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Abstract

Name disambiguation is a complex but highly relevant challenge whenever analysing real-world
user data, such as data from version control systems. We propose gambit, a rule-based disam-
biguation tool that only relies on name and email information. We evaluate its performance against
two commonly used algorithms with similar characteristics on manually disambiguated ground-
truth data from the Gnome GTK project. Our results show that gambit signi�cantly outperforms
both algorithms, achieving an F1 score of 0.985.

1 Introduction

The ease of creating user accounts on the modern internet brings the peculiarity that a single indi-
vidual can be registered under multiple di�erent user accounts. Conversely, it happens that two user
accounts of entirely di�erent individuals appear surprisingly similar, e.g. when the individuals have a
common name. Such ambiguities may occur for user accounts in a wide range of online services, be
it social media, scienti�c publication databases, or version control systems for code. If these ambigu-
ities are not adequately resolved, subsequent studies on citation biases [1, 2] or social relations [3–5]
can be signi�cantly biased [6]. Therefore, various algorithms have been developed to disambiguate
such user accounts by mapping an individual’s di�erent aliases to a unique identi�er. By ensuring that
characteristics describing a single individual are not determined for the di�erent aliases separately,
name disambiguation algorithms represent integral tools in numerous scienti�c disciplines analysing
real-world user data.

In this work, we consider communities of software developers who commit code to Version Control
Systems such as git. The author of a commit speci�es their alias in the form of a user name and an
email address. Thereby, an author often commits code under di�erent aliases. Further, di�erent authors
can have almost identical aliases. A variety of algorithms have been suggested that allow us to disam-
biguate such cases. However, most algorithms require manually curated training data, which is costly
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to obtain for large sets of di�erent repositories. Further, the algorithms often rely on a wide range of
features, including external sources and data about author behaviour, disqualifying this information
for use in subsequent studies to avoid over�tting. Finally, easily applicable reference implementations
of the proposed algorithms are largely missing.

With the present work, we aim to pick up these points by making the following contributions:

• We propose gambit, an author disambiguation algorithm that uses only name and email data.
Such a small amount of required information widens the number of cases to which author dis-
ambiguation can be applied. Thereby, other information can be reserved for subsequent analyses
as it is not used already in a data preprocessing step.

• We evaluate gambit in a comparison study, showing that our method outperforms commonly
used disambiguation algorithms by means of overall disambiguation accuracy.

• We make gambit available as an easy-to-use Open Source Python package available via Pypi
(pip install gambit-disambig).

2 Related Work

Author disambiguation algorithms have been developed in multiple disciplines. For example, in scien-
tometrics, algorithms were developed to disambiguate author names in literature databases [7, 8]. For
empirical software engineering data, ranging from version control systems to mailing lists, a recent
review of existing approaches can be found in [9].

Disambiguation approaches can be divided into exogenous and endogenous approaches [10]. Exoge-
nous approaches aim to optimise their predictive performance by collecting and analysing additional
information not present in the analysed repository, e.g. GPG key, mailing lists, or maintained contribu-
tor lists [11]. Endogenous approaches, on the other hand, aim to perform the disambiguation task using
only the information present in the repository. The set of endogenous methods can be further subdivided
into learning-based and learning free approaches. Learning-based approaches have been shown to out-
perform learning free approaches in a variety of cases [12–14]. However, a signi�cant downside is that
they require manually disambiguated training data for each repository, which is highly labour intensive
to obtain. Further, they often require additional information aside from names and email addresses to
perform the disambiguation [14].

With gambit, we propose a tool for author disambiguation in large sets of repositories for sub-
sequent analysis of author- and team-behaviour. This task requires methods that neither involve (i)
prior training on manually disambiguated data nor (ii) information other than name and email. Two
rule-based methods ful�lling these criteria have been proposed by [15] and [16]. Both algorithms �rst
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perform an initial cleaning and preprocessing step and then extract the email base EB consisting of
the email E up to the “@” symbol. The “Simple algorithm” [15] then matches two aliases if either their
name N or their email base EB are an exact match. Bird et al. [16] further derive the �rst FN and last
names LN of aliases as the �rst and last part of the name N . Using this information, a match between
two aliases, i and j, is detected if at least one of the following conditions holds:

• sim(Ni , Nj) ≥ t ,

• min(sim(FNi , FNj), sim(LNi , LNj)) ≥ t ,

• both FNi(j) and LNi(j) are in EBj(i),

• FNi(j)[0] + LNi(j) is in EBj(i),

• FNi(j) + LNi(j)[0] is in EBj(i),

• sim(EBi , EBj) ≥ t .

Here, sim refers to the Levenshtein similarity shown in Eq. (1) and t is an arbitrary threshold above
which a match is detected. FNi(j)[0] and LNi(j)[0] are the initial letters of the respective name, + con-
catenates two strings, and i(j) means that i and j are used interchangeably.

While notably, the algorithm by Bird et al. [16] shows excellent baseline performance, it tends to
detect false positives when email bases consist of common �rst names [10]. This tendency has also been
reported in the original paper, arguing that “it is much easier during a manual step to split clusters than
to unify two disparate clusters from a very large set” [16].

3 gambit: Overview

With gambit, we propose a disambiguation algorithm that (i) requires no training, (ii) relies only
on name and email data, while (iii) simultaneously reducing the number of false positives compared
to existing algorithms. gambit operates in four consecutive steps that we illustrate in Fig. 1 and
describe in the following. Please note that our algorithm has been developed based on the Apache
Hadoop repository1, but its empirical evaluation is performed for the Gnome GTK project2 to avoid the
potential of over�tting in the results.

1https://github.com/apache/hadoop
2https://github.com/gnome/gtk
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Figure 1: Overview of gambit. After a preprocessing step, features are extracted from name and email infor-
mation, and similarities are computed based on ten rules. Two authors are matched if the average of the top two
similarities matches or exceeds a threshold t .

Preprocessing. In an initial preprocessing step, both the name and email are cleaned from characters
or strings that impede the subsequent matching process. Non-ASCII characters are mapped to their
closest ASCII counterpart. Delimiters such as “+”, “-”, “,”, “.”, “_”, “;”, as well as all instances of camel
case are replaced with whitespaces. All remaining non-alphabetical characters are removed, except
whitespaces and the “@” symbol. All text is converted to lower case, and names of time zones and
common strings such as “jr” or “admin” are removed to obtain an entity’s name N and email E shown
in Fig. 1.

Entity Extraction. We then extract additional entity matching features from both the name and email
information. These include �rst name FN , penultimate name PN , and the last name LN by selecting
corresponding whitespace-separated elements of the nameN . We extract the email base as all characters
in E leading up to the “@” sign.

Similarity Computation. We determine the similarity between di�erent entities based on a set of
ten rules. To compare two strings, s1 and s2, existing algorithms commonly use the normalised Leven-
shtein edit distance [10, 16]

simlev(s1, s2) = 1 −

dlev(s1, s2)

max(|s1|, |s2|)

. (1)

http://www.sg.ethz.ch
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Here, dlev(s1, s2) denotes the Levenshtein edit distance [17] between the two strings, and |s| counts the
number of characters. The authors of [14] found that, for their algorithm, the normalised Levenshtein
edit distance was outperformed by the Jaro-Winkler similarity de�ned as

simjw (s1, s2) = simj(s1, s2) + 0.1l(1 − simj(s1, s2)),

simj(s1, s2) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 for c = 0,

1

3 (

c

|s1 |
+

c

|s2 |
+

c−�

c )
for c ≠ 0.

Here, c is the number of common characters between the strings, � is the number of character trans-
positions, and l is the length of a common pre�x in s1 and s2 up to at most four characters [18]. We will
compare both measures when evaluating our method in Section 4.

The rules based on which gambit matches identities shown in Fig. 1 extend the rules proposed by
[16]. Rules 1-2 compare the full names in terms of similarity as well as equality. With rules 3-5, we
compare �rst, last, and penultimate names. Following the suggestion by [14], we also account for the
potential inversion of names. Rules 6-8 compare the name of an alias i to the email base of j. We match
i and j under three conditions: (i) if the initial of FNi prepended to LNi is a substing of EBj , (ii) if FNi
prepended to the initial of LNi is a substing of EBj , (iii) if both FNi and LNi are present in EBj . Finally,
rules 9-10 compare both the full email as well as the email base. Similarities are only computed if both
compared strings are at least three characters long to prevent coincidental matches, which are more
likely for very short strings. If at least one string is shorter, we directly consider the two strings to be
di�erent. Boolean matches are considered to be 1 when true and 0 when false.

Alias Matching. The result of the similarity computation is a list of similarity values for a given
pair of aliases. Previous approaches commonly match two aliases if at least one of these similarities
surpasses a given threshold t [15, 16]. However, this is prone to detect false positives with commonly
used names. To improve the robustness of our approach, gambit requires the average of the top two
similarities to exceed a similarity threshold t . Nevertheless, there are three cases in which a match
should be detected even if only a single similarity surpasses t : (i) in case the full names are identical, (ii)
in case the full emails are identical, and (iii) if both the �rst name and the last name of an alias appear
in the email base of another alias. Case (i) is ensured by accounting for both name similarity and name
equality in rules 1-2. For cases (ii) and (iii), the similarity computed by the corresponding rules 8 and 9
is multiplied by a factor of 2.

When matching all identities in a repository, we further make use of the transitive property of sim-
ilarity. Hence, if alias A is matched with aliases B and C , we directly consider B and C to match as
well.

http://www.sg.ethz.ch


http://www.sg.ethz.ch

C. Gote, C. Zingg:
gambit – An Open Source Name Disambiguation Tool for Version Control Systems
Version of: March 11, 2021

6/10

0.6 0.8 1

0

0.5

1

a)

similarity threshold t

Simple algorithm

precision
recall

0.6 0.8 1

0

0.5

1

similarity threshold t

Bird et al. algorithm

precision
recall

0.7 0.8 0.9 1

0

0.5

1

b)

recall

pr
ec
is
io
n

Precision-recall tradeo�
Simple Bird et al. gambit (Jaro-Winkler) gambit (Levenshtein)

0.97 0.98 0.99 1

0.9

0.95

1

t = 0.88

t = 0.95

t = 0.9

recall

0.6 0.8 1

0

0.5

1

similarity threshold t

gambit (Jaro-Winkler)

precision
recall

0.6 0.8 1

0

0.5

1

similarity threshold t

gambit (Levenshtein)

precision
recall

0.6 0.8 1

0

0.5

1

c)

similarity threshold t

F
1
sc
or
e

F1 score for di�erent similarity thresholds

0.85 0.9 0.95 1

0.96

0.98

similarity threshold t

Figure 2: Disambiguation performance for the Gnome GTK project against a manually disambiguated baseline.
a) shows precision and recall for di�erent similarity thresholds t . b) presents the tradeo� between precision and
recall, and c) compares all algorithms based on the F1 score.

4 �ality and Performance

We compare gambit to the two other commonly used rule-based disambiguation approaches that
only rely on name and email information: the Simple algorithm [15] and the method proposed by Bird
et al. [16]. Following past studies [10, 15], we used the Gnome GTK project3 to evaluate and compare the
di�erent disambiguation techniques. As a �rst step, we created a disambiguated ground-truth data set.
Creating such a data set entirely manually for Gnome GTK is infeasible, as the repository contains 1896
unique name-email pairs, requiring 1.8 million comparisons. We, therefore, opted for a semi-automated
approach that automatically matches identities with identical names or email addresses. We further
automatically marked all identities with a normalised Levenshtein distance below 0.5 for both name and
email as di�erent. The remaining 10074 identities were manually disambiguated independently by the
two authors of the present manuscript over multiple days. In total, we achieved a close-to-perfect inter-
rater agreement [19, 20] of � = 0.994 for this manual subset. Despite this, the automated part can still
lead to wrong classi�cations, particularly for short strings where the normalised Levenshtein distance
shows higher variability with changes of individual characters. Therefore, we ensured transitivity for
all matches and manually checked all automated matches for strings with less than six characters.

3https://github.com/gnome/gtk, cloned on 2020-10-09 14:22 GMT
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Furthermore, we manually con�rmed a subset of matches for which errors with the tested algorithms
were observed. Overall, this resulted in a ground-truth data set without any obvious errors, containing
2161 ambiguities.

Subsequently, we applied all three algorithms to the name-email pairs and evaluated the results
against the manual ground-truth. For gambit, we evaluated the Jaro-Winkler similarity and the nor-
malised Levenshtein distance as similarity measures. The simple algorithm does not have any hyper-
parameters. For both gambitand the algorithm proposed by Bird et al., we tested multiple similarity
thresholds t between 0.5 and 1. The computation times for each threshold were approximately 4, 7, and
12 minutes for the Simple, Bird et al., and gambit algorithms, respectively4.

Figure 2 shows the results. In Fig. 2a, values for precision p = Tp/Tp+Fp and recall r = Tp/Tp+Fn, computed
using scikit-learn [21], are shown for di�erent similarity thresholds t . Here, Tp , Fp , and Fn represent the
number of true positive, false positive, and false negative classi�cations compared to the ground-truth.
An ideal algorithm simultaneously maximises precision and recall. The tradeo� for our algorithms is
depicted in Fig. 2b. We can see that the Simple algorithm is signi�cantly worse than both gambit and
Bird et al.’s algorithm in terms of recall. Further, while the algorithm described by Bird et al. slightly
outperforms gambit in terms of recall, gambit detects signi�cantly fewer FPs with only a few more
FN s. In other words, gambit increases precision with only slight decreases in recall. This can also be
seen in the F1 score = 2pr/p+r , which is largest for gambit. This score is the harmonic mean between
precision p and recall r , and is shown in Fig. 2c.

When comparing gambit using Jaro-Winkler similarity and normalised Levenshtein distance, we
�nd that the normalised Levenshtein distance reaches high F1 scores for a broader range of similarity
thresholds t . This is due to the Jaro-Winkler similarity primarily considering the similarity between
the start of strings, whereas the Levenshtein distance considers the entire strings. This focus leads to
generally higher similarity scores for Jaro-Winkler, thus requiring a higher similarity threshold t In
terms of F1 score, similarity thresholds above 0.85 all yield excellent results. We expect this �nding to
generalise to other repositories than Gnome GTK ; however, we were not able to con�rm this due to the
large amount of manual labour involved with generating additional ground-truth data sets. Overall,
we recommend using gambit with the normalised Levenshtein distance and a similarity threshold of
t = 0.95.

5 Threats to validity

Creating a manual ground-truth baseline is a highly labour intensive and error-prone process. Further-
more, the �nal decision to match two aliases, e.g. based on identical names, is subjective. Two aliases

4Intel® Core™ i9 7960X, 16C/32T, 2.80GHz base, 4.2GHz boost
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with identical names do not necessarily disambiguate to the same author, and authors use di�erent
names in di�erent contexts or stages of their lives [9, 22]. Therefore, it is impossible to guarantee that
all entries in our ground-truth data are correct. We have made all e�orts to overcome these issues and
make our data available for replication studies; however, the manual ground-truth baseline represents
the biggest threat to validity for our results. Unfortunately, this limitation could only be fully resolved
with additional data on the true aliases that, to the best of our knowledge, does not exist. Therefore,
using a manual baseline represents the best available approach for our study.

Further, due to the large amounts of manual labour involved with creating ground-truth data, we
have only performed our evaluation for a single project. Therefore, at this stage, we cannot make any
performance claims for other projects. However, we note that the evaluation was performed on data
not used in the creation of gambit, hence removing the potential of over�tting for this data set.

6 Conclusion and Outlook

Name disambiguation is a complex but highly relevant challenge whenever analysing real-world user
data, such as data from version control systems. With gambit, we propose a rule-based disambigua-
tion algorithm that only relies on name and email information, hence allowing for a wide area of ap-
plications. We carefully evaluate its performance against the “Simple algorithm” [15] and an algorithm
proposed by Bird et al. [16], two commonly used algorithms with similar characteristics on manually
disambiguated ground-truth data from the Gnome GTK project. Our results show that gambit signif-
icantly outperforms both algorithms in terms of precision and F1 score. Not relying on external infor-
mation or manually curated training sets makes our algorithm highly scalable and enables analyses of
large sets of OSS projects. gambit is publicly available and easily accessible as a Python package.

In future work, we will compare gambit’s performance against exogenous and learning-based al-
gorithms and extend this study to a more extensive set of projects.

Tool Availability, Archival, and Reproducibility

gambit is available via PyPI (pip install gambit-disambig) and as OSS project on
GitHub5. To facilitate the disambiguation of git repositories, gambit is also integrated in git2net,
an Open Source Python package to mine co-editing networks from git repositories [3].

Our implementations of all algorithms used in the evaluation are archived onzenodo.org6. Please
contact us directly for access to the manually disambiguated ground-truth data.

5https://github.com/gotec/gambit
6http://doi.org/10.5281/zenodo.4384646

http://www.sg.ethz.ch
zenodo.org
https://github.com/gotec/gambit
http://doi.org/10.5281/zenodo.4384646


http://www.sg.ethz.ch

C. Gote, C. Zingg:
gambit – An Open Source Name Disambiguation Tool for Version Control Systems
Version of: March 11, 2021

9/10

References

[1] V. Nanumyan, C. Gote, and F. Schweitzer, “Multilayer network approach to modeling authorship
in�uence on citation dynamics in physics journals,” Physical Review E, vol. 102, p. 032303, Sep
2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.102.032303

[2] C. Zingg, V. Nanumyan, and F. Schweitzer, “Citations driven by social connections? A multi-layer
representation of coauthorship networks,” Quantitative Science Studies, vol. 1, no. 4, pp. 1493–1509,
September 2020. [Online]. Available: https://doi.org/10.1162/qss_a_00092

[3] C. Gote, I. Scholtes, and F. Schweitzer, “git2net - Mining time-stamped co-editing networks from
large git repositories,” in 2019 IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR), 2019, pp. 433–444.

[4] E. Sarigol, D. Garcia, I. Scholtes, and F. Schweitzer, “Quantifying the e�ect of editor-author
relations on manuscript handling times,” Scientometrics, vol. 113, no. 1, p. 609–631, March 2017.
[Online]. Available: https://link.springer.com/article/10.1007/s11192-017-2309-y

[5] E. Sarigol, R. P�tzner, I. Scholtes, A. Garas, and F. Schweitzer, “Predicting scienti�c success based
on coauthorship networks,” EPJ Data Science, vol. 3, p. 9, February 2014. [Online]. Available:
http://www.epjdatascience.com/content/3/1/9

[6] M. E. Newman, “Who is the best connected scientist? A study of scienti�c coauthorship networks,”
in Complex Networks. Springer, 2004, pp. 337–370.

[7] R. Sinatra, D. Wang, P. Deville, C. Song, and A.-L. Barabási, “Quantifying the evolution of individ-
ual scienti�c impact,” Science, vol. 354, no. 6312, 2016.

[8] J. Kim, “Evaluating author name disambiguation for digital libraries: A case of DBLP,” Scientomet-
rics, vol. 116, no. 3, pp. 1867–1886, 2018.

[9] I. S. Wiese, J. T. Da Silva, I. Steinmacher, C. Treude, and M. A. Gerosa, “Who is who in the mailing
list? Comparing six disambiguation heuristics to identify multiple addresses of a participant,” in
2016 IEEE international conference on software maintenance and evolution (ICSME). IEEE, 2016,
pp. 345–355.

[10] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. Van Den Brand, “Who’s who in Gnome: Using
LSA to merge software repository identities,” in 2012 28th IEEE International Conference on Software
Maintenance (ICSM). IEEE, 2012, pp. 592–595.

http://www.sg.ethz.ch
https://link.aps.org/doi/10.1103/PhysRevE.102.032303
https://doi.org/10.1162/qss_a_00092
https://link.springer.com/article/10.1007/s11192-017-2309-y
http://www.epjdatascience.com/content/3/1/9


http://www.sg.ethz.ch

C. Gote, C. Zingg:
gambit – An Open Source Name Disambiguation Tool for Version Control Systems
Version of: March 11, 2021

10/10

[11] G. Robles and J. M. Gonzalez-Barahona, “Developer identi�cation methods for integrated data
from various sources,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[12] S. L. Ventura, R. Nugent, and E. R. Fuchs, “Seeing the non-stars: (Some) sources of bias in past
disambiguation approaches and a new public tool leveraging labeled records,” Research Policy,
vol. 44, no. 9, pp. 1672–1701, 2015.

[13] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using active learning,” in Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2002, pp. 269–278.

[14] S. Amreen, A. Mockus, R. Zaretzki, C. Bogart, and Y. Zhang, “ALFAA: Active learning �ngerprint
based anti-aliasing for correcting developer identity errors in version control systems,” Empirical
Software Engineering, pp. 1–32, 2020.

[15] M. Goeminne and T. Mens, “A comparison of identity merge algorithms for software repositories,”
Science of Computer Programming, vol. 78, no. 8, pp. 971–986, 2013.

[16] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email social networks,” in
Proceedings of the 2006 International Workshop on Mining Software Repositories, 2006, pp. 137–143.

[17] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet
Physics Doklady, vol. 10, no. 8, 1966, pp. 707–710.

[18] W. E. Winkler, “String comparator metrics and enhanced decision rules in the Fellegi-Sunter model
of record linkage,” Proceedings of the Section on Survey Research Methods, pp. 433–444, 1990.

[19] J. Cohen, “A coe�cient of agreement for nominal scales,” Educational and Psychological Measure-
ment, vol. 20, no. 1, pp. 37–46, 1960.

[20] J. R. Landis and G. G. Koch, “An application of hierarchical kappa-type statistics in the assessment
of majority agreement among multiple observers,” Biometrics, pp. 363–374, 1977.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[22] J. Svajlenko and C. K. Roy, “A machine learning based approach for evaluating clone detection
tools for a generalized and accurate precision,” International Journal of Software Engineering and
Knowledge Engineering, vol. 26, no. 09n10, pp. 1399–1429, 2016.

http://www.sg.ethz.ch

	1 Introduction
	2 Related Work
	3 gambit: Overview
	4 Quality and Performance
	5 Threats to validity
	6 Conclusion and Outlook

