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We provide an agent-based model to explain the emergence of collective opinions not based on feedback between different
opinions, but based on emotional interactions between agents. ,e driving variable is the emotional state of agents, characterized
by their valence, quantifying the emotion from unpleasant to pleasant, and their arousal, quantifying the degree of activity
associated with the emotion. Both determine their emotional expression, from which collective emotional information is
generated. ,is information feeds back on the dynamics of emotional states and individual opinions in a nonlinear manner. We
derive the critical conditions for emotional interactions to obtain either consensus or polarization of opinions. Stochastic agent-
based simulations and formal analyses of the model explain our results. Possible ways to validate the model are discussed.

1. Introduction

In the past decades, the significance of emotions in opinion
formation and decision making has been recognized by the
scientific community, and its study is mainly pioneered by
the field of behavioral economics and empirical psychology.
Experimental research on individual behavior shows that
emotions fuel information sharing [1], that emotional
arousal drives reactions to become more extreme [2], and
that emotional states frame the way we process information
[3]. Recent results on observational data analysis suggest that
collective opinions and decisions, such as election outcomes
or pricing dynamics, can be influenced by emotional states
like collective mood. A notable example has been the
analysis of mood in Twitter and the stock market [4, 5],
which led to further studies of Twitter emotions in pricing
of other assets like Bitcoin [6].

,e modelling of emotions and opinions has mainly
focused on their interaction at the individual level, mod-
elling how affective and cognitive mechanisms influence
each other [7]. ,is has left aside the modelling of the

interplay between emotions and collective opinions, mainly
due to the absence of data to test those models and the
technical challenge to formulate and test hypotheses on
them. Our aim in this article is to fill that gap, proposing a
computational model of collective opinions and emotions.
Such a model, when designed based on plausible and testable
assumptions, can be used as a hypothesis generator to guide
future empirical research [8].

We apply the principles of a modelling framework of
collective emotions in which the collective state arises
through interactions via a common information field and
not through one-on-one interactions [9]. ,e individual
dynamics of this model have been calibrated against re-
sults from self-reports [10] and empirical data on the
dynamics of emotional interaction [11]. We model how
the opinions of agents are influenced by a common in-
formation field accessible to all agents, capturing this way
how opinions evolve as a function of shared emotions. We
present analytical and numerical results on this model
that constitute stylized facts that can be tested in future
empirical studies.
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2. Background

Emotions are psychological states of high relevance for the
individual that imply cognitive and physiological effects.
,ey are closely related to our behavior and howwe interpret
our own actions [12]. Current research in affective science
conceives emotions through their measurable components
or dimensions, proposing models to quantify and measure
them. Among these models, the component process model
of emotions [13] conceptualizes emotions as composed of
sequential appraisal processes, such as evaluating if an event
is positive or adverse, and parallel processes that include
physiological dynamics, action tendencies, and subjective
feelings.

In terms of measurement of emotions, the circumplex
model of core affect [14] focuses on emotions on a short
timescale in which they do not have a clear target. Emotions
in the circumplex model consume energy in the organism
and strongly affect cognition and action tendencies, like
verbal expression. ,e circumplex model provides the
quantitative basis for our approach: emotions are quantified
by a dimension of valence (pleasure associated with the
emotion) and of arousal (degree of activity induced by the
emotion). ,ese two dimensions allow the mapping of
emotions in a circle that captures a large amount of the
variance of emotional experience [15]. While further di-
mensions are informative of the experience of emotions, like
potency and unpredictability [16], valence and arousal have
prevailed as the two major factors to measure short-lived
emotional states. Recent research has modelled emotions as
dynamical systems. For example, Sander et al. [17] modelled
emotional fight-or-flight reactions as cusp catastrophes, and
empirical studies have calibrated the internal relaxation and
variation dynamics of emotions against empirical data
[10, 18, 19].

,e emotions of humans do not exist in isolation and
often collective emotional states are triggered or emerge in a
crowd. Collective emotions are defined as emotional states
shared by large amounts of people at the same time [20].
Research on collective emotions, while learning from
established works from social psychology and sociology, is
still a growing field [21, 22]. ,e hyperlens model of social
regulation of emotion is an adaptation of previous models of
social factors of emotions to capture collective aspects of
emotional life [23]. ,is model calls research to “get out of
the lab” and investigate collective emotions in the natu-
ralistic scenarios where they appear. Studies on shared
emotions in collective gatherings have shown the long-term
effects of these collective emotions for the feelings of social
cohesion and identity of those involved [24]. Similarly
collective emotions and group-based emotions play key roles
in intergroup conflicts [25].

,e availability of data produced by the digital society
motivated the study of collective emotions in online com-
munities and social media. Collective emotions have been
analyzed through sentiment analysis of real-time group
chats [26], product reviews [27], and of forum discussions
[28]. To understand their emergence and dynamics, the
Cyberemotions modelling framework was designed to

simulate collective emotions in a vast variety of online media
[9]. ,e Cyberemotions framework was designed to be
testable in both controlled experiments and observational
analyses of digital traces, following a wider trend of cali-
brating agent-based models against large-scale datasets [29].
Models in the Cyberemotions framework have been used to
explain polarization of emotions in product reviews [27],
collective emotions in chatrooms [26, 30] and in blogs [31],
and emotion spreading in the MySpace social network [32].
Further applications of this framework have focused on
modelling how bots and dialog systems could drive collective
mood in a discussion [33–35] and to drive the emotion
dynamics of 3D virtual humans in real-time interaction [36].
We follow the Cyberemotions framework in our model
design to produce generalizable and testable formulations
that can be put in reference to previous empirical and an-
alytical results.

While such results from data-driven modelling of
emotions were quite convincing, recent proposals to for-
mally relate emotion dynamics to opinion dynamics have
received much less evidence and support. Opinion dynamics
itself is an established field of research and one of the areas,
where methods from statistical physics have been success-
fully applied to model social phenomena [37, 38]. A highly
relevant question tackles the emergence of consensus and
polarization, motivating bounded confidence models
[39–41], information accumulation systems in modular
networks [42], and studies of the role of biased assimilation
and assortativity in the polarization of opinions [43, 44].

To link emotions and opinion polarization, recent
computational models simply rephrased the dimension of
valence as opinion, to then study cusp catastrophes of state
changes depending on arousal [45, 46] and on tolerance
parameters inherited from bounded confidence models [47].
To date, what is missing is a model that includes both the fast
dynamics of emotional states and the slower dynamics of
opinions in an integrated approach that can explain the role
of emotions in opinion polarization. ,is needs to be done
based on principles testable in psychological studies and
observational analyses, rather than recasting previous
models by simply replacing the terminology of opinions for
the one of emotions. We aim to fill this gap by formulating
such model and providing an analysis of its dynamics,
opening new research questions for future empirical
research.

3. Agent-Based Model

3.1. Modeling Emotional Dynamics. ,e main focus of our
model is to explain the evolution of opinions based on
emotions. Precisely, we do not assume that agents respond to
the opinions of other agents, directly. Instead, we assume that
the expression of opinions is tightly coupled to the ex-
pression of emotions, and these emotions in fact influence
other agents. ,is allows us to build on our previously
developed agent-based framework of emotional influence
[9]. It has proven to describe collective emotional states in
different social systems [26, 27, 31, 35].
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3.1.1. Emotional Information. Here, we only recap the core
dynamics of our agent-based framework of emotional in-
fluence, schematically shown in Figure 1. ,e horizontal
layer represents the agent. Its emotion is characterized by the
two dimensions valence v and arousal a. Both determine the
content of the written expression s, which contributes, e.g.,
to an online discussion, as follows:

si(t) � s sign vi(t)􏼈 􏼉Θ ai(t) − τi􏼂 􏼃. (1)

Agent i makes an individual contribution si if its arousal
ai(t) exceeds a given individual threshold τi. Θ[x] is the
Heaviside function: Θ[x] � 1 only if x≥ 0. ,e threshold τi

is a random value selected uniformly from an interval
[τmin, τmax]. ,is assumption is aligned with previous
models in this framework [9] and matches empirical results
in which the probability to participate in empirical dis-
cussions grows steadily with arousal after a minimum value
[11]. If an agent expresses itself, the emotional content of
that contribution results from its valence vi at that time,
precisely from the sign of its valence, i.e., positive or neg-
ative, but the amount of the contribution, s, is a parameter
equal for all agents.

,e emotional information generated this way by all
agents participating is contained in the information field
h(t). It consists of two components, h+(t) and h−(t), which
contain the emotional expressions with positive or negative
valence, respectively. ,e dynamics for each component is
given by

dh±
dt

� −c±h±(t) + sN±(t) + I±(t), (2)

where h± represents eitherh+ or h−. It is increased by all
agents, N±(t), that make a positive/negative contribution
(s) at time t, but can also decay over time at a rate c±, which
reflects the decay of attention for older information. For
simplicity, we assume that s is the same across agents, but
future model can include heterogeneus impact following the
patterns captured by Social Impact ,eory [48, 49]. I±(t)

captures emotional information resulting from external
influences, e.g., influences from the media, but is neglected
in the following.

We further define

h(t) � h+(t) + h−(t);

Δh(t) � h+(t) − h−(t).
(3)

,is way, the total information field h(t) accumulates
the emotional expressions of all agents in a weighted
manner, i.e., with some memory because of the exponential
decay. h(t) can be seen as a measure of the activity of the
agents, as it directly builds on their contributions. On the
other hand, Δh(t) is a measure of the average emotional
charge, i.e., the average valence of the information field.

Dynamics of valence and arousal: As indicated in Fig-
ure 1, the information field further influences the agent,
affecting the individual valence and arousal. Hence, the
vertical layer represents the indirect emotional communi-
cation between agents, i.e., their coupling by means of the
emotional information field. ,is requires us to determine

how the individual valence vi(t) and arousal ai(t) are af-
fected by the emotional information h. For the dynamics of
both variables, we have proposed stochastic equations that
follow the modelling framework of Brownian agents [50],
i.e., we have a superposition of deterministic and stochastic
influences:

dvi(t)

dt
� −cvvi(t) + Gv + Avξv(t),

dai(t)

dt
� −caai(t) + Ga + Aaξa(t).

(4)

Here, Av and Aa denote the strength of the stochastic
influences, whereas ξv(t) and ξa(t) are numbers randomly
chosen from a standard normal distribution. ,e damping
constants cv, ca ensure that in the absence of any influences,
both valence and arousal of an agent relax in the course of
time (silent mode). ,e terms Gv and Ga are nonlinear
functions to capture the influence of valence and arousal, and
the available emotional information h as given in equation (3).
To specify them, we use the general form of a power series:

3Gv h±(t), vi(t)􏼂 􏼃 � h±(t) 􏽘
n

k�0
bkv

k
i (t) � h±(t) b0 + b1vi(t)􏼈

+ b2v
2
i (t) + b3v

3
i (t)􏽯,

Ga h(t), ai(t)􏼂 􏼃 � h(t) 􏽘
n

k�0
dka

k
i (t) � h(t) d0􏼈

+ d1ai(t) + d2a
2
i (t)􏽯.

(5)

,is approach matches the observed dynamics in ex-
periments of emotion interaction in online media [11].
Higher exponents in the above polynomials were not found
to be informative in regression analysis of emotion changes
during online interaction, and the value of parameters in the
above equation can be chosen with respect to the observed
empirical dynamics.

Regarding the sign and value of the coefficients bk, dk, we
just summarize the detailed discussion in [9]. For the dy-
namics of valence, we have considered contributions up to

a s v

h

I

Figure 1: Schematic representation of emotional influence in our
agent based model [9]. ,e horizontal layer describes the gener-
ation of an emotional expression (s) dependent on the valence (v)

and the arousal (a) of the agent. ,e vertical layer describes the
generation an emotional information field (h) from such ex-
pressions. I denotes possible external events generating emotional
information. ,e emotional field h then influences the valence and
arousal of all other agents. ,e formal expressions for these in-
fluences are given in Section 3.1.
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3rd order. If we want to ensure a “silent mode,” b0 � 0 has to
be chosen. Further, b2 � 0 if we want to avoid a built-in
preference for either positive or negative valence values.
With this, we have for the dynamics of valence [9]

dvi(t)

dt
� b1h± − cv􏼂 􏼃vi(t) + b3h±v

3
i (t) + Avξv(t). (6)

To prevent a valence explosion, in this dynamics b3 < 0,
i.e., a saturation behavior for large valence values, has to be
chosen. With this, we further see that nontrivial solutions
v≠ 0 can be only obtained if b1 > 0. Specifically, b1 > cv/h±
has to be reached.,is condition is likely met for large values
of the emotional information h±, i.e., already from this
condition, we can expect a transition toward a strong
emotional regime (characterized by large absolute values of
valence) if the emotional information is sufficiently large.

For the dynamics of arousal, we have considered con-
tributions up to 2nd order, i.e.,
dai(t)

dt
� d1h(t) − ca􏼂 􏼃ai(t) + h(t) d0 + d2a

2
i (t)􏽮 􏽯 + Aaξa(t).

(7)

Our model requires a small initial positive bias, d0 > 0, in
order to start the communication process in the absence of
previous interactions. To allow for solutions characterized by
at least two different activity levels (low and high arousal),
we further have to choose d1 ≠ 0 and d2 ≠ 0. ,e expected
collective dynamics then very much depends on the sign of
d2. For d2 < 0, the arousal dynamics becomes saturated. If
this saturation level is above the individual threshold τi, the
agent will generate an emotional expression and ai is set back
to zero afterwards. If, at that point, fluctuations push the
agent’s arousal to negative values, it will not return to
positive arousal again. Hence, we obtain a scenario where
agents express their emotions most likely only once. ,is
may lead to collective emotions, but not repeatedly.

For d2 > 0, however, we may obtain two different sta-
tionary solutions with negative arousal. At low levels of
emotional information h(t), e.g., after some silent periods,
fluctuations are able to push the agent’s arousal to positive
values, from where a new communication cycle starts.
Hence, we obtain a scenario in which waves of collective
emotions over time can be expected.

We note that in both cases, fluctuations play an im-
portant role in establishing an active regime. ,ey first push
agents to a positive arousal which is then amplified by the
positive feedback, until it reaches the threshold. ,is then
generates emotional expressions that establish a commu-
nication field which in turn feeds back on the agent’s valence
and arousal. In our model, valence decides about the
“content,” determining the sign of the emotional informa-
tion generated.Arousal, on the other hand, decides about the
activity pattern.

3.2. Modeling Opinion Dynamics. We now have to specify
how the emotional interaction described above influences
the dynamics of opinons. We will proceed in two steps: first

we introduce the dynamics of opinions and subsequently the
coupling between opinions and emotions.

Specifically, our model shall explain the polarization of
opinions. In politics, such a polarized state can be illustrated
by the opposition between democrats(D) and repub-
licans(R), which each represent particular opinions towards
a given set of subjects. Obviously, in this context, the opinion
θi(t) of a particular agent i at time t cannot be represented as
a binary variable, e.g., θi ∈ −1, +1{ }, as this would imply that
a disagreement with R automatically translates into an
agreement with D. Also, to extend the opinion space to
include a neutral opinion, e.g., θi ∈ −1, 0, +1{ }, does not
really solves the problem, as it neglects the heterogeneity of
agents with respect to their opinions. ,erefore, a contin-
uous variable θi ∈ (−1, +1) would be the most appropriate
approach.

Given that opinions are continuous variables, consensus
has to be defined as a certain (narrow) range of opinions or,
more precisely, as a certain distribution of opinions,
P(θ, σ2), with a mean value θ and a (small) variance σ2.
Polarization, on the other hand, should be defined by a
bimodal distribution of opinions P(θ), with a large variance
σ2. ,e two distant peaks represent the polarized opinions,
while modest opinions in the middle range are less frequent.

To specify the dynamics of opinions, we start with the
general ansatz of a power series already employed in
equation (5).

dθi

dt
� 􏽘

n

k�0
αkiθ

k
i (t) + Aθξθ(t), (8)

which postulates a nonlinear feedback of the current opinion
of an agent on the change of this opinion. ,e power series
accounts for the fact that we need additional assumptions
that later can be encoded in the coefficients αki. Aθξθ(t) is a
stochastic term, to consider random influences on the
opinion.

For our discussion, we will use terms up to 3rd order
from the power series. Neglecting individual differences and
stochastic influences for the moment, we can express the
opinion dynamics as

dθ(t)

dt
� α0 + α1θ(t) + α2θ

2
(t) + α3θ

3
(t). (9)

To discuss the possible stationary solutions, dθ/dt of
equation (9), for the moment we assume that α0⟶ 0 and
α2⟶ 0. ,en, we find

􏽢θ
(1)

� 0;

􏽢θ
(2,3)

� ±
����

−
α1
α3

􏽲

.

(10)

I.e., to obtain nontrivial values for the opinion, α1 and α3
have to be of opposite sign. ,e two possible cases are il-
lustrated in Figure 2, where dθ/dt is plotted against θ
according to equation (9). We note that for α3 > 0, α1 < 0
solutions with extreme opinions are always instable. In
particular, there is a force toward the neutral opinion θ � 0,
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i.e., it would be difficult to explain polarization of opinions
based on such a parameter constellation.

For α3 < 0, α1 > 0, on the other hand, we find that there
can be a stable coexistence of extreme opinions. Hence, in
the following, we choose α3 < 0. ,is also accounts for a
saturation dynamics in the case of extreme opinons. With
that, it is obvious that we will have only one possible solution
for the opinion, i.e., 􏽢θ

(1)
� 0, if α1 < 0. However, if α1 > 0, we

will find bimodality, i.e., always two opposing opinions,
whereas the neutral opinion 􏽢θ

(1)
� 0 is instable. ,is is the

case of polarization, we are interested in. ,e corresponding
bifurcation diagram is shown in Figure 3(a), where we vary
a1 as the control parameter.

To understand the impact of a0 ≠ 0 on the opinion
dynamics, let us now fix α1 > 0, i.e., we allow for polarized
opinions in principle. For simplicity, we still neglect
a2⟶ 0, but we will include a nonnegligible influence a2 ≠ 0
later in the discussion. ,e corresponding bifurcation dia-
gram is shown in Figure 3(b), where we keep a1 fixed, but
vary a0 as the second control parameter. If α0 > 0 and |α0| is
large, then we find only one stationary solution for opinion,
which is negative, i.e., 􏽢θ

(2)
� −􏽢θ. If α0 < 0 and |α0| is large,

then we find only one stationary solution for opinion, which
ispositive, i.e., 􏽢θ

(3)
� +􏽢θ.

For intermediate values of |α0|, we find a regime where
there is bimodality of the opinions with different weights of
the positive or negative solution and instable solutions to
separate these. Hence, dependent on the concrete values of
αk, we can expect regimes in which we find a coexistence of
polarized opinions, but as well regimes where only one
opinion emerges.

3.3. Nonlinear Coupling between Emotions and Opinions.
In order to couple the opinion dynamics to the emotional
interactions of the agents, we need to determine how the co-
efficients αk may depend on emotions. We set
α1(t)∝ h(t) − hbase, i.e., make it proportional to the overall
activity in emotional interactions, expressed by the value of the
emotional field. ,is activity has to overcome some threshold
value expressed by hbase, in order to allow for a sufficient
coupling. Considering a small baseline value hbase, without
activity, i.e., without emotional emotional information, α1 is
negative and there is only a neutral opinion, according to the
above discussion. But high activity, i.e., large emotional infor-
mation, will drive α1 to positive values, to allow for bimodality.

In our model, α2 and α3 do not depend on the emotional
dynamics. α2 maybe close to zero. It can be positive or
negative, this way generating a global bias toward left/right
opinions. α3 < 0 determines the saturation level of the
opinions. In agreement with equation (10), the smaller |α3|,
the larger the possible polarization of opinions.

,e important parameter for the coupling between
emotions and opinions is α0, for which we assume
α0(t)∝ − h(t)v(t). If the emotional activity, expressed by

h(t) is very high and the average emotion v(t) is either very
negative or very positive, then there is likely only one
opinion, which is also very likely very negative or very
positive. Precisely, if v< 0 and h is high, then α3 > 0 and |α3|
is large and we find 􏽢θ

(2)
� −􏽢θ. If v> 0 and h is high, then

α3 < 0 and |α3| is large and we find 􏽢θ
(3)

� 􏽢θ. In accordance
with Figure 3(b), for moderate values of v and h we can
expext bimodality, i.e., a polarization of opinions.

In conclusion, the dynamics of the opinions read now

dθ(t)

dt
� −c0h(t)v(t) + c1 h(t) − hbase􏼂 􏼃θ(t) + α2θ

2
(t)

+ α3θ
3
(t) + Aθξθ(t),

(11)

where c0, c1 are some proportionality constants. ,ey are
chosen between 0 and 1 to mitigate the influence of the
corresponding terms.

Relations to the bounded confidence model: To further
understand this dynamics, let us neglect all small or higher-
order terms and focus on the core dynamics, which reads for
an individual agent i:

dθi(t)

dt
� h(t) c1θi(t) − c0v(t)􏼂 􏼃. (12)

For the mean opinion in the agent population, we find

dθ(t)

dt
�

1
N

􏽘
i

dθi(t)

dt
� h(t)

1
N

􏽘
i

c1θi(t) − c0v(t)⎡⎣ ⎤⎦.

(13)

,is leads, in equilibrium, dθ/dt � 0, to θ � (c0/c1)v, and
the opinion dynamics, equation (12), simplifies to

dθi(t)

dt
� μ θi(t) − θ(t)􏽨 􏽩, (14)

which is precisely the bounded confidence dynamics with
μ � c1h(t). ,at means, the higher the activity as measured by
h(t), the faster the convergence toward themean. A noticeable
difference: in the bounded confidence model, agents only
interact if |θi − θj < ε|. In our case, all agents interact through
the communication field h(t), more precisely via the mean
valence v(t). In the following, we make use of the fact that the
average valence v can be approximated by the difference in the
two field components, h+, h−, equation (3) and choose

v(t) � c0Δh(t), (15)

which reduces the number of variables and parameters.
Very similar to the bounded confidence model, we

should expect scenarios that can lead to consensus char-
acterized by a unimodal opinion distribution. However, as
we already know from the above discussion, the inclusion
of the terms α2, α3 neglected in this derivation may lead to
other scenarios of coexistence characterized by a bimodal
opinion distribution. Hence, while α0 and α1 are essential
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to couple the opinion dynamics to the emotion dynamics,
α2 and α3 may decide about the level of polarization
reached.

4. Results

4.1. Agent-Based Simulations. We first present the results of
agent-based computer simulations, to verify that the model
works as expected. ,e parameter values not explicitly
mentioned in the following are chosen, in accordance with
[11], as follows:

cv � 0.5,

b1 � 1,

b3 � −1,

Av � 0.3,

ξv ∼ N(0, 0.5)

ca � 0.9,

d0 � 0.05,

d1 � 0.5,

d2 � 0.1,

Aa � 0.3,

ξa ∼ N(0, 6)

ch � 0.7,

s � 0.6,

hbase � 0.1

τmin � 0.1,

τmax � 1.1,

N � 100,

δt � 0.2

c0 � 0.1,

c1 � 1,

Aθ � 0.05.

(16)

Figure 4 shows, in the left panel, the opinion trajec-
tories of individual agents over time and, in the right
panel, the distribution of opinions after a sufficiently long
time. We note that, because the model is intrinsically
stochastic, we do not reach a stationary distribution in the
strict sense.

As the first observation, we find indeed the polarization
of opinions that were initially close, i.e., drawn from a normal
distribution N(μ, σ2) � N(0, 0.3). ,is was expected be-
cause the range of parameters was adjusted such that a
polarization regime emerges. However, we emphasize that
some of the αk, namely, α0 and α1, are in fact not constants,
but functions of the emotional field components h+, h−

which in turn depend on the agents’ individual valence and
arousal. Hence, these “parameters” were not chosen, but
their value emerged from the emotional interactions be-
tween agents. Moreover, these values are not fixed but

fluctuate over time according to the emotional dynamics.
,is leads to the nonstationary opinion dynamics observed.

As the second observation, we see that the number of
agents with positive and negative opinions can differ sig-
nificantly dependent on the parameter α2. Although it is
small, it generates a global preference for either left or right
opinions. Consequently, we find also the emergence of a
minority/majority in the agent population. ,is is shown in
different heights of the peaks of the bimodal distributions.

Eventually, we can also obtain scenarios in which
consensus is reached, i.e., instead of a bimodal opinion
distribution, we find a unimodal distribution. ,is is illus-
trated in Figure 5 for a consensus around the neutral opinion
and a biased opinion.

4.2. Critical Transitions toward Polarized Opinions. To fully
understand the role of the coefficients αk in equation (9), we
now focus on the so-called phase portrait. Different from
Figure 2, which plots dθ/dt against θ, the phase portrait
investigates d2θ/dt2 against dθ/dt. With equation (9), the
two variables of the phase portrait follow the dynamics:

dθ(t)

dt
� κ(θ) � α0 + α1θ(t) + α2θ

2
(t) + α3θ

3
(t),

dκ(θ)

dt
� κ(θ) α1 + 2α2θ(t) + 3α3θ

2
(t)􏽨 􏽩.

(17)

,ese two coupled equations can be solved numerically
using a 4th order Runge–Kutta method. ,e results are
shown in Figure 6. Stationary solutions of the opinions are
given by κ(θ) � 0. But, as the distribution of the colored
squares along this horizontal line in Figure 6 verifies, the
solutions concentrate on the left/right end of the horizontal
line, indicating polarized opinions. ,e middle-ranged
values of θ resulting from κ(θ) � 0 are in fact unstable
stationary solutions.

,e range of these unstable solutions can be obtained by
setting [α1 + 2α2θ(t) + 3α3θ

2(t)] � 0 in equation (17). As
the result, we find

κ � 0 is

stable, if θ< θ−,

instable, if θ− < θ< θ+,

stable, if θ+ < θ,

⎧⎪⎪⎨

⎪⎪⎩
(18)

where θ+ and θ− follow from the above quadratic equation:

θ± � −
α2
3α3
±

1
3α3

D;

D �

���������

α22 − 3α1α3
􏽱

.

(19)

,ese values are clearly indicated in Figure 6 by the two
(empty) vertical regions around θ± ≈ ±0.5 in which the
arrows of the vector field change their direction.

So where do agents end up with their opinions de-
pendent on their initial conditions, if we only consider the
deterministic dynamics? ,is is answered by the separatrix
also depicted in Figure 6 as the thick-dashed line. Agents
starting with initial conditions above the separatrix will tend
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to obtain a positive θ in the long run, while agents starting
with initial conditions below the separatrix will reach a
negative θ. ,e precise equation for the separatrix is given by

S(θ) �

α−
0 + α1θ + α2θ

2 + α3θ
3, if θ< θ−,

0, if θ− < θ< θ+,

α+
0 + α1θ + α2θ

2 + α3θ
3, if θ+ < θ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

,e only difference in the expression is in the values α−
0 ,

α+
0 , which, when taken at first order in α2, can be reduced to

α ±0 �
−2α32 + 9α1α2α3 ± 2α22D∓ 6α1α3D

27α23
≈
3α1α2 ∓ 2α1D

9α3
.

(21)

It is important to notice that the dynamics captured by
the phase portrait, shown in Figure 6, does not depend on α0.
,e coefficient α0 merely selects a solution curve and can be
seen as a vertical shift in the diagram.

5. Discussion

In this paper, we have provided a model to formally link the
dynamics of emotions to the dynamics of opinions. We
follow an agent-based approach, that is, we focus on the
emotions and opinions of individual agents with heteroge-
neous properties. Our research interest is to explain the
emergence of collective opinions based on the emotional
interaction between agents. More specifically, we want to
understand under which conditions we obtain consensus,
i.e., the emergence of one common opinion (reflected in a
narrow opinion distribution), or polarization, i.e., the
emergence of two opposing common opinions (reflected in a
bimodal opinion distribution). As the interaction mecha-
nism, we do not assume a feedback between different
opinions, which would be the most simple way to obtain the
two distinct opinion distributions. Instead, our main as-
sumption is that the dynamics of opinions is driven by the
dynamics of emotions.

3

2

1

0

–1

–2

–3

dΘ
/d
t

–1.0 –0.5 0.0 0.5 1.0
Θ

α3 > 0 α1 < 0

(a)

3

2

1

0

–1

–2

–3

dΘ
/d
t

–1.0 –0.5 0.0 0.5 1.0
Θ

α3 > 0 α1 < 0

(b)

Figure 2: Plot of equation (9) with a0 � α2 � 0 for two different parameters constellation for α1, α3. Stationary solutions for the opinions are
given by colored dots. ,e neutral opinion (red) is an instable solution for α3 < 0, α1 > 0 and a stable solution in the opposite case. For the
extreme opinions (green) the inverse stability holds.
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Figure 3: Bifurcation diagrams: (a) α0 � α2 � 0. For α1 > 0, the neutral solution becomes unstable and two new stable solutions appear.
(b) α1 � 2, α2 � 0. For small values of |α0|, two stable solutions coexist.
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Following established measures from social psychology,
the dynamics of emotions is characterized by two agent
variables, valence, the pleasure associated with emotions and
arousal, the activity associated with emotions. Both variables
determine the emotional expression of agents, from which
collective emotional information is generated. ,is is
quantified by two aggregated and time-dependent variables,
the emotional field h(t) and the average valence, v(t). ,ese
two variables from the emotional interaction feedback on
the individual opinion dynamics in a nonlinear manner. Our
formal model makes transparent under which critical
conditions for the emotional interaction, we can expect a

polarization of opinions, without assuming a direct inter-
action on the level of opinions.

Our modelling approach fits a general framework to
model active matter [38], a term to denote systems with the
ability of self-organization, active motion, and structure
formation, provided a critical supply of energy. In our case,
the driving variables describe the emotional state,
ai(t), vi(t)􏼈 􏼉 composed of valence and arousal, whereas the
driven variable is the individual opinion, θi(t). Different
from other approaches, our model respects the fact that
emotions and opinions evolve on two different time scales.
Emotions relax faster than opinions, i.e., they evolve on a
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Figure 4: (a, b) Opinion trajectories. (c, d) Opinion distribution at t � 100. (a, c) α2 � 0, (b, d) α2 � 2, other parameters: α3 � −5.
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Figure 5: Opinion trajectories for the case of consensus. (a) α2 � 0, hence the neutral opinion θ � 0 is obtained. (b) α2 � 4; hence, a global
bias toward positive opinions exists.
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shorter time scale, and the resulting values for the mean
valence and the emotional field subsequently drive the
evolution of opinions.

Validation scenario: Our investigations point to real-
world mechanisms in the formation of opinions which, in
addition to rational considerations, are very much depen-
dent on sentiment. Because the measurement of emotions is
simpler than a corresponding measurement of opinions (see
Section 2), our model can be potentially validated against
data. For instance, we are able to measure the emotional
information from online communication in fora. From the
user comments in fora, valence can be quantified by means
of refined sentiment analysis tools, such as lexicon-based
techniques. ,is would allow to estimate v as a real value
between −1 and 1. To estimate the value of the emotional
information h(t), we can use the total amount, or even a
time series, of comments. ,is would also allow to estimate
values for the parameter c for the relaxation dynamics.

In order to validate the link between emotion dynamics
and opinion dynamics, we also need to estimate the po-
larization of opinions. Several previous works have analyzed
polarization as manifested in social media and digital traces
[41, 51–54]. Here, we see three avenues on how polarization
has been analyzed and how it can be used to validate our
model:

Polarization from the final amount of likes/dislikes:
,is dichotomoy constrains opinions as strictly positive
or negative, not neutral. Data, e.g. from Reddit or
Youtube [55–57] allows us to calculate the ratio of
agents with positive and negative opinions and to link
this ratio to different collective emotion scenarios
(expressed by h and v).
Polarization from the coexistence of positive and
negative expressions of opinions: Using sentiment

analysis methods, we can estimate the polarization of a
discussion in terms of the simultaneous presence of
positive and negative expressions [58]. For very big and
longitudinal data, we can obtain the final distribution of
opinions P(θ), to calculate the overall polarization.
Changes in the distribution and the subsequent po-
larization measure could then be related to changes in
the emotional information.
Polarization from the existence of network compo-
nents: ,e online communication between users can be
represented as a social network, on which we can
perform a community analysis, to detect communities
with different opinions [6]. ,is method makes sense if
links signal agreement or endorsement, like retweets or
follower links.

Extension to multi-dimensional opinion space: Our
model so far considers that opinion is a scalar, i.e. there is
only one opinion per agent, which is with respect to one
subject only. ,is one-dimensional description already
grafts the dichotomy in favor/against into the opinion
space. In most real situations, however, one could agree
with individual i on one particular subject and with j on
another one. Hence, more complexmixed opinions should
be possible in an extension of our model. For this we could
redefine the opinion of agent i as a
vectorθi(t) � θi|1(t), θi|2(t), . . .􏽮 􏽯, where θi|n(t) expresses
the opinion of agent i towards subject n at time t. It then
depends on the context how emotions drive opinions in
different dimensions.

We emphasize that a multi-dimensional opinion space
exacerbates the problem of consensus, i.e. the convergence
toward a common opinion. Convergence along one di-
mension does not necessarily implies agreement on other
subjects. On the contrary, agents which agree on given
subjects often choose to disagree on other subjects, to
distinguish themselves from other agents. Hence, we
expect that instead of consensus we frequently find co-
existence of (mixed) opinions. In developed democracies
such as Switzerland, this has lead to the emergence of a
political space with many parties coexisting, which opens
the possibility to form alliances regarding certain deci-
sions [6].

It is an open question how to define a multidimensional
polarization measure based on mixed opinions. ,is will be
addressed in a subsequent publication. Another open
question regards the link of such measures to available data.
For this, we could consider a topic model to reduce the
dimensionality of the opinion space. With a smaller number
of opinion dimensions, we can then test correlations to
identify additional polarization levels.
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