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Social nucleation: Group formation as a phase transition
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The spontaneous formation and subsequent growth, dissolution, merger, and competition of social groups
bears similarities to physical phase transitions in metastable finite systems. We examine three different scenarios,
percolation, spinodal decomposition, and nucleation, to describe the formation of social groups of varying size
and density. In our agent-based model, we use a feedback between the opinions of agents and their ability to
establish links. Groups can restrict further link formation, but agents can also leave if costs exceed the group
benefits. We identify the critical parameters for costs and benefits and social influence to obtain either one large
group or the stable coexistence of several groups with different opinions. Analytic investigations allow us to
derive different critical densities that control the formation and coexistence of groups. Our approach sheds light
on the early stage of network growth and the emergence of large connected components.
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I. INTRODUCTION

Models of social systems frequently utilize the network
approach where nodes represent individuals, or agents in gen-
eral, while links represent social interactions between individ-
uals. This approach is widely used not only in social physics
[1–4], but also in the social sciences, which established their
own tradition to study social networks already back in the
1940s [5,6]. It advocates a structural perspective where nodes
can be characterized based on the topological properties of
the network. The different centrality measures to quantify the
importance of nodes are good examples to demonstrate the
success of this approach [7–9]. At the same time, they also
illustrate the limitations of the structural perspective. The tem-
poral sequence of interactions is neglected [10,11], despite the
fact that the bursty nature of the social dynamics is important
[12]. Further, the internal dynamics of nodes play no role
[13,14]. If agents represent social individuals, internal degrees
of freedom cannot be ignored [13,15,16]. Individuals make
decisions, for example, with whom to establish a relation or
when to leave a group; they consider costs and benefits before
joining, e.g., an online social network. Hence, links between
individuals are not primarily established by chance, but by
choice. The Why matters as much as the How.

These issues become of importance when the formation of
networks is explained. Established model classes from the so-
cial sciences, for instance, exponential random graph models
(ERGMs) [17,18], aim at including social mechanisms such as
homophily, reciprocity, or triadic closure [19–22] to explain
the formation of social links. The problems of these models
in coping with repeated interactions, the temporal order of
interactions, or simply a large number of agents cannot be
discussed here [23,24].

But models proposed in the context of statistical physics or
random graph theory do not fare better. They mostly feature
even simpler mechanisms of random link formation, like the
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random graph models from the 1950s [25,26] or the small
world network model [27]. The probability of link formation
can be also biased to take into account, e.g., the preferential
attachment to nodes with a high degree or a high (static) “fit-
ness” [28,29], or to nodes with similar degree (assortativity)
[30,31]. Such models have the problem, in addition to the ad
hoc motivation of the attachment rules, that they necessarily
lead to a largely connected network characterized by a certain
degree distribution. That is understandable because their focus
is on the result rather than the process of network formation.

Our aim is to change this focus toward the early stages
of network growth. To adequately capture this dynamic, we
develop a perspective that combines processes of social group
formation with physical models of phase transitions. Our
approach considers that large connected social systems can
emerge from different mechanisms [32–37]. Online social
networks are the most studied ones [35,38–41]. They grow
when new users join and link to established users. The costs
involved are low, therefore we observe a high entry rate,
and users create many links. This often results in a large
connected component and a core-periphery structure of the
social network [4,42,43]. Disconnected components also
exist, but they are comparably small and contain only a
negligible fraction of users.

In the offline social world it is more costly to establish
links. It is already costly to find the right partners; relations
need to be maintained with more effort and will be discarded if
not beneficial [44,45]. Hence, instead of one large connected
network, we find a number of different groups coexisting
[46,47]. Individuals are densely connected within, but not
necessarily across, groups [4,48,49]. Individuals can leave
a group to join another one, and groups can merge if they
find that they have enough in common. Further, groups can
polarize [50–53] because they represent different cultures or
opinions, and they can compete for members that have to be
convinced to join [16,54,55].

In order to model these processes of group formation from
a unifying perspective, we need to consider a number of social
“ingredients”, which are explained in more detail in Sec. II.
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Agents in our model have to overcome an entry barrier if
they want to form a new group or join an existing one. They
should consider costs and benefits of belonging to a group
[44,56]. Groups can influence their members and can build
up a group identity. Based on this, groups should have the
ability to restrict the admission of agents. In addition to the
formation of one large group, we should also allow for the
stable coexistence of different groups, even for competition
between groups.

To achieve such a unifying perspective, we build on one
central feedback. In our model, agents are characterized by
an internal continuous variable, generally speaking an “opin-
ion,” which can change over time. Their opinion determines
the possibility to establish links to other agents, in this way
forming a group. The group, on the other hand, influences the
ability of its members to create further links. Hence, there is
a feedback between opinion dynamics and group formation.
With additional assumptions about socially motivated costs
and benefits and about the boundary conditions for network
formation we are able to develop a large variety of group
structures as demonstrated in Sec. III.

The physical models of phase transitions come into play
when we try to distinguish three different scenarios of group
formation and their ability to establish one large group. For
this classification, we develop analogies between group for-
mation of individuals and phase transitions in metastable and
unstable thermodynamic systems. The spontaneous forma-
tion of a new phase under supercritical conditions is known
from spinodal decomposition [57,58] and from percolation in
porous media [59]. Nucleation processes, on the other hand,
first lead to a larger number of clusters of subcritical size,
and only a few may spontaneously grow, to form the new
thermodynamic phase [60–63].

From these three scenarios, so far only percolation has been
discussed in the context of network formation [64–69]. When
gradually adding links and nodes to a network, percolation de-
scribes the emergence of a giant connected component, which
resembles a second-order phase transition. Recently, models
for explosive percolation have been proposed that allow for
new universality classes in the characterization of such phase
transitions. These models introduce new mechanisms, such as
the product rule [70], to influence the type of phase transi-
tions. But nucleation or spinodal decomposition as established
mechanisms of thermodynamic phase transitions have not
been considered to describe the formation of networks.

We will close this gap in our paper, which is organized as
follows: In Sec. II we recapitulate some basics of thermody-
namic phase transitions to provide the concepts later used in
the paper. The main part of this section is devoted to introduce,
and to formalize, the social components of our model. We will
also demonstrate how the restrictions for agents to form links
impact the percolation threshold as one measure of a phase
transition.

In Sec. III we introduce a stochastic approach to group for-
mation by motivating transition rates for different processes
of growth and dissolution of groups. We then present a large
number of agent-based computer simulations to illustrate the
three different scenarios. Eventually, we provide a systematic
study of the parameter space, to distinguish the three scenar-
ios.

Section IV presents analytical investigations of our model
and corresponding computer simulations to fully understand
the growth, dissolution, competition, and coexistence of
groups. By analyzing two limit cases, incremental growth and
densification, we are able to derive formal expressions for
critical densities that capture the essential differences in the
dynamics of groups.

In Sec. V we assemble the various analytical and simula-
tion results into a comprehensive and coherent view of group
formation as a phase transition. We then link the discussion
back to our starting point by examining the relevance of our
results for modeling social systems. Eventually, we provide
insights of how our modeling approach should be applied
and extended toward multidimensional opinion dynamics and
multilayer networks. It manifests that our modeling approach
sheds light on social processes of group formation and has the
potential to open alternative routes to study the dynamics of
social networks.

II. FROM PHYSICAL TO SOCIAL MODELS

A. Kinetics of phase transitions

1. Control parameter

As a reference point for our discussions, we briefly sum-
marize kinetic aspects of phase transitions in thermodynamic
systems [61–63]. Consider a finite system in a gaseous state
with the boundary conditions N,V, T = const. N is the num-
ber of molecules in a vapor, for example, V is the system
volume, and T is the temperature. The corresponding ther-
modynamic potential is the free energy F (N,V, T ). For fixed
N , V the temperature determines the stability of the gaseous
system. Specifically, we can define a density ρ = N/V and
an equilibrium density ρeq(T ). Then the control parameter
y = ρ/ρeq(T ), known as supersaturation, describes whether
the system is in an equilibrium, y = 1, or an unstable state,
i.e., y � 1. In the supersaturated case, we can observe a phase
transition, for instance, the formation of small water droplets
in a water vapor. Whether a macroscopic liquid phase is
formed crucially depends on the size of the system and the
value of the supersaturation [71]. System size matters because
of the conservation of molecules. If droplets are formed, we
have a thermodynamic system with two phases, the gaseous
phase (β ) and the liquid phase (α). Hence

N =N0(t ) +
K∑

k=1

nk (t )Nk (t ), (1)

where N0 is the number of molecules in the gaseous phase,
while the sum contains the number of molecules in the liquid
phase. nk is the size of a droplet, given by the number of
molecules, and Nk is the number of droplets with size nk .
Thus, once droplets are formed, the initial supersaturation
y decreases, and we have instead the actual supersaturation
y0(t ) = N0(t )/[V ρeq(T )].

Additionally, there are energetic considerations. Assume
spherical droplets with a radius rk = [3nk/(4πρα )]1/3, where
ρα is the density of the liquid phase. These droplets are char-
acterized by a surface tension σ . The formation of this surface
requires the Gibbs surface energy W = (4πσ/3)r2

k , while the
formation of the bulk phase releases energy [72]. This results
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in a critical droplet radius

rcr = 2σ

C

1

ln y
, (2)

where C is a dimensionality constant that contains the density
ρα and the temperature. Droplets that have reached the critical
size will grow further until the free energy has reached its
minimum. But to obtain the critical size requires them to
overcome the energy barrier characterized by a maximum of
the free energy and fluctuations must be considered [60,73].

2. Three scenarios of phase transitions

Equation (2) already points to the conditions under which
phase transitions occur. We can use these conditions to dis-
tinguish between three different scenarios. First, we can have
a very large initial supersaturation y, which characterizes an
unstable system. Then the energy barrier is negligible and
the macroscopic liquid phase forms immediately, surrounded
by the saturated gaseous phase. This is known as spinodal
decomposition [57,58].

Second, we can have a medium initial supersaturation but
a negligible value of the surface tension σ . Then, again, the
energy barrier is negligible, and a macroscopic liquid phase
forms until the system saturates. This dynamics has analo-
gies to percolation, where links are formed between occupied
lattice sites [59]. It is known that for a 2D regular lattice of
size N the critical density is ρcr = nc/N = 0.593; i.e., if nc

lattice sites are occupied, we can expect to find a percolating
cluster in the limit of large N , which is the equivalent of a
macroscopic phase. There is no surface tension involved in
the formation of clusters.

The third scenario, nucleation, is the most interesting one.
It is characterized by a medium initial supersaturation and
a nonnegligible surface tension. This implies a rather large
energy barrier and thus a large critical radius. Hence, the
system is initially in a metastable state. This results in the
formation of a larger number of small droplets of subcritical
size. Dependent on the supersaturation, a fraction of these
droplets can reach a supercritical size and grow further. This
reduces the actual supersaturation drastically, and no new
droplets can form. But the supercritical droplets still have to
form a macroscopic phase. This dynamic process is known as
Ostwald ripening [61,74–76]. Established droplets can grow
further only if

drk (t )

dt
= 2σ

C

[
1

rcr
0 (t )

− 1

rk (t )

]
. (3)

Here rcr
0 (t ) = 2σ/[C ln y0(t )] is the actual critical radius that

depends on the actual supersaturation y0(t ). Droplets with
a subcritical radius shrink via reevaporation, which allows
droplets with a supercritical radius to grow further. Addi-
tionally, processes of coagulation can be considered which
happen if droplets of different size collide. Also processes of
fragmentation can occur, but for droplets they are negligible.

B. Group formation

How can we link the three different scenarios for phase
transitions summarized above to the formation of social
groups? Just renaming droplets as groups will not lead to any

(a) (b) (c)

FIG. 1. Illustration of the three growth mechanisms for groups:
(a) coagulation, Eq. (17), (b) incremental growth, Eq. (18), (c) den-
sification, Eq. (22).

new insights, but would be also wrong. We briefly discuss the
main differences in the following.

1. Groups with varying density

First, social groups are not spherical clusters with radius
rk , equal bulk density ρα , and equal surface tension σ . They
are rather like small networks (see Fig. 1), characterized by
the number of group members, which we call agents in the
following, and the number of links that connect them. Con-
nected agents form a group gk[nk, mk], where k is the group
index, nk is the number of agents, and mk is the number of
links in group k. K then denotes the total number of groups,
which can change over time.

We further define a group density ρk = 2mk/nk . It is not a
constant either but can change by agents joining or leaving or
by adding or removing social links. The factor of 2 reflects that
each link connects two agents, so we normalize the number of
links to nk/2. Note that ρk is normalized to the size of the
group rather than to the number of possible links, nk (nk − 1),
as used in network science. Indeed, our definition is akin to
the average degree of an agent in the group.

The minimum number of links in a group is mmin
k = (nk −

1) � nk , i.e., each agent is connected via only one link, for
example, in a starlike topology. Hence ρk = 2nk/(nk − 1) � 2
if only incremental growth is considered, i.e., groups grow by
incorporating one new agent at a time through the formation
of a single link. Note that ρk = 2 is the limiting density for
large groups in the case of incremental growth. Small groups
always start from two agents with one link, i.e., ρk = 1.

On the other hand, the maximum number of (undirected)
links in a group is mmax

k = nk (nk − 1)/2 � n2
k/2, i.e., agents

form a fully connected network. Then ρmax
k = (nk − 1) � nk

is the maximum density if groups are allowed to densify, i.e.,
agents create links within a group. With these considerations
it holds that ρk ∈ [1, {2, nk}].

2. Group utility

To further distinguish social groups from droplets, we char-
acterize groups of different nk , mk by means of a utility:

uk[nk, mk] = bmk − cnk . (4)

It reflects the social insight that being part of a group has
benefits and costs. The benefits bmk arise from the existence
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of links within a group. More links allow more interactions, a
better exchange of information, etc., as argued in management
science [77]. This differs from definitions of utilities in, e.g.,
economics that assign maintenance costs to links [78]. On
the other hand, maintaining a group is costly, therefore cnk

denotes a cost proportional to the number of agents that need
to be integrated into the group. The linear form for the utility
function is chosen because of its minimal assumptions. We
have no evidence for suitable nonlinear forms. Further, we do
not make the utility dependent on local substructures of the
group that differ across agents, but on the group as a whole.

Once groups are established, agents will consider costs
and benefits from being part of a group and will leave if not
satisfied, as explained later in Sec. III A.

The maximum utility is umax
k = (b/2) n2

k − cnk . The min-
imum utility, on the other hand, is umin

k = (b − c)nk . Thus,
if (b − c) < 0, u(nk, mk ) = 0 defines the minimum size of a
group to have a positive utility, namely, n̂k = (b/c)mk . Using
the group density ρk = 2mk/nk , the respective density is then
ρ̂ = 2c/b. This allows us to rewrite the utility as

uk (nk, ρk ) = c nk

(
ρk

ρ̂
− 1

)
. (5)

As we will show below, groups with ρk > ρ̂ likely remain or
even grow, while groups with ρk < ρ̂ likely dissolve.

3. Homophily

In addition to the varying densities ρk and utilities uk , there
are dynamic peculiarities that distinguish social groups from
droplets. The social principle of homophily [19,20,79,80]
states that agents tend to interact more often with those others
that are similar in some respect. To formalize this, we char-
acterize agents by a scalar variable xi, drawn from a uniform
distribution U (0, 1). xi(t ) could represent, in a very general
sense, the opinion of agent i with respect to some issue, which
can change over time as will be discussed below. The uniform
distribution of initial opinions is chosen because it requires the
least constraints and because it allows one to consider more
extreme opinions, which are likely to be underrepresented by
a normal distribution.

Two randomly chosen agents i and j will successfully
interact only if the difference in their x values is below a
certain threshold ε, which is also interpreted as a tolerance for
deviating opinions. To formalize this, we introduce a variable:

zi j (t ) = ε − |x j (t ) − xi(t )|. (6)

Agents successfully interact only if z � 0. Their interaction
triggers another feedback, convergence: Because of social
influence [51,81–83] agents’ opinions tend to become more
similar if they interact more [84,85]. To include a dynamics
for xi(t ), we adopt for simplicity the bounded confidence
model [55,86–88]. A more complex opinion dynamics for
multidimensional opinions can be considered as well [52,53].
Two randomly chosen agents i and j update their opinions xi,
xi if they interact as follows:

�xi(t )

�t
= γ [x j (t ) − xi(t )]
[zi j (t )]. (7)

Here 
[z] is the Heaviside function, which returns 0 if z < 0
and 1 if z � 0. If we choose the maximum value γ = 0.5,

there is convergence to the mean (xi + x j )/2 in one time
step. Smaller values of γ require more interactions to obtain
more similar opinions. We note that the dynamics of Eq. (7)
together with a random sequential update of agents’ opinions
is path dependent, i.e., the sequence of interactions matters for
determining the final opinion of an agent.

4. Group formation and group influence

Our main assumption is that group formation builds on
successful interactions. That means, if two randomly chosen
agents i and j are able to interact because their opinions are
similar enough, zi j > 0, they will also form a link, ai j = 1:

ai j (t ) = 
[zi j]. (8)

This is the central mechanism for the formation of groups:
while interactions can happen randomly, the formation of
links depends on similarity, i.e., the partner is not randomly
chosen. This considers that social interactions are costly. We
emphasize that the existence of a link indicates a special rela-
tion between agents, which is to be distinguished from a mere
interaction. Therefore, once agents formed a group with other
agents of similar opinions, they tend to keep these relations.
This implies that groups continue to have an influence on
the opinion of their members [89], which is captured in an
effective opinion [55]:

xeff
i (t ) =(1 − α)xi(t ) + α

〈
xk

i (t )
〉
. (9)

〈xk
i (t )〉 = ∑

j∈|nk | x j (t )/nk is the average opinion of group k,
and α weights its influence on agent i. Considering the group
influence, we can modify zi j in Eq. (6) as follows:

zi j (t ) = ε − ∣∣xeff
j (t ) − xeff

i (t )
∣∣. (10)

That means, instead of the individual opinion of an agent,
its weighted opinion determines whether a link is formed or
deleted. In the limit α = 1 the effective opinion for everyone
in the group is the same.

We emphasize that group influence reflects another social
mechanism, triadic closure [22,49,90]. Open triads refer to
three agents i, j, and k which are connected by only two links
(i, j) and ( j, k). Then the probability that either i or k forms
the third link (i, k) to close the triad is much larger than the
probability that either i or k forms a link to an agent r outside
the group. Without group influence, these probabilities would
depend only on xi, xk , and xr . With group influence, xeff

i and
xeff

k become more similar, so the likelihood that the link is
formed inside the group increases. This process will lead to
the densification of the group to improve triadic closure.

C. Network formation

1. Percolation threshold

We now change the perspective from the group level to the
system level, which can be described as a large social network.
The ai j defined in Eq. (6) are the entries of a symmetric ad-
jacency matrix A of size N × N , which captures the topology
of the network.

A group is a disconnected component of this network.
Initially, social groups may form spontaneously in a random
manner. Therefore in an early stage of the network evolution
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we may expect a larger number of disconnected components.
The number of these disconnected components, their sizes,
and their densities can grow and shrink over time. A phase
transition is characterized by the emergence of a giant con-
nected component, i.e., one group of macroscopic size that
includes most of the agents.

To better understand the conditions under which we can
expect the formation of a giant connected component in the
network, let us turn to one of the simplest network models,
known as the G(N, M ) model. It requires one to fix the number
of agents, N , and the total number of links, M. Initially there is
no network. It is formed successively by randomly choosing,
out of N agents, two agents i and j and connect them by a link.
Each established link diminishes the number of available links
by one. The process is repeated until all M links are spent. The
result is a random network with characteristic properties that
can be described analytically [91].

The G(N, p) model loses the assumption of a fixed M [26].
Instead, two randomly chosen agents are connected with a
certain probability p, which is determined such that it matches
the expected degree 〈d〉, i.e., the expected number of links. If
N2/2 is the maximum number of links between N agents and
M the total number of links, we then find for p:

p = 2〈M〉
N2

, 〈d〉 = 2〈M〉
N

= pN. (11)

The question whether we will observe a giant connected
component from this simple procedure depends on the total
number of links, M, which has to have a critical value, known
as the percolation threshold. Because we do not assume any
underlying geometry, such as lattices, the percolation thresh-
old results from the condition N p = 1 [69,92]. Using the
relations from Eq. (11), it follows directly that a percolating
group can be expected if Mcr = N/2.

This allows us to define an initial supersaturation for links
μ = M/Mcr. To expect a phase transition via percolation, we
have to assume that μ = μcr = 1. This result holds for infinite
systems. For finite systems, this value has to be larger as we
will show in Sec. III B 1. Nevertheless, μcr = 1 is a good ref-
erence value to distinguish whether a system has the ability of
a phase transition. We could compare it to the supersaturation
introduced in Sec. II A, y = ρ/ρeq(T ), which has the same
interpretation, just in a thermodynamic context.

2. Restricted link formation

The above discussion holds as long as agents are not re-
stricted in their link formation. In our model, however, we
have introduced a threshold ε, Eq. (6), which determines
whether two agents i and j can interact, i.e., can potentially
form a link. So far ε was large enough to allow link formation
between all agents. Now we consider that not all agents can
create links to all other agents, i.e., ε � 1.

To still ensure a phase transition, we have to calculate the
critical value of ε needed to allow for a sufficient number
of links. For this we follow an earlier approach [69] that
links percolation in random networks with so-called threshold
networks, i.e., networks where the link formation is restricted
by the tolerance threshold ε.

We note that the xi are uniformly distributed in the in-
terval [0,1] and that for the formation of links �xi j = |x j −
xi| matters. The distribution function P(�x) of the absolute
difference between two uniform variables is given by the tri-
angular distribution. The cumulative probability F (�x � ε)
to find a value �x � ε follows likewise:

P(�x) = 2 − 2(�x), 0 � �x < 1,

F (�x � ε) = 2ε − ε2. (12)

F (ε) is the probability that for a randomly chosen pair of
agents a link is possible. This has to be multiplied by the
independent probability that this pair of agents is also chosen
to form a link, which is given by p. Hence, the condition for
percolation N p = 1 has to be corrected by the factor F (ε)
that a link formation could not be possible if opinions deviate.
With this consideration and Eq. (11) we find

N p F (ε) = 2〈M〉
N

(2ε − ε2). (13)

From this quadratic equation for ε only the lower value makes
sense in our model because ε has to have values between 0
and 1. With μ = 2M/N , it solves as

εcr = 1 −
√

1 − 1

μ
. (14)

εcr allows us to choose the tolerance for deviating opinions
such that a giant connected component still can emerge, de-
pendent on the link supersaturation μ. If μ = μcr = 1, i.e.,
we just have the conditions for the onset of percolation in an
infinite system, ε = 1, i.e., we cannot allow for restrictions in
the interactions. The higher the link supersaturation, the lower
ε can be to still observe a giant connected component.

For ε < εcr, we can expect only the formation of discon-
nected components. This is similar to the bounded confidence
model, where the value of ε determines the final number
of groups that can each reach consensus. For this number,
a rough estimate 1/(2ε) was found. That means one group,
i.e., a giant connected component, can be obtained only for
ε � 0.5. ε � 0.25 would already result in two groups, i.e., two
disconnected components [86,88].

In our case, for μ = 3, for instance, we find a giant con-
nected component for ε � 0.2. This comparably low value
becomes clear, because the giant connected component is a
“spanning cluster,” i.e., it can be a very sparse network, as
long as it spans the whole system. In Sec. III, we will illustrate
what such giant connected components look like.

We note that Eq. (14) is derived under the assumption of
uniformly distributed xi. It does not consider a change of this
distribution at the same timescale as the formation of the giant
connected component. Hence, in order to apply Eq. (14) we
have to assume that γ in Eq. (7) is considerably small. In fact,
in Fig. 2 we later use γ = 0.1, and we further show in Fig. 8
that in the percolation scenario the formation of the largest
group occurs very fast.
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FIG. 2. Phase transition via percolation. Different time steps: (a) t = 0.14, (b) t = 0.55, (c) t = 1.42. Parameters: μ/2 = 1.6, c = 0, ε = 1,
γ = 0. The color scheme indicates the xi values of the agents, which do not change.

III. SIMULATING GROUP FORMATION IN NETWORKS

A. Transition rates

In the following we lay out a stochastic dynamics for the
formation of groups. As the discussion in Sec. II A made
clear, we need to consider fluctuations in order to describe
the spontaneous formation of groups and their growth up to
a critical size. The dynamics of groups with a supercritical
size, on the other hand, can be described by a deterministic
dynamics, which will be developed in Sec. IV.

The fundamental dynamics of stochastic processes is de-
scribed by a master equation. This can be defined at different
levels. The most explicit perspective starts from the adja-
cency matrix that contains all information about links between
agents. Our focus is not on the description of the full network,
but on the dynamics of individual groups. This leaves us still
with the choice between the group level or the full group
distribution, N = [N1,0, N2,1, N3,2, N3,3, . . . , NN,M ]. The ele-
ments Nn,m count the number of groups of size n with m links.
This approach is summarized in Appendix B. In the following,
we focus on the group level because we do not depend on the
full description of the dynamics of the state space. In fact,
all our equations can be derived from the simpler perspective.
Hence, in our case we start from p[gk (nk, mk, t )], the proba-
bility to find group k with nk agents and mk links at time t .

The specification of the dynamics requires to define the re-
spective transition rates for the change of these probabilities.
This can be done in different ways. Let us first discuss the
perspective of agents. To determine the formation of a link
(i, j) between two randomly chosen agents i and j, we have
to consider the probabilities (1) that agents i and j are chosen,
which is 1/N for each in a random sampling, (2) that they
are able to establish a link which depends on the value of zi j ,
Eq. (10), and (3) that links are still available.

M is the initial number of links, which is limited because
we distinguish between interactions and links. The latter are
formed only under certain conditions which are socially mo-
tivated by the opinion dynamics already discussed. Social
networks are sparse; therefore, M has to be smaller to avoid
fully connected networks. Similar to the G(N, M ) model, the
fixed M also determines the probability of link formation.

If links were unrestricted, the system always could evolve
to maximal density. In real social systems, interactions can be

abundant, but social relations, i.e., links, are usually limited,
e.g., by mental capacities. We recall the Dunbar number. The
restriction is further given by the limited size of the groups.
We are considering finite systems with N agents, hence the
maximum number of relations would be M = N (N − 1)/2. If
we would go with this number, the model would end up with
fully connected networks.

But at time t some groups have already been formed.
Therefore we have

M = m0(t ) +
K∑

k=1

mk (t ); N = n0(t ) +
K∑

k=1

nk (t ). (15)

m0(t ) denotes the number of free links and n0(t ) the number
of free agents that do not belong to any group at time t . With
these assumptions the transition rate for link formation reads

w[(i, j)|i, j] ∝ 2m0

N2

[zi j (t )]. (16)

In the limit of ε → 1, 
[z] = 1. We note that this rate holds
no matter whether agents are already part of a group or not.

We can describe the same process from the group perspec-
tive. Each group is characterized by two values nk , mk . When
we randomly choose two agents, the probability that one of the
agents is in group k and the other one in group l is proportional
to nk and nl . With these considerations the transition rate for a
growing group reads in general:

w[(nk + nl , mk + ml + 1)|(nk, mk ), (nl , ml )]

= w+[gk, gl ] ∝ 2m0

N2

∑
i∈gk

∑
j∈gl


[zi j (t )]. (17)

In the limit of ε → 1, 
[z] = 1 the summation term be-
comes nknl . This rate describes the process of coagulation.
Adding one link between two groups gk , gl leads them
to merge, i.e., to form one connected group of size (nk +
nl , mk + ml + 1). This can be seen as a jump in the (n, m)
space, as illustrated in Fig. 1(a).

If an agent i has not joined a group yet, it defines its own
group, i.e., then ni = 1 and mi = 0 and gi(ni, mi ) = g1(1, 0). In
this case, Eq. (17) captures the process of incremental growth
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and reads specifically

w[(nk + 1, mk + 1)|(nk, mk ), (1, 0)]

= w+[gk, g1] ∝ 2m0

N2

∑
i∈gk

∑
j∈g1


[zi j (t )]. (18)

Adding one link between a group gk (nk, mk ) and an isolated
agent, g1(1, 0) grows both nk and mk by 1, incrementally, as
shown in Fig. 1(b).

Additionally, there can be also a densification of the group,
illustrated in Fig. 1(c). If the two agents already belong to
the same group, adding one link does not change the number
of agents, but only the number of links and in this way the
density. The new group is then given by gk (nk, mk + 1). In
general, the transition rate for densification reads

w[(nk, mk + 1)|(nk, mk )] ∝ 2m0

N2

∑
i, j∈nk{i, j}
∈mk

δi j
[zi j]. (19)

The sum over the Kronecker δi j counts only agents i and
j that both belong to the group of n agents but do not have
a common link yet. If we assume ε = 1, i.e., 
[zi j] = 1, the
probability pi j that such a link already exists can be calculated
from the configuration model as

pi j = did j

2mk
. (20)

di and d j are the degrees of agents i and j, hence the product
considers all possibilities to connect them. This has to be
normalized by mk , the existing number of links in the group k.

We further know that in a group of density ρk each agent
has on average 〈d〉k = 2mk/nk = ρk links. We use this to
replace di and d j in Eq. (20). Hence, the sum in Eq. (19) is
expressed by the probability that agents i and j are chosen
to form a link, which is proportional to n2

k , multiplied by the
independent probability that they do not already have one:

pi j ≡ pk = ρ2
k

2mk
= 2mk

n2
k

,

∑
i, j∈nk{i, j}
∈mk

δi, j = n2
k

(
1 − 2mk

n2
k

)
. (21)

This allows us to rewrite, for ε = 1, the transition rate for
densification, Eq. (19), as

w[(nk, mk + 1)|(nk, mk )]

= w+[gk, m0] ∝ 2m0

N2
nk (nk − ρk ). (22)

The difference ωk = nk − ρk tells how many links could
be potentially added to group k. Hence, this transition rate
decreases with higher density. Furthermore, when the group
is fully connected, we have mk = nk (nk − 1)/2. This means

that in the limit of large systems (nk (nk − 1) → n2
k) no new

link can be formed, which is reasonable. For finite systems
this holds only approximately.

With this, we have considered three different processes
for network growth via the formation of groups. But we also
need to specify how groups can dissolve [93]. For this, we
have already proposed in Sec. II B that agents leave a group
if they experience an negative utility, i.e., if costs exceed
benefits. According to Eq. (5), this implies that for a group
gk , it holds that ρk < ρ̂. We propose that agents leave a group
spontaneously at the following rate:

w[(nk − 1, mk − δmk )|(nk, mk )]

= w−[gk, ρk] ∝ nk

N
exp

(
β

ρ̂

ρk

)
. (23)

nk/N is again the probability that an agent from group gk

is randomly chosen to leave. The exponential term ρ̂/ρk =
(cnk )/(bmk ) can be seen as some sort of inverse fitness of a
group. If it is larger than one, which means costs are larger
than benefits, the probability that the group dissolves sponta-
neously increase exponentially. β is the inverse temperature,
1/T , and defines the level of randomness. Smaller β make
differences between benefits and costs more important, larger
β smooth out this influence.

If an agent leaves a group, all its links in the group are
removed and become available as free links. Thus, the group
size nk is diminished by 1. But how many links will be re-
moved? We know that in a group of density ρk each agent
has on average 〈d〉k = ρk links. That means that the expected
change is δmk = ρk in Eq. (23). We note that this transition
rate in principle also describes the fragmentation of a group
of size nk into pieces. In this case just the arguments of w−
have to be changed; the probability for spontaneous leaving
remains the same.

We summarize that the fastest way for a network to grow
is by coagulation. Once some groups have formed, they can
merge into much larger groups. This helps to speed up a pos-
sible phase transition. If coagulation is excluded, i.e., nl ≡ 1,
the phase transition would occur much slower because incre-
mental growth is a rather slow process. So we could see it as
the worst case scenario. Densification, on the other hand, does
not lead to growth, but stabilizes existing groups because it
increases the group utility. But even if the density is increased,
as long as ρk < ρ̂, staying in such a group would not be
beneficial. Hence, groups with a smaller density are likely to
shrink and to disappear, no matter what their size nk is.

B. Results of agent-based computer simulations

Using the above defined transition rates, we can write
k master equations [94] for the growth and dissolution of
groups. For the probability p[gk (nk, mk, t )] the stochastic dy-
namics reads in general

�p[gk (nk, mk, t )]

�t
=

∑
gl

w+[gk, gl ] p[gk (nk − nl , mk − ml , t ) ∩ gl (nl , ml , t )] − w+[gk, gl ] p[gk (nk, mk, t ) ∩ gl (nl , ml , t )]

+w+[gk, m0] p[gk (nk, mk − 1, t )] − w+[gk, m0] p[gk (nk, mk, t )]

+w−[gk, ρk] p[gk (nk + nl , mk + ml , t ) ∩ gl (nl , ml , t + �t )] − w−[gk, ρk] p[gk (nk, mk, t )]. (24)
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Note that the master equations for the k different groups
are coupled via the transition rates that have to satisfy the
boundary condition, Eq. (15). To simulate the dynamics we
use the Gillespie algorithm. That means that for each time step
we calculate all possible transition rates. Their relative weight
is used to randomly select one of the possible transitions.
In the following we present simulation results for the three
different scenarios for phase transitions described in Sec. II A.
We decided to keep these physical labels for the scenarios
even for the dynamics of social groups, simply to allow for
comparison.

1. Percolation

The simplest scenario of group formation assumes that
agents connect randomly, in this way forming a random net-
work. We do not consider any costs or benefits for groups,
and further no spontaneous dissolution is allowed. Also, we
ignore for the moment any dynamics or influence of the xi

values in the formation of groups (γ = 0), and link for-
mation between all agents is allowed (ε = 1). Hence, the
whole dynamics is described by the transition rate for growth,
w+[gk, gl ], Eq. (17). In an early stage we find a larger number
of disconnected components, as shown in Fig. 2(a). These
disconnected components can only grow over time as long as
there are free links available. Eventually, they merge to form
a giant connected component, shown in Fig. 2(c).

Figure 3 shows the fraction of the largest connected
component, ν = nLCC/N , in the final network dependent on
the initial condition μ = M/Mcr, i.e., the total number of
available links relative to the critical number of links that
are needed for percolation. According to the discussion in
Sec. II C, we expect the percolation threshold to be μcr =
1, which holds only for very large systems and without any
restrictions on the link formation, i.e., ε → 1. As Fig. 3(a)
shows, for finite systems, N = 100, μcr indicates only the
onset of forming a percolating group. To observe percolation
with a fraction of the LCC close to one, we need a five times
larger value, as Fig. 3(a) shows.

When restricted interactions between agents are consid-
ered, i.e., ε < 1, Eq. (14) defines the conditions for observing
a giant connected component. For ε = 0.1, we find μ = 2.63.
The computer simulations shown in Fig. 3(b) give a better
match with the prediction, also because in Eq. (14) the finite
number of links is explicitly considered.

We conclude that the percolation scenario is observed for
μ � 5, c = 0. Still, because the link supersaturation μ is not
large, we will obtain only a a sparse percolating group. The
initial density of free links is not large enough for a compact
phase, as we show below.

2. Spinodal decomposition

As explained in Sec. II A this scenario is observed if the
initial system is already in an unstable state. Further, the
surface tension does not give an important effect. In our model
of group formation, this is realized by a very large link super-
saturation μ � 1 and by a negligible cost c � 1. Then the
initial instability is sufficient for the spontaneous emergence
of a new phase, which is rather compact. This is illustrated in
Fig. 4.

(a)

(b)

FIG. 3. Fraction of the largest connected group ν = nLCC/N
for different μ = M/Mcr . (a) Unconstrained interactions (ε = 1),
(b) constrained interactions ε = 0.1. The dashed lines show the
theoretical predictions for the percolation threshold: (a) μ/2 = 0.5,
(b) μ/2 = 2.63, Eq. (14).

3. Nucleation

To observe nucleation, the initial system has to be in a
clear metastable state. In our model of group formation this
is realized by a moderate link supersaturation μ � 1 and a
nonnegligible cost c > 0. Then the new phase can emerge
only if initial fluctuations generate groups larger than a critical
size, discussed in detail in Sec. IV A. The phase transition
occurs via the formation of a number of groups in an early
stage, shown in Fig. 5(a). These groups later either coalesce,
or they form a macroscopic phase via the redistribution of
links from groups with subcritical to groups with supercritical
sizes. This process is known as Ostwald ripening and will be
further discussed in Sec. IV C.

A dynamics, where initially small groups are formed and
later merge or dissolve to give way for a giant connected com-
ponent, is found in the evolution of collaboration networks.
In [95], groups represent R&D alliances in one or multiple
industrial sectors over 20 years, as reconstructed from the
SDC Platinum database. A group-size distribution akin to our
intermediate regime (t = 1.2) in Fig. 10(a) can be found in
these R&D networks [96].

A similar dynamics is also observed in the evolution of sci-
entific collaboration networks reconstructed from the Social
Work Research Database [97]. From initially disconnected
groups, this system generates over time one prominent com-
ponent encompassing up to 20% of the nodes in later stages.
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FIG. 4. Phase transition via spinodal decomposition. Different time steps: (a) t = 0.08, (b) t = 0.13, (c) t = 0.56. Parameters: μ/2 = 19,
c = 0.5, N = 100, ε = 1, γ = 0.1. The color scheme indicates the xi values of the agents.

Many other disconnected component remain in the system to
coexist with the giant component.

4. Restricted interactions

As the two examples of Figs. 4 and 5 show, the emerg-
ing giant connected components become rather homogeneous
with respect to the opinions xi. This is due to the fact that
all agents are allowed to form links (ε = 1) and the opinion
dynamics, Eq. (7), ensures convergence of opinions (γ = 0.1).
If we restrict the interaction between agents by choosing
ε < εcr, Eq. (14), we observe the formation of isolated groups
instead of a giant connected component. These groups dif-
fer considerably with respect to their average 〈xk〉, but show
rather homogeneous values of xi inside each group, as Fig. 6
shows.

Again, collaboration networks show a dynamics where
multiple disconnected components with nonnegligible sizes
survive. We reach sparse disconnected components when the
saturation μ is low. Evidence for the coexistence of sparse dis-
connected groups is found, for instance, in the collaboration
network of Italian sociologists [98].

C. Parameter space

We can systematize the outcome of our agent-based com-
puter simulations with respect to the free parameters of our
group formation model. These can be distinguished in three
groups (see Appendix A for table representation):

(1) Network formation: number of agents N , link density
μ = 2M/N , level of randomness β

(2) Group formation: cost c, benefit b, or ρ̂ = c/b
(3) Opinion formation: approach rate γ , tolerance thresh-

old ε, group influence α.
Comparing these parameters with their thermodynamic

counterparts from Sec. II A, we see that both N and μ relate
to the initial supersaturation, while the cost c, or ρ̂, relates to
the surface tension, because it determines the critical group
size. The parameters of the opinion dynamics do not play a
role in the thermodynamic model, because for molecules no
constraints exist to form droplets.

In Fig. 7 we present two phase diagrams of the (μ/2, ρ̂ )
parameter space, with different parameters for opinion forma-
tion (top) and (bottom). These diagrams have no sharp phase
boundaries, which could be expected only in the thermody-
namic limit but not in finite systems. Nevertheless, the phase
diagrams succinctly illustrate the influence of the parameters
on the group structure.

Our measure for the existence of a phase transition is nLCC,
the size of the largest connected component (LCC), measured
after 50 000 time steps, i.e., in a quasistationary equilibrium.
With N = 100, nLCC can reach up to 100. Comparing the top
and the bottom diagram, we notice that an nLCC comprising
more than 90% of all agents is almost always obtained if
the link formation between agents is not restricted by the
tolerance parameter ε (Fig. 7 bottom). Yet, if the link super-
saturation μ is low, i.e., if we are close to the percolation

FIG. 5. Phase transition via nucleation. Different time steps: (a) t = 0.7, (b) t = 2.07, (c) t = 2.67. Parameters: μ/2 = 16, ρ̂ = 15.6, N =
100, ε = 1, γ = 0.5, β = 0.4. The color scheme indicates the xi values of the agents.
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FIG. 6. Phase transition with restricted interactions. Different time steps: (a) t = 0.25, (b) t = 0.68, (c) t = 2.15. Parameters: μ/2 = 4,
c = 0, N = 100, ε = 0.125, γ = 0.1. The color scheme indicates the xi values of the agents.
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FIG. 7. (μ/2, ρ̂) parameter space for the size of the largest con-
nected component nLCC. N = 100, different parameters for opinion
dynamics: (top) ε = 0.16, α = 0.9, γ = 0.1, β = 0.4, (bottom) ε = 1,
α = 0.1, γ = 0.5, β = 0.4.

threshold, the network of the LCC is very sparse. It becomes
more compact with increasing link saturation μ.

In Fig. 7 (bottom) for large μ the final state obtained for
low and high ρ̂ looks almost the same; however, the process
to reach it is very different. For low ρ̂, we are in the regime
of spinodal decomposition, where one connected component
is formed from the very beginning, also shown in Fig. 2.
For high ρ̂ we first observe the formation of smaller groups.
The large compact group is formed by the dissolution of the
smaller ones at a much longer time scale. This is clearly
visible in Fig. 8, where we plot the growth of the LCC over
time for the three different scenarios: percolation, spinodal
decomposition, and nucleation. Both percolation and spinodal
decomposition occur very fast, but for different reasons. Per-
colation considers only the growth of the network, without an
energy barrier or dissolution. Spinodal decomposition, on the
other hand, is driven by the very high link supersaturation; i.e.,
the energy barrier is negligible, and dissolution does not play a
role because groups formed immediately reach a supercritical
size. Nucleation is rather slow because groups of critical size
are formed only by fluctuations.

Turning to the case of restricted link formation shown in
Fig. 7 (top), we observe that a giant connected component is

FIG. 8. Fraction of the largest connected group, ν = nLCC/N ,
over time for the three scenarios: percolation: nLCC

P (μP/2 = 3,
cP = 0), spinodal decomposition: nLCC

S (μS/2 = 19, cS = 0), and
nucleation: nLCC

O (μO/2 = 19, ρ̂ = 17.2). Parameters: ε = 1, γ = 0.1,
β = 0.4.
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almost never observed because agents from different groups
cannot create links if the tolerance value ε is low, with only
one exception that we explain now.

For the parameter constellation with (μ/2, ρ̂) = (20,4.8)
we observe coagulation. For the same μ this was not
possible for smaller values of ρ̂, because there large groups
form quickly and the large group influence α makes them
quite homogeneous with respect to agents’ opinions. As a
consequence, these groups quickly reach average opinions
too different for them to merge. With increasing ρ̂, nucleation
dominates. More smaller groups with more different average
opinions form, which increases the chance for coagulation.
Therefore, we observe the formation of a giant connected
component.

For the same μ but even larger values of ρ̂ the nucleation
barrier rises and fewer groups are formed. If groups establish,
they reach a homogeneous opinion very fast, because of the
high group influences. This then does not allow free agents
with different opinions to still join, and hence the LCC be-
comes smaller, as we see.

Figure 7 (top) also demonstrates that the final states of
spinodal decomposition and nucleation can be very different.
The nucleation scenario allows groups to dissolve such that
agents can join larger groups. Spinodal decomposition, on the
other hand, generates only a small incentive for agents to leave
groups, because of the small value for ρ̂. Therefore, the groups
formed coexist in a stable state.

IV. ANALYTICAL INVESTIGATION

A. Incremental growth

Eventually, we want to underpin our agent based simula-
tions with some analytic results. These can hardly be obtained
if we consider the full maser Eq. (B5). Therefore, we now
discuss two limit cases, (1) incremental growth and (2) densi-
fication. These can be seen as the two sides of the same coin,
as they both occur during a phase transition, albeit they domi-
nate at different times. Considering them separately allows us
to better understand the driving forces of group formation and
competition.

First, we omit processes of coagulation and densification
and consider only incremental growth, Eq. (18), and
dissolution, Eq. (23). Let us further consider ε = 1, i.e.,
all agents are allowed to form links. The respective growth
process is illustrated in Fig. 1(b). Precisely, a group can grow
only if a new agent joins by connecting to the group with one
link. This leads to a very sparse cluster where mk = nk − 1,
i.e., ρk = 2 for large groups. Clearly, in this limit we do not
need to discuss the dynamics of ρk , we focus only on the size
of the group, nk .

To find out under which conditions it is more likely to
observe the growth or the dissolution of a group, we calculate
the logit or odds ratio, G, which is defined as

G = ln
w+[gk, g1]

w−[gk, ρk]

= ln

[
2m0n0nk

N2

N

nk exp(βρ̂/ρk )

]
. (25)

FIG. 9. Evolution of the density of the LCC and the critical
density in the system over time. μ/2 = 20, ρ̂ = 21.4, ε = 1, γ = 0.1,
β = 0.25, N = 100.

From G = 0 we find the critical conditions to expect incre-
mental group growth:

ρcr
n (t ) = βρ̂

ln [2m0(t ) n0(t )/N]
. (26)

We recall that m0(t ) gives the number of links available at
time t and n0(t ) the number of free agents, as defined in
Eq. (15). If we use ρ̂ = 2c/b and define a supersaturation

y0(t ) = 2m0(t )n0(t )

N
= n0(t )μ0(t )

with μ0(t ) = 2m0(t )

Mcr
, y0(0) = N

M

Mcr
≡ y, (27)

we can rewrite the expression for the critical density very
similar to the critical radius for nucleation, Eq. (2):

ρcr
n (t ) = βρ̂

ln μ0(t ) + ln n0(t )
= 2c

b/β

1

ln y0(t )
, (28)

where the cost c takes the place of the surface tension. We
emphasize that ρcr

n does not make any statement about the
size of a group. In fact, it characterizes the system because
it depends on the supersaturation y0(t ), which is a system
variable.

Only groups with ρk > ρcr
n are expected to grow incremen-

tally in size, while groups with ρk < ρcr
n will dissolve. On the

other hand, ρk = 2 for sparse groups. Hence, if we expect a
stable group, the critical density ρcr

n (t ) should reach approx-
imately 2 for large groups. This is indeed shown in Fig. 9,
where we plot the density of the largest connected component.
Initially, ρk is smaller than 2 because of finite-size effects.
For instance, for nk = 3 we would have ρk = 2(nk − 1)/nk =
4/3 < 2. But after the initial formation of a large group ρLCC

approaches the value of 2, while ρcr
n fluctuates around this

value. The fluctuations result from the fact that the largest
group continues to have spontaneous additions and dropouts
of agents. We note that ρ̂ � 2 is comparatively large, i.e., for
agents the transition rate to leave the group is not negligible.
Because both n0 and μ0 are small, changes in these numbers
impact the critical density, ρcr

n . The density of the group, ρk ,
on the other hand, is not much impacted if a single agent joins
or leaves because of the large group size.
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By comparing Figs. 8 and 9, we can estimate the timescales
for the dynamics of nk (t ) and ρk (t ). Obviously, the stable
density ρk = 2 is reached much faster, at about t ≈ 0.1. But
this still allows the largest group to grow, i.e., nk (t ) continues
to change until t ≈ 10. Therefore, in the following we will
analytically describe its dynamics. If we consider only incre-
mental growth and dissolution processes for groups, Eqs. (18)
and (23), we can write a dynamics for the expectation value
of the group size 〈nk〉 = ∑

k′ nk′P(nk′ , t ), by starting from
d〈nk (t )〉

dt
= 〈w+[gk, g1] − w−[gk, ρk]〉

= 〈nk (t )〉
N

[〈y0(t )〉 − eβ
ρ̂

〈ρk (t )〉
]
. (29)

If we insert the derived expression for the critical density
ρcr

n (t ), Eq. (28), we can express the dynamics as
d ln 〈nk (t )〉

dt
= βρ̂

N

[
1〈

ρcr
n (t )

〉 − 1

〈ρk (t )〉
]
. (30)

Here we have used a linear expansion of exp(x) and ln(x).
Equation (30) defines a selection equation [99] that couples
the growth of all groups via ρcr

n . The size of group k grows as
long as its density is larger than the critical density ρcr

n . We
note that a similar selection equation appears in nucleation
theory, Eq. (3), where the coupling was given by the critical
radius rcr

0 (t ).

B. Group densification

We now turn to the second limit case where instead of
incremental growth only densification is considered, as shown
in Fig. 1(c) and described by Eq. (22). We can then calculate
the odds ratio as

G = ln
w+[gk, m0]

w−[gk, ρk]

= ln

[
2m0nk (nk − ρk )

N2

N

nk exp(βρ̂/ρk )

]
. (31)

From G = 0 we find the critical density for densification:

ρcr
d (t ) = βρ̂

ln μ0(t ) + ln ωk (t )
,

ωk (t ) = [nk (t ) − ρk (t )]. (32)
We note that the structure of ρcr

d is similar to ρcr
n , Eq. (28).

ωk (t ) gives the number of “free” links inside group k, while
n0(t ) gives the number of free agents outside the group. That
means that ωk (t ) differs for groups in different configurations
(nk, mk).

How does the additional critical density ρcr
d influence the

growth of groups? We recall that in the limit of incremental
growth only nk changes according to Eq. (30), while ρk re-
mains constant. In the limit of densification, on the other hand,
only the number of links mk inside a group changes, while nk

remains constant. Therefore, we need to develop a dynamics
for mk now.

The dynamics for the expectation value of the number of
links 〈mk〉 = ∑

k′ nk′P(mk′ , t ) follows from
d〈mk (t )〉

dt
= 〈w+[gk, m0] − w−[gk, ρk]〉

= 〈nk (t )〉
N

[〈μ0(t )ωk (t )〉 − eβ
ρ̂

〈ρk (t )〉
]
. (33)

If we insert the derived expression for the critical density
ρcr

d (t ), Eq. (32), we can express the dynamics as

d〈mk (t )〉
dt

= βρ̂

N
〈nk (t )〉

[
1〈

ρcr
d (t )

〉 − 1

〈ρk (t )〉
]
, (34)

which, in first-order approximation 〈ρk〉 = 2〈mk〉/〈nk〉, even-
tually gives a selection equation for 〈ρk〉:

d〈ρk (t )〉
dt

= βρ̂

N

[
1〈

ρcr
d (t )

〉 − 1

〈ρk (t )〉
]
. (35)

We note that the two critical densities for incremental growth
and for densification are not independent of another, they are
related via μ0(t ). By solving Eqs. (28) and (32) for μ0(t ) we
find

βρ̂〈
ρcr

n (t )
〉 = βρ̂〈

ρcr
d (t )

〉 − ln
ωk

n0
. (36)

After the initial formation of a larger number of groups, agents
will leave groups with subcritical density, to join larger groups
with supercritical density. This increases the size of supercrit-
ical groups at the expense of subcritical groups which dissolve
eventually. This reduces the number of groups and will be
described analytically in the following.

C. Competition between groups

Figure 10(a) shows the evolution of the group distribution
for N = 500, by plotting the quantity nkNnk over time. nk is
the size of group k and Nnk is the number of groups with size
nk . In an early stage, we find a large number of smaller groups
of subcritical size, nk < 6. Because N is comparably small,
only a few of these groups reach a supercritical size. Only one
continues to grow incrementally and via coagulation, while
the subcritical groups either dissolve gradually or fragment.
For larger systems, we find more supercritical groups, but this
does not affect our principal discussion.

Figure 10(b) shows the total number of groups K over
time. Starting from zero, in a very short time, t � 2, up to 30
groups of small size are formed In a second phase, 2 � t � 4,
this number decreases. In the end, we find one large group
surrounded by a small number of free agents, as illustrated in
Fig. 5(c).

To describe this evolution, we need to consider the dy-
namics for nk (t ), Eq. (30). Densification does not change the
size or the number of groups, but it can stabilize established
groups. The smallest group size is nk = 2, otherwise agents
are considered as free agents and counted in n0. Hence if
nk → 1, the group has dissolved and K (t ) is diminished by 1.
According to Eq. (30), nk decreases if ρk < ρcr

n . This does not
exclude processes to increase ρk via densification, therefore
we base our further discussion on the selection equation (30)
for nk (t ).

We start from the conservation of agents, Eq. (15), which
takes the sum over all existing groups:

∑
k nk = [N − n0].

This yields dn0(t )/dt = −∑
k dnk/dt . Let us define the
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(a)

(b)

FIG. 10. (a) Distribution of agents in Nn groups of size n (in log
scale) at various time steps. (b) Total number of groups, K , over time.
Parameters: N = 500, μ/2 = 5, ρ̂ = 17.2, ε = 1, γ = 0.1, α = 0.9,
β = 0.4.

average group size n̄ and the average group density ρ̄ as

n̄(t ) = 1

K (t )

∑
k

nk (t ) = 1

K (t )
(N − n0),

ρ̄(t ) = 1

K (t )

∑
k

ρk (t ), (37)

where K (t ) is the total number of groups at a given
time. Further, we assume that in a first-order approximation∑

k nk/ρk = Kn̄/ρ̄. Then we obtain from Eq. (30)

−dn0(t )

dt
=

∑
k

βρ̂

N
nk (t )

[
1

ρcr
n (t )

− 1

ρk (t )

]

= βρ̂

N
K (t )n̄(t )

1

ρcr
n (t )

− βρ̂

N
K (t )

n̄(t )

ρ̄(t )
, (38)

which can be solved for ρcr
n (t ):

1

ρcr
n (t )

= 1

ρ̄(t )
− N

βρ̂

1

K (t )n̄(t )

dn0(t )

dt
. (39)

This allows us to replace 1/ρcr
n in Eq. (30) such that we finally

arrive at

d ln nk (t )

dt
= βρ̂

N

[
1

ρ̄(t )
− 1

ρk (t )

]
− 1

K (t )n̄(t )

dn0

dt
. (40)

Equation (40) has several advantages: (1) Instead of the well-
defined, but unknown, variable ρcr

n , which characterizes the

system via y0(t ), we can use the average group density ρ̄,
which characterizes the groups. Note that ρ̄ represents all
groups with subcritical and supercritical densities and also
reflects any densification of groups; i.e., it is the appropriate
aggregated variable.

(2) For the dynamics of Eq. (40) we can distinguish two
stages of the phase transition. In the first stage of group for-
mation, groups are small and of comparable density. Hence
ρk ≈ ρ̄ and the first term vanishes. Therefore the dynamics is
dominated by the last term: (1/Kn̄)(dn0/dt ) decreases rapidly
because the number of free agents, n0, decreases fast and
the number of groups, K , as well as the average group size,
n̄, grows. In the second phase of group competition we can
already assume that dn0/dt ≈ 0. Hence the dynamics is dom-
inated by the first term in square brackets, which describes a
slow selection process.

(3) The meaning of competition and selection is made
explicit in the dynamics: The growth of groups is coupled by
the mean density ρ̄. Because of dn0/dt ≈ 0, the growth of
groups with a larger density can occur only because of the
dissolution of groups with a smaller density. This process
continues as long as ρ̄ can still grow. The dynamics reaches
a (theoretical) stationary state if only one group is left which
defines the average density, ρ̄ = ρk . This assumes that all
agents can form links, which implies ε = 1. If the tolerance
threshold ε is low, smaller groups will still dissolve. But
the free agents cannot join the larger group because of the
differences in opinions. Therefore they remain as isolated
agents, as shown in Fig. 5(c).

V. DISCUSSION

A. A coherent view of the dynamics of group formation

We now have all the pieces together to present a coherent
view of the group formation and competition, with particular
emphasis on the nucleation scenario. We structure the dis-
cussion with respect to the various critical densities that are
introduced in this paper. The first one is ρ̂ = 2c/b, which
is constant and defines the minimum density for a group to
have a nonnegative utility. Social agents evaluate costs c and
benefits of being part of a group b and will leave if they do not
gain a utility from this, Eq. (23).

(a) ρ̂ < ρk . Groups need to have a density ρk > ρ̂ to
remain or even grow, otherwise they will dissolve. For the
percolation scenario ρ̂ = 0, i.e., groups will never dissolve.
But it needs a critical supersaturation y > 1, Eq. (27), to
obtain a large group that connects almost all agents. Yet,
because y is comparably small, the largest connected group
is still very sparse, as Fig. 2(c) shows. For the scenario of
spinodal decomposition, the condition ρk > ρ̂ is also fulfilled,
because ρ̂ is very small. But, different from percolation, the
initial saturation y is very large. Thus, we see the fast
formation of one large compact group.

The differences can be also observed in Fig. 11 where we
plot the density of the largest group over time. Percolation
occurs rather fast, but the largest group reaches only a small
final density because it is a sparse network. Spinodal decom-
position occurs very fast because of the large initial instability.
Because the initial supersaturation is high, i.e., a large number
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FIG. 11. Density of the largest connected group over time for
percolation, ρLCC

P (μP/2 = 3, cP = 0), spinodal decomposition, ρLCC
S

(μS/2 = 19, cS = 0), and nucleation, ρLCC
O (μO/2 = 19, ρ̂ = 17.2).

Parameters: ε = 1, γ = 0.1, β = 0.4.

of links is potentially available, the final density of the largest
group is also high.

(b) ρk < ρ̂. For the nucleation scenario, the condition ρk >

ρ̂ is never fulfilled. That means, differently from the other two
scenarios, we will always observe that agents leave a group.
Therefore, even the largest group experiences fluctuations in
size. As another consequence, groups can form initially only
by means of fluctuations and have to overcome an energy
barrier, quantified by the critical density ρcr

n , Eq. (28), which
is plotted in Fig. 12.

Hence, in this scenario it takes much longer before a large
connected group can establish, which is also shown in Fig. 11.
The final density of the group is largely determined by the
initial supersaturation, i.e., the number of potentially available
links per agent. The large group is not as sparse as in the
case of percolation, but not as dense as in the case of spinodal
decomposition.

(c) ρcr
n (t ) < ρk < ρcr

d (t ). If ρk < ρ̂, the two critical den-
sities for growth, ρcr

n , Eq. (28), and for densification, ρcr
d ,

Eq. (32), come into play. These are plotted in Fig. 12.
As we show in Fig. 12(a), during the initial stage of

group formation, t � 2, ρcr
d (t ) is very large. This implies

that initially densification cannot take place because ρk (t ) is
too small. As a consequence, the dominating process in the
initial stage is the incremental growth of nk (t ). We see this
in Fig. 12(a), where the relative size of the largest group,
ν = nLCC/N continuously increases, while its density has the
constant value, ρLCC = 2, for incremental growth. Also the
critical density ρcr

n is rather small, below 2, which allows
the largest group to grow incrementally, according to the
selection equation [Eq. (30)].

(d) ρcr
d (t ) < ρcr

n (t ) < ρk . The dynamics changes from in-
cremental growth to densification once ρcr

d (t ) becomes small
enough because the link supersaturation μ0(t ) has decreased
in the course of group formation. Precisely, once ρcr

d � 2,
the process of densification starts to dominate. This does not
mean that no group grows further. In fact, the largest group
now grows both in size and in density, as shown in Fig. 12(a)
because it fulfills the condition ρcr

d (t ) < ρcr
d (t ) < ρk .

(e) ρcr
d (t ) < ρk < ρcr

n (t ). The growth and densification of
the largest group decrease the supersaturation y0 = μ0n0,

(a)

(b)

FIG. 12. Evolution of the density, ρLCC, and the fraction, ν, of
the largest connected group, the mean density, ρ̄, and the critical
densities, ρcr

n , ρcr
d . (a) Early time period, (b) long-term dynamics.

Parameters: N = 500, μ/2 = 5, ρ̂ = 17.2, ε = 1, γ = 0.1, α = 0.9,
β = 0.4.

hence ρcr
n increases considerably. This then stops the further

growth of groups with ρk < ρcr
n (t ). This does not exclude that

these groups can densify, because ρcr
d (t ) < ρk holds. But the

group size still diminishes because ρk < ρcr
n ,

(f) ρ̄(t ) ≈ ρk . The third relevant density is the average den-
sity ρ̄(t ), Eq. (37). As an average over groups, ρ̄(t ) describes
the distribution of groups at a given time. In Fig. 12(a) we
observe that, for t � 2, ρ̄ is almost constant, has a small value,
and fluctuates very little. This means that groups are small and
of similar size and have not yet reached the density for sparse,
but large clusters, ρk = 2. This observation further justifies
why we have dropped, for the first stage, the first term of the
competition Eq. (40), because ρk ≈ ρ̄.

(g) ρ̄(t ) < ρLCC. For the second stage, 2 < t < 4, we ob-
serve instead a continuous growth of ρ̄(t ) over time. This is
mainly dominated by the density of the largest group, but
fluctuates because small groups disappear. We further observe
that for the largest group always ρ̄(t ) < ρLCC holds. That
means this group can grow further. Groups with ρk < ρ̄(t ), on
the other hand, cannot grow but will dissolve. This is reflected
in the first term of the competition Eq. (40), which now plays
the mayor role in the dynamics.
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(h) ρcr
n (t ) vs ρcr

d (t ). For the formation of new groups the
relevant control parameter is ρcr

n (t ). It determines the critical
density that new groups need to reach if they want to establish.
Whereas ρcr

d (t ) describes the evolution of the group, ρcr
n (t )

describes the evolution of the system because it depends on the
supersaturation y0(t ). In this way, ρcr

n (t ) couples the growth of
all groups via Eq. (30). Because y0(t ) continuously decreases
during the phase transition, ρcr

n (t ) increases over time and sets
a limit to the spontaneous group formation at a later time t .

ρcr
d , on the other hand, is relevant only for the internal

stability of the group during the second stage. During the first
stage densification does not play a role because ρk < ρcr

d . Dur-
ing the second period densification becomes important, but
only to some degree, because the group size still diminishes
as long as ρcr

d < ρk < ρcr
n .

Figure 12(b) shows the long-term dynamics of the process
described. It allows us to clearly separate the two stages: a
short initial period, t � 2 in which the formation of sparse
groups dominates. This is followed by a second stage of about
the same duration 2 � t � 4, which leads to the establishment
of a large group. The precise values for the duration of course
depends on the system size, for which we have chosen N =
500 instead of N = 100 from before. During this second stage
the number of groups is reduced and the distribution of groups
changes as plotted in Fig. 10.

B. The structure of social groups

The three different scenarios, percolation, spinodal decom-
position, and nucleation, determine the network structure of
groups, as detailed in the parameter plot of Fig. 7 (bottom).
The above discussion has assumed that all agents can interact
and form links unconditionally. But groups are also structured
by the underlying social process of link formation, which
we described by means of opinions, xi(t ). These are internal
variables of agents that determine whether two agents can
interact, which in turn is the precondition of link formation
and group membership. These opinions are not only changed
in bilateral interactions, they are further influenced by the
group. That led to the concept of an effective opinion that
weights individual opinions against the average opinion of a
group, using an additional parameter α for group influence.

As we have demonstrated in Fig. 7 (top), restrictions in the
interactions of agents, expressed by the tolerance threshold ε,
can lead to very different macroscopic patterns. Instead of one
large connected group, we very often find that several groups
with different opinions finally coexist if ε is small. In this
case, the selection equations [Eqs. (30) and (40)] no longer
hold. At least for the percolation case we are able to derive
a relation, Eq. (14), to determine whether a given initial link
density μ and a given tolerance threshold ε would still allow
for the formation of a large connected group.

If we take the social perspective, then, different from
physics, the final equilibrium state is less interesting than
the dynamics that potentially lead to it. Social systems are
non-equilibrium systems that adapt and evolve before an
equilibrium is reached. Our paper therefore investigates the
principal ability of agents to form one large group, or to
coexist in several separated groups. A state where all agents
are in the same group is rather unrealistic from a social per-

spective. In this respect, the nucleation scenario is the most
promising one, as it leads to a distribution of groups that form
spontaneously and compete for agents to grow.

The nucleation scenario also has the advantage to consider
agents leaving the group if they experience a negative group
utility. Such model features can bridge between our rather
abstract approach and social processes of group formation.
Agents are allowed to constantly reevaluate their belonging to
the social group. We could further consider that agents reeval-
uate their relations to those agents they are linked to. They
could then delete a link if the difference between their current
opinion and the opinions of their group members has reached
a critical threshold [82]. Also more complex decision rules to
establish or to delete a link can be considered [100,101].

Another model feature with relevance to social systems is
the explicit consideration of a finite number of agents and
links. Thermodynamic models of phase transitions usually
assume the limit of infinite systems. We instead address that
social processes build on limited resources, be it available
individuals or the ability to maintain social relations. There-
fore, we decided deliberately to present simulations with 100
or 500 agents. The depletion of these resources couples the
dynamics of different groups on the systemic level, albeit in an
indirect manner. It also decreases the chances for new groups
to form at later stages. Hence, our model reflects the first
mover advantage: groups that form early have a larger chance
to reach a supercritical size or density.

Our model of social group formation also considers that
groups can merge or split into fractions. The merger process,
which is called coagulation in a physical context, is an effec-
tive mechanism to overcome the critical group size because
it increases the group size not incrementally, but in larger
steps. In our model the possibility for mergers is principally
restricted by the opinion dynamics. If we consider a strong
group influence, all opinions inside a group quickly converge
to their group average. If the tolerance threshold is low, groups
with very different opinions can no longer merge, so they
remain in coexistence, as nicely shown in Fig. 6(c). This
indeed has analogies to social or economic systems where
local cultures [55] inside groups or firms impact the success
of mergers and acquisitions.

Fragmentation is not a separate process but follows from
the dissolution of groups, Eq. (23). If a link is removed, then
with a small probability the group breaks into pieces. This
is more likely if groups have a small density. Sparse groups
appear if two conditions are fulfilled: a rather low link su-
persaturation μ close to the percolation threshold and a rather
large ε, i.e., all links are accepted. For small ε, we obtain more
compact groups because links within the group are more likely
than between groups.

We emphasize that one of the key variables of our model,
the group density ρk , is particularly relevant in a social con-
text. In physical systems droplets are described as compact,
homogeneous, spherical clusters with a radius rk and a fixed
density ρα , which is the same for all droplets. Social groups,
on the other hand, are neither compact, nor spherical, nor
homogeneous. They are like small social networks, more pre-
cisely disconnected components of a large social network.
Therefore they need to be characterized by two variables, the
number of agents, nk , and the number of links, mk , which
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together define a time-dependent group density. ρk (t ) in fact
determines the quality, or the fitness, of a social group, which
depends on the relations between group members rather than
on the sheer number of members. Given a fixed group size,
the number of realized relations makes all the difference for
exchanging information, collaborating, and sharing resources.
This has been accounted for in our model by defining a group
utility based on the group density.

While being relevant in a social context, our model allows
for analytic investigations to relate the group density ρk to
different critical densities, ρ̂, ρcr

n (t ), ρcr
n (t ), and ρ̄(t ), which

compress important information about the dynamics of social
groups. In this way we could compactly describe the collective
dynamics of all groups in a selection equation [Eq. (40)] that
allows one to separate early and late influences. In particular,
it formally describes the winner takes all dynamics that is
known from many social and economic systems [14,99].

C. Outlook

As a main conceptual contribution, in our paper we for-
mally introduce the feedback between the formation of social
groups and the opinion dynamics of individuals. According
to the principle of homophily agents interact more if they
are more similar with respect to some features. We capture
these features in a rather abstract notion of “opinion.” Agents
will establish social relations, i.e., links, if their similarity in
opinions allows them to interact. Groups are formed based on
these social relations. Once they are established, they continue
to influence the opinion of agents, in this way impacting the
possibility of agents to form new links. Therefore, in our
model we observe the coevolution between social group struc-
tures and opinions. Different from simple models of network
formation, the probability that two agents form a link is no
longer a global and constant parameter, but (1 depends on the
agents and (2) evolves over time.

In this paper, we have used only a simplified character-
ization of agents by means of a continuous scalar variable,
xi(t ). In a next step, we will extend our model by considering
multidimensional opinions [53]. This is not just an upscaling
of the current model, but will in fact allow for more diverse
group configurations and for new system states. The multidi-
mensional representation reflects the opinion of a single agent
with respect to different issues. Two agents can have similar
opinions about one particular issue, but vastly deviating views
about another issue. This then leads to the interesting question
how agents settle their relations in such cases. Here psy-

chological concepts like dissonance minimization [82,102] or
structural balance theory [20,51,52,103–106] come into play.
With respect to social group formation, such conflicting situ-
ations would allow agents to form a social group with a focus
only on the one issue they agree on, for example, a movement
for environmental protection. But regarding another issue,
agents would join a different group.

To model these more complex situations, we will explore
a multilayer network representation [10,107–111]. The nodes
in each layer, i.e., the agents, are identical, but their relations
in each layer can be different because each layer contains
information about one particular issue only. Decoupled lay-
ers would display a dynamics of group formation similar to
the one discussed in this paper. However, in addition to the
intralayer dynamics, we have to consider the interlayer dy-
namics of coupled layers. That is, how do the social dynamics
of groups and opinions on one layer impact the dynamics
on other layers? Combining multilayer network models with
models of group formation and opinion dynamics will allow
us to address long-standing questions about issue alignment
[53], i.e., how opinions on different issues influence another,
on the emergence of social movements, or on conflict resolu-
tion and polarization of opinions in a novel manner.
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APPENDIX A

Table I summarizes the correspondence between the mech-
anisms incorporated in our model, their rationale and their
social relevance.

APPENDIX B

In this Appendix we summarize the master equation for-
malism for considering the group distribution. The discussion
is restricted to the case of ε = 1 and incremental growth and
dissolution as the only possible transitions.

This perspective is based on P[N, t], the probability to
find the system at time t with a group configuration N.
Here N = [N1,0, N2,1, N3,2, N3,3, . . . , NN,M ] is a vector with
elements Nn,m counting the number of groups of size n with m

TABLE I. Summary of model components.

Opinion formation Group influence Group formation Network formation

Social influence (γ ) Local cultures (α) Communication (b) Randomness (β)
Social relevance

Tolerance (ε) Social norms (α) Maintain group (c) Dunbar’s no. (M)
Restrict interaction Group coherence Cost/benefit Unpredictability

Rationale
Consensus Group relevance Group utility Finite size

Parameters γ , ε α (c, b) or ρ̂ β, (N, M )
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links. With this, the total number of links and agents, Eq. (15),
can be rewritten as

M = m0(t ) +
∑
n,m

Nn,m(t )m,

N = n0(t ) +
∑
n,m

Nn,m(t )n, (B1)

where n0(t ) = N1,0(t ) is the number of free agents as defined
in the main text. The transition rates for growth can then be
written as

w+
n,m[N1,0Nn,m] ∝ 2m0

N2
(nNn,m)n0, (B2)

and the transition rates for spontaneous leaving read

w−
n,m[Nn,m] ∝ nNn,m

N
exp

(
β

ρ̂

ρ

)
. (B3)

Using the above defined transition rates, we can write the
master equation for changes in the group distribution:

∂P(N, t )

∂t
=

∑
N′ 
=N

w[N|N′]P(N′, t ) − w[N′|N]P(N, t ),

(B4)

which in explicit form can be written as follows:

∂P(N1,0, N2,1, N3,2, N3,3 . . . , t )

∂t

= w−
2,1[N2,1 + 1]P(N1,0 − 2, N2,1 + 1, . . . , t ) − w+

1,0[N1,0]P(N1,0, N2,1, . . . , t ) + w−
3,2[N3,2 + 1]

× P(N1,0 − 1, N2,1 − 1, N3,2 + 1, . . . , t ) + w+
1,0[N1,0 + 2]P(N1,0 + 2, N2,1 − 1, N3,2, . . . , t ) − (w+

2,1[N1,0, N2,1]

+w−
2,1[N2,1])P(N1,0, N2,1..., t ) +

N∑
n=3

{w−
n+1,n[Nn+1,n + 1]P(N1,0 − 1, . . . , Nn,n−1 + 1, Nn+1,n + 1, . . . , t )}

+w+
n−1,n−2[N1,0 + 1, Nn−1,n−2 + 1]P(N1,0 + 1, . . . , Nn−1,n−2 + 1, Nn,n−1 − 1, . . . , t )

− (w+
n,n−1[N1,0, Nn,n−1] + w−

n,n−1[Nn,n−1])P(N1,0, . . . , t ). (B5)

The mean number of groups of size (n, n − 1) in case of
incremental growth follows from

〈Nn,n−1(t )〉 =
∑

Ni

Nn,n−1P(Ni, t ), (B6)

where Ni refers to group distributions which have a total
number of N agents. Using the master equation and the
transition probabilities, we can write for the time-dependent
change

d〈Nn,n−1〉
dt

= 〈−w−
n,n−1(Nn,n−1) − w+

n,n−1(n0Nn)

+w−
n+1,n(Nn+1,n) + w+

n−1,n−2(n0Nn−1,n)〉.
(B7)

This equation holds only for n � 2. For n = 1 we have to take
into account both the probability for any group to shrink and
grow, as well as the probability for two agents to form a group
or break apart. We refrain from writing out this longer equa-
tion here. Also, we will drop the arguments of the transition
rates to lighten the notation.

By taking a Taylor expansion for the transition rates, the
following Fokker-Plank equation (only dependent on Nn,n−1

and n0 now) can be found [61]:

d〈Nn,n−1〉
dt

= −
〈

∂

∂n
(w+

n,n−1 − w−
n )

〉

+ 1

2

〈
∂2

∂n2
(w+

n,n−1 + w−
n )

〉
. (B8)

We consider only the first part of this equation, neglecting
fluctuations in the system. Using our transition rates and as-
suming 〈Nn,n−1n0〉 = 〈Nn,n−1〉〈n0〉, the first part can be written
as follows:

d〈Nn,n−1〉
dt

= − ∂

∂n

(
2m0

N2
〈n〉〈Nn,n−1〉〈n0〉

− 〈n〉〈Nn,n−1〉
N

exp β
ρ̂

ρ

)
. (B9)

This can be transformed into a continuity equation, which
describes the in- and outflow of agents into the different
groups:

d〈Nn,n−1〉
dt

+ ∇ · [〈Nn,n−1(t )〉 · ṅ] = 0. (B10)

This finally leads to the change in average group size n, which
was discussed in the main part of the article:

d〈n〉
dt

= 2m0

N2
〈n〉〈n0〉 − 〈n〉

N
exp β

ρ̂

ρ

= 〈y0(t )〉〈n〉
N

− 〈n〉
N

exp β
ρ̂

ρ

= βρ̂〈n〉
N

[
1

〈ρcr
n (t )〉 − 1

〈ρ(t )〉
]
. (B11)
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