 +5.52
(6d) t1 +1.71 +2.35 +4.70 +7.47 +4.06

This makes use of the fact that sign(0) = 0. I.e. if hij = 0, we arrive at +1, if hij ̸= 0, we arrive at hij because sign(
⏐⏐hij

⏐⏐) = 1
by definition.

The definition for wij, Eq. (9), sets the values w13, w24, w35, w46 for which we have no additional information, to
wij = +1. This deserves some discussion. Going back to the structural stability of triads shown in Fig. 1, we note that
wij = +1 never changes the stability of the triad, which is determined completely by the number of negative relations.
Hence, choosing instead wij = −1 would definitely change the stability. We have no reasons for such a far reaching
assumption, therefore we choose wij = +1 if no other information about the relation is available. As a side remark, with
this choice it makes no difference whether we consider open triads or closed triads to calculate the stability of triads.

With this, we can define the stability of a triad as follows:

Tijk = wij wik wjk Ωijk (11)

This definition is different from the one used structural balance theory, in important aspects. First, the relations wij
between agents depend on the states si of the agents themselves. Secondly, the weight Ωijk of a triad reflects the mutual
impact of agents, not just from the triad, but from the whole group. Agents that are not ‘‘balanced’’ themselves, i.e. have
no positive qi, cannot constitute balanced triads. In other words, we assume that the balance of triads is grounded in agent
properties, which then may impact relations, rather than postulating that relations exist independent of agent properties.

The respective values of Tijk for the group configurations discussed so far are shown in Table 3. To estimate the stability
of the whole group from the stability of the four triads, shown in Fig. 5(b), we calculate the total balance from the
superposition of the constituting triads as follows:

T1−6 =
1
4

[
T123 + T456 + T234 + T345

]
(12)

If we compare the stability of the different group configurations, we find stability in most cases, despite the fact that
sometimes only half of the four triads are stable themselves. This results from the dominating influence of agent 5, which
is the ‘‘ruler’’ and has the highest status ri. Hence, the triad T456, where agent 5 has the central position, usually had the
ighest values in our examples and impacts the group stability the most. This is a consequence of the social structure
nderlying the hexagrams of the I Ching. A good governance, in particular a good ruler, plays a major role for obtaining
table structures.
To better understand the values of the Tijk, let us take a look at some special cases. What would be the result if all

ines are either weak or strong, i.e. all agents have either si = +1 or si = −1? According to our above discussion,
hese should be very stable configurations. Indeed, we find that all triads have positive values for Tijk, with an average
1−6 = 2.83, regardless of their si. Let us consider now a configuration where the upper trigram has only weak lines,
.e. si = −1 for agents 4, 5, 6 and the lower trigram has only strong lines, i.e. si = +1 for agents 1, 2, 3. Then, we find
hat T123 = T456 = −4.12, while T234 = T345 = +4.12, which means T1−6 = 0. That means, the stability of a trigram that
ontains only weak or only strong lines, would be considered negative, but the stability of a hexagram that contains only
eak or strong lines would be positive.
Now, we invert this configuration, i.e. the upper trigram is made up by only strong lines and the lower one by only

eak lines. In this case we find that T123 = T456 = +3.48, while T234 = T345 = −3.48 and T1−6 = 0. Now, both the upper
and the lower trigram are considered stable, while the nuclear trigrams are considered unstable. Compared to the previous
case, this time the strong place 5 is occupied by a strong line, which changes the character of the whole hexagram. This
points again to the fact that the hexagram is not simply the superposition of the upper and lower trigrams.

Eventually, we take a look at the configuration of the equilibrium condition, which is given in the fourth row of Table 3.
All agents are at their correct places. But the two lower triads are unstable because there is no positive relation between
the involved agents. Still, the stability of the whole group is positive. Now, we invert the equilibrium condition and put
all agents at the wrong places. What would be the result? We find that now all triads become stable, and the resulting
stability T1−6 = 4.53 is much higher than for the equilibrium case. This seems to be quite counter intuitive. But in the
anti-equilibrium case in the lower and the upper triad two agents with a negative qi appear. According to the definition
of T , this is not considered a negative constellation, hence all triads have a positive stability.
ijk

9
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Is this in line with the I Ching? The two hexagrams are , No. 63, ‘‘After Completion’’, which refers to the equilibrium
configuration, and , No. 64, ‘‘Before Completion’’, which is the anti-equilibrium. ‘‘After Completion’’ is considered less
avorable, because any change would destroy the equilibrium. As the commentary by Wilhelm states it: ‘‘It is a time of
ery great cultural development and refinement. But when no further progress is possible, disorder necessarily arises,
ecause the way cannot go on.’’[35, p. 1268] ‘‘Before Completion’’, on the other hand, is considered as positive because
t has the favorable change still ahead. ‘‘Outwardly viewed, none of the lines appears in its proper place; but they are
ll in relationship to one another, and order stands preformed within, despite the outward appearance of complete
isorder.’’[35, p. 1276] For this reason, No. 64 is the last hexagram of the I Ching, according to the King Wen order, and it
resents an optimistic outlook.

. Resilience of small groups

.1. Quantifying resilience

Using the above examples of group configurations summarized in Table 3, we now aim to quantify the resilience of
mall groups. In general, resilience describes the ability of a system to maintain and possibly even increase its robustness
hen facing a change. We propose that a resilience measure should be composed of a structural component that captures
he robustness, R, and a dynamic component that captures the adaptivity, A, of a system. This raises the question about
suitable proxies for our groups.

To proxy robustness, we use our weighted stability measure T1−6, Eq. (12), which measures balanced triads, considering
the positive or negative social impact of agents. The robustness measure R should be always positive and scaled to values
between 0 and 1, for comparison. To obtain this, we scale the positive and negative values of our stability measure T1−6
as follows:

R(T1−6) =
1

1 + e−βT1−6
(13)

his results into R → 0 for very negative T1−6 and R → 1 for very positive T1−6, while T1−6 = 0 returns R = 0.5. The
parameter β allows to adjust the slope, i.e. the sensitivity of robustness against changes of T1−6. We use β = 0.2, larger
values of β lead to a step-like dependence.

Adaptivity A is measured in our model by fraction of agents that are able to change their state, i.e. by the number of
ai = −1.

A(t0) = 1 −
1
n

∑
i

Θ[ai(t0)] (14)

he sum counts all agents that are not able to change their state. It should be noted that adaptivity is a property of the
roup at time t0 because we have no information about the ai at a later time.
How do robustness and adaptivity impact resilience? If all agents only have ai = +1, the group is not adaptive, i.e. it

annot change. This does not imply stability, because robustness can still be low. If a group is neither adaptive nor robust,
t has a large chance to simply collapse. On the other hand, the fact that a group is adaptive does not imply that it will
ncrease its robustness. As the examples in this paper have shown, configurations at t1 can also be worse with respect to
heir stability. Conversely, if a group is not adaptive, this may not be bad as long as the group is sufficiently robust. To
onclude, adaptivity bears the chance to improve the robustness of the group, but also the risk to reduce it.
Resilience, as a quantitative measure, should try to balance the influence of both robustness and adaptivity. It should

e low if robustness and adaptivity are low, because the chances to improve the situation for the group are low in such
ases. It should be also low if robustness and adaptivity are high, because the risk to destroy a good situation for the
roup is high in these cases. A group with low robustness has nothing to lose, thus a high adaptivity can only improve
he situation. A group with high robustness has a lot to loose, thus adaptivity should be low to keep resilience high. These
onsiderations determine us to quantify resilience as

R(A, R) = R(1 − A) + A(1 − R) (15)

ith the normalized R and A, this gives resilience values between 0 and 1. As requested, R is high if either R is high and
is low, or if A is high and R is low or if both have intermediate values.
Table 4 presents the robustness, adaptivity and resilience values obtained for the sample group configurations. We

emind that for time t1, i.e. for future configurations, we do not have information about adaptivity, hence we cannot
ompute their resilience. But we can compare current and future configurations with respect to their robustness.
These numbers shall illustrate that we are able to compare initial group configurations. The absolute numbers depend

n our operationalization. We could choose additional parameters to weight the influence of robustness and adaptivity,
e could also operationalize A and R in different ways, if there is evidence for it.
It should be noted that in the example (4a) an increase of adaptation will always lead to an improved resilience,

imply because the robustness is low. This is in line with the requirements we have set up for the resilience function.
n the example (6c), on the other hand, an increase of adaptation will always lead to a decreased resilience, because
obustness is high. This raises a final question, namely how likely is it to observe an increase or decrease of resilience,
hich will be tackled in the following.
10
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Table 4
Robustness R, Eq. (13), adaptivity A, Eq. (14), and resilience R, Eq. (15), of the groups
discussed so far.

t R A R

(2) t0 0.57 – –
(4a) t0 0.35 0.33 0.45
(4b) t1 0.65 – –
(6a) t0 0.60 0.33 0.53
(6b) t1 0.51 – –
(6c) t0 0.75 0.33 0.58
(6d) t1 0.69 – –

5.2. Stochastic approach

To calculate the probability of finding certain group structures, as expressed by their hexagrams, let pi = p(si = +1, t0)
be the probability to find agent i in state si = +1 initially. i refers again to the position of the agent. Going back to Table 1
that summarizes how lines are assigned to places in the I Ching, we verify that p(si = +1, t0) = 0.5 for all agents. I.e. there
is no bias towards either +1 or −1. When building a group structure of 6 agents, the pi are determined independently,
therefore the probability for any group configuration S(t) at t0 is:

p(S, t0) = p(s1 = +1, . . . , s6 = +1, t0)

=

6∏
i=1

p(si = +1, t0) =

(
1
2

)6

=
1
64

= 0.015 (16)

Hence, every of the 64 possible group configurations has the same low probability of 1.5% to appear. The more interesting
question, from the perspective of the I Ching, regards the probability that a hexagram can also change. In our terms this
is denoted as adaptivity and means that the group structure is resilient. From Table 1 we see that a changing line appears
only with a probability p = p(a) = 0.25. This leads to the probability distribution for adaptivity, P(A) = P(n, k), where n
is the number of agents and k is the number of agents that can change their state:, i.e. k/n = A:

n∑
k=0

P(n, k) =

6∑
k=0

(
6
k

)
pk(1 − p)6−k

=

(
1
4

)0 (
3
4

)6

+ 6
(
1
4

)1 (
3
4

)5

+ 15
(
1
4

)2 (
3
4

)4

+

+ 20
(
1
4

)3 (
3
4

)3

+ 15
(
1
4

)4 (
3
4

)2

+ 6
(
1
4

)5 (
3
4

)1

+

(
1
4

)6 (
3
4

)0

(17)

= 0.178 + 0.356 + 0.296 + 0.131 + 0.032 + 0.004 + 0.0002 = 1

t is worth to write out the binomial distribution explicitly, to verify that the chances to find a group configuration with,
.g., two agents that can change their state (indicated in red in our examples) are quite low, precisely 0.019×15, where 15
efers to the different possibilities to pick 2 out of 6 agents. If adaptivity is expressed by the number of possible changes,
hen the probability to find a larger adaptivity decreases quickly. The good news is that only in 17.8% of all cases, we
hould not expect any change. The majority of all possible group configurations has the ability to change, i.e. it can be
xpected to be resilient according to our definition.
To discuss a decrease or increase of robustness would require us to consider (i) a specific group configuration and (ii)

the probability that specific agents change their state. We illustrate the stochastic dynamics using the example shown in
Fig. 4, with the respective numbers given in Table 4 (4a, 4b). The probability of finding a specific group configuration S
at time t1 follows from the master equation:

p(S, t1) = p(S, t0)
[
1 − p(A)

]
+

∑
S′

p(S′, t0) p(S|S′) (18)

The first term on the rhs gives the probability that the configuration S already exists and does not change. The second
term gives the probability of other configurations S′ multiplied by the transition probability to change from S′ into S in
the next time step. The summation goes over all possible configurations S′. From Eq. (16) we know that the p(S′, t0) are
the same, so they can be taken out of the sum. Using Eq. (17) we further know that

1 − p(A) =

(
6
0

)(
1
4

)0 (
3
4

)6

;

∑
′

p(S|S′) =

6∑(
6
k

)(
1
4

)k (
3
4

)6−k

(19)

S k=1

11
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ut the single transition probabilities p(S|S′) need to be determined dependent on the specific configuration S′. To make
use of Eq. (18), we fix the initial condition, i.e. we specify S′(t0) = Ŝ = {−1, +1, −1, +1, +1, −1} from the example (4a).
Thus, p(S′

= Ŝ, t0) = 1 instead of 0.015 as given by Eq. (16). To obtain the configuration S(t1) = {−1, +1, +1, −1, +1, −1}
from the example (4b), a change of agents 3 and 4 is needed, while all other agents should not change. Because the
probabilities to change are independent for all agents, we have:

p(S|Ŝ) =

(
1
4

)2 (
3
4

)4

= 0.019 (20)

his is the probability that the group described by the configuration Ŝ will improve its robustness towards the configu-
ation S. From Table 4, we see that the robustness would improve from 0.35 to 0.65.

In more general terms, instead of a fixed initial condition we have to consider (i) the probability that the configuration
4a) appears, which is p(Ŝ) = 0.015, and (ii) that the specific transition between the configurations (4a) and (4b) occurs,
q. (20). This results in 0.015 × 0.019 = 2.8 × 10−4. This lower bound can be compared with the probability that our
pecific group configuration Ŝ has two randomly chosen agents changing. It would give 0.015 × 0.296 = 44.4 × 10−4,
ecause there are 15 different possibilities to choose two agents, Eq. (17). This could be seen as an upper bound.
This short exercise allows two insights. First, we are able to calculate the probability to find groups with the ability to

hange, which is 82.2% and quite high. We remind that this ability is the precondition for resilience. Secondly, we can, for
very possible group configuration S′, calculate its robustness R, as we have shown above, from calculating its stability
1−6, which includes in a weighted manner the social impact and importance of all agents, qi. We can then identify
ll those group configurations S that have a larger robustness than a given configuration Ŝ, and we can calculate the
ransition probabilities for a possible change from Ŝ to a desired configuration S. These transition probabilities depend on
he probability to have a given adaptivity A, in general, but also on the combinatorial probability to find the right agents
or a change, Eq. (17). As we have seen, such probabilities are rather small. But the procedure is straightforward, and
t gives us for every group configuration the probabilities to improve or to decrease its robustness R dependent on its
daptivity A.
One may find that the probabilities for adaptivity should be modified. One possible option is already considered in the I

hing. In addition to the three coins toss described in Table 1, which is a rather ‘‘modern’’ way of generating randomness,
n older procedure uses 50 yarrow sticks in a more complicated manner. Instead of the 8 possibilities to toss 3 coins
isted in Table 1, we then have 64 possibilities and the probabilities are distributed as follows: p(6) = 4/64, p(7) = 20/64,
(8) = 28/64, p(9) = 12/64 [37]. This still keeps the ratio of 1:1 for broken and unbroken lines and the ratio 1:3 for the
robability of change. But it generates a bias of 3:1 towards the change of unbroken lines, which was 1:1 when using the
oins. Or, the other way round, if a yang line is chosen, it has a 3:5 chance to change, while a yin line has a 1:7 chance
o change, which was 1:3 for both, before.

. Discussion

To first address a misunderstanding, this paper reveals nothing new about the I Ching, which is around for more than
000 years. But in order to interpret the hexagrams of the I Ching in terms of group structures, we had to formalize
he subtle relations between the different lines. To further model group structures we needed additional assumptions
ummarized in the following. The should be seen as examples to demonstrate how the model works, rather than
ociologically founded certitudes. The following building blocks are used to specify our agent-based model:

tate variables. Agents differ from dots in a network in their internal degrees of freedom. For the si we used a binary
ariable, to express a fundamental duality. This is a common assumptions in many spin-like models, such as the
oter model [38] or formal models of social impact [20,29,39,40]. Alternatively, it is possible to use multi-dimensional
ectors and continuous values for these state variables, as used for instance in models of multi-dimensional opinion
ynamics [3,4,41]. This would only complicate the analysis, but not change the model fundamentally.

ynamics. We need assumptions of how and when the state variables of agents change. We used a binary agent variable
i to indicate which agents could change their si. Because the si are binary variables, the direction of change was already
ixed, and a deterministic dynamics was used. Similar to the basic voter model, stochasticity results from the random
ampling of (i) the si and (ii) the ai, to determine the initial state. We provided one possible scenario for the initial
ampling. We note that in our model change takes place with a rather low probability (p = 0.25). This is not a drawback,
t is a feature of our model which wants to study social relations.

elations. Social relations differ from mere interactions, which are rather frequent and often random. Relations have to
e built up over time, for instance as the result of many interactions. It is assumed that they express the fundamental
uality of a relationship, last longer and change less often. Most important, relations are not independent of the subjects
f the relationship, i.e. the agents. In our model, we have used heuristic arguments to assign relations which take into
ccount (i) the internal states of both agents, (ii) their positions in the social network, (iii) their social status, (iv) their
12
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‘correctness’’ as a measure how well they fit their position. These assumptions can any time be replaced with better
rounded ones, if further information is available. It just needs to specify the wij in a more profound way.

eterogeneity. Agents in our model are heterogeneous, i.e. they vary in their properties, notably in their state, in their
bility to change, their social status, their network position, their preferences for relations with other agents. Every model
f social groups has to take these features into account. The elements of social systems are not atoms, but individuals.
ur model makes some suggestions how to implement this heterogeneity without resorting to random assignments. Our
esults demonstrate that differences in agents matter for determining the social impact and the resulting group stability.

ocial impact. Agents are involved in different relations at the same time. Focusing only on isolated triads means to
ecompose a social network, which is often done to describe large networks in a mean-field approach [8,42,43]. But for
mall social groups, the focus of our paper, this decomposition can hardly be justified. Therefore we need assumptions
ow to aggregate the effect of simultaneous relations. To solve this problem, we used social impact theory which has
he advantage of being empirically and theoretically founded [26–28,31,44]. The resulting influence values for each agent
epend on the social relations, but also on the importance of the involved agents.
Secondly, we need assumptions of how the aggregated social impact feeds back on the stability of groups. We see this

s a feedback between two layers of a multi-layer network. The influence values of agents which result from the first
ayer impact the triadic group structures on the second layer. We calculated the stability of triads in a novel manner,
sing assumptions from weighted balance theory. As a main contribution of our paper, this solution incorporates the
eterogeneity of agents and returns a weighted measure for the stability of groups.

esilience. Only after specifying the dynamics of change and the stability of the group we are able to tackle one of the open
uestions in social science, namely the resilience of social organizations. We follow a very general approach to describe
esilience as an optimal mixture of robustness and adaptivity. Without the ability to adapt, systems can be stable or
nstable, but they are not resilient, i.e. they cannot respond to internal or external changes. We have proposed a novel
unctional form to quantify the resilience of groups and applied it to the different group configurations used in this paper
or illustrative purposes. Further, thanks to the simple initial setup chosen for our model, we were able to calculate the
robabilities for certain group configurations to increase or to lower their resilience.
Our model leaves out, on purpose, one major challenge for modeling group dynamics, namely the emergence of

roup structures and the evolution of social networks. Instead, we used a static group structure, to only focus on the
elations between agents. It is reasonable to assume that a change of these group structures may occur at a different
ime scale and should therefore be handled separately. There are already agent-based models to describe the initial
ormation of social groups, the addition of new members or the leave of established ones, the creation or deletion of
ocial relations [5,7,13,24,34]. On a longer time scale, these groups can merge [17,45] to form larger social networks,
hich then can be described by established network measures.
Instead, our main focus is to model existing social relations between agents in groups with overlapping triads. Triadic

losure is one of the main features in social networks [21,46,47]. It has been studied from various modeling perspectives,
ncluding ERGM [16,48] and gHypE [49] statistical models. Their aim, however, is to infer social relations from other
network or agent features, whereas our model tries to quantify the impact of such structures on the stability and the
resilience of social groups.

Our approach can inspire other recent developments to model group interactions by means of higher order net-
works [42,43]. There, dyads, triads, etc., are seen as new types of nodes that can represent larger groups. So far, in
these models group structures are entirely determined by link structures, the agents as the social constituents are not
considered. To incorporate them into the model would require to estimate their impact on a higher order, or group,
structure, which is precisely the aim of our paper. We have proposed one way to quantify the heterogeneity of agents,
their positive or negative social relations and their mutual social impact.

Where does the I Ching come into play? It considers group structures in terms of hexagrams, where lines can be seen as
agents and places as their ranks. Lines have a binary characteristics both regarding their state and their ability to change.
Most importantly, these hexagrams can be seen as the superposition of four overlapping trigrams. That means, lines affect
the whole hexagram and, at the same time, are impacted by all other lines via direct or indirect relations. The meaning
of a hexagram can therefore not be decomposed into the meaning of lines. This resembles, in a nutshell, the problem of
group relations. In our model agents belong to overlapping triads in a network, and we have to find ways to estimate the
impact they exert on, and receive from, other agents. With this we can tackle the problem of group stability in a novel
manner, namely by incorporating agent characteristics into structural balance.

Our assumptions are inspired by the I Ching, but they do not depend on it. The formalism can readily applied using other
assumptions for the required specifications summarized above. Frankly, instead of coming up with arbitrary assumptions,
it was quite tempting to formalize the ideas laid out in the I Ching about relations, change, and fate. To some this might
be seen as a quite exotic idea, to others not. After all, basic knowledge about the I Ching should be rightly considered as

part of literacy and education.
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Fig. 7. Networks following the consensus rule, Eq. (21), at times t0 (a,c) and t1 (b,d). Solid lines (cyan): consensus, dashed lines (purple): disagreement.
indicate agents with si = −1, ⃝ agents with si = +1. Red borders indicate agents with ai = −1 (ability to change), black borders agents with

i = +1 (no change).
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ppendix. Examples for consensus relations

Determining the wij by means of the I Ching raises the question whether there would be simpler approaches to map
gent features to relations. As an illustrative example let us interpret the states si of the agents as discrete opinions which

are assumed to have an impact on their relations. Specifically, two agents have a positive relation if they share the same
opinion, and a negative relation if they have the opposite opinion. The resulting wij follow from:

wij(t) = wij
[
si(t), sj(t)

]
= si(t) sj(t) (21)

Here we consider a fully connected network, as shown in Fig. 7, i.e. all wij = ±1. To quantify how the change of opinions
impacts the network, we define X(t) as the fraction of agents with si = +1 and f (t) as the fraction of positive relations
in the network:

X(t) =
1
n

∑
i

δ1,si ; f (t) =
1
m

∑
i<j

Θ[wij(t)] (22)

(t) is normalized to the total number of agents. Note that we normalize the fraction of positive relations, f (t), to m, the
umber of existing links in the network, rather than to the total number of possible links, n(n − 1)/2. But for the fully
14
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onnected network we have always the maximal number of possible links. f (t) = 1 would indicate perfect consensus,
.e. all agents have the same opinion. 1− f (t), on the other hand, indicates the fraction of negative links coming from the
dissent between agents.

The two examples of Fig. 7 use the same group configurations as in Fig. 6, but a fully connected network where the
relations are determined by the consensus rule, Eq. (21). We see in (a), (b) that the fraction of positive relations is increased
at t1, from f (t0) = 6/15 to f (t1) = 10/15. But as the second example shows, we can also arrive at the opposite. Comparing
(c) and (d), the fraction of positive relations has decreased, from f (t0) = 10/15 to f (t1) = 6/15.

One can verify that in a fully connected network with 6 agents we find from an opinion fraction X = 3/6 for the
ositive relations the fraction f = 6/15, from X = 2/6 (or X = 4/6) the fraction f = 7/8 and from X = 1/6 (or X = 5/6)

the fraction f = 10/15. Therefore, it depends on the configuration at t0, but also on the distribution of the ai whether an
increased or decreased fraction of positive relations is to be observed at t1.

To quantify the topological structure with respect to balanced and unbalanced triads, we define the fraction of balanced
triads in the network as

F (t) =
2

(n − 1)(n − 2)
1
C

∑
i<j<k

Θ[Tijk(t)] ; C =
1
n

∑
i

Ci =
1
n

∑
i

2ki
di(di − 1)

(23)

here Tijk is given by Eq. (2). Note that we normalize the fraction of balanced triads to the number of existing triads rather
han to the total number of possible triads, (n − 1)(n − 2)/2, in the group of size n. C is the global clustering coefficient
f the network, i.e. the average over the local clustering coefficients Ci. The latter counts the number ki of connected
eighbors of agent i, normalized by the total number of possible links in the neighborhood of i. These depend on the
egree di of each agent. In a fully connected network we have di = (n − 1), ki = (n − 1)(n − 2)/2. Hence Ci = 1, and
= 1.
Let us now consider the consensus rule, Eq. (21), as above and see whether the triads in the networks shown in Fig. 6

re stable or unstable. Obviously, only two types of triads can result from the consensus rule, those shown in Fig. 1(a):
ij = wik = wjk = +1, i.e. Tijk = +1 and those shown in Fig. 1(c) wjk = +1, wik = wij = −1, i.e. again Tijk = +1. The other
wo configurations shown in Fig. 1(b,d) cannot occur when applying the consensus rule in a fully connected network.

Thus, we can conclude that, according to the definition of Eq. (2), all 10 possible triads in our network are stable. Hence,
(t) = 1, Eq. (23). This rather boring situation can be changed only if we assume rules different from Eq. (2) for defining
he stability of triads Tijk. This provides the motivation for our procedure in Section 3.
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