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Abstract

The unsupervised detection of anomalies in time series data

has important applications in user behavioral modeling,

fraud detection, and cybersecurity. Anomaly detection has,

in fact, been extensively studied in categorical sequences.

However, we often have access to time series data that repre-

sent paths through networks. Examples include transaction

sequences in financial networks, click streams of users in net-

works of cross-referenced documents, or travel itineraries in

transportation networks. To reliably detect anomalies, we

must account for the fact that such data contain a large

number of independent observations of paths constrained

by a graph topology. Moreover, the heterogeneity of real

systems rules out frequency-based anomaly detection tech-

niques, which do not account for highly skewed edge and

degree statistics. To address this problem, we introduce

HYPA, a novel framework for the unsupervised detection of

anomalies in large corpora of variable-length temporal paths

in a graph. HYPA provides an e�cient analytical method

to detect paths with anomalous frequencies that result from

nodes being traversed in unexpected chronological order.

1 Introduction

Anomaly detection refers to the problem of finding “pat-
terns in data that do not conform to a well-defined
notion of normal behavior” [14]. The importance of
anomaly detection techniques rests on the fact that
anomalous patterns may carry valuable meaning. Ex-
amples include anomalous usage or tra�c patterns used
to detect cyberattacks, anomalous sensor readings that
may identify imminent faults in technical systems, or
anomalous transaction patterns used to detect fraud
and compliance violations in financial systems. In or-
der to assess which data represent “anomalies”, we must
define what we consider “normal” behavior in the par-
ticular system under study. Given this baseline of “nor-
mal” behavior, we need methods to e�ciently assess
which patterns in the data exhibit deviations from this
baseline. Finally, we need techniques to argue which
of those observed deviant patterns are significant given

⇤Network Science Institute, Northeastern University
†Chair of Systems Design, ETH Zürich
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the fluctuations and randomness contained in data.
Anomaly detection has been studied extensively for

general categorical sequence data. However, we are of-
ten confronted with time series data capturing paths

through networks. Such data have distinctive charac-
teristics. Di↵erent from general categorical sequences,
an underlying graph topology constrains which paths,
i.e., sequences of node traversals, can possibly occur.
Moreover, the graphs in which paths are observed of-
ten exhibit strong heterogeneities, e.g., heavily skewed
node degree distributions or heterogeneous edge statis-
tics.1 These heterogeneities invalidate frequency-based
anomaly detection techniques that do not account for
the fact that in real systems, some paths are more likely
to be observed at random than others (see Fig. 1).
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Figure 1: Frequency-based anomaly detection (FBAD) can
be used to identify ground truth under- (red) and over-
represented (green) paths in graph with homogenous edge
statistics (left), but fails to identify anomalies in data with
heterogeneous edge statistics (right). Our proposed method
HYPA succeeds in both scenarios.

Closing this gap, we consider the problem of de-
tecting anomalous paths through graphs based on data
capturing sequences of node traversals. Our defini-
tion of anomalous paths rests on a memoryless base-
line model, which assumes that the chronological order
of node traversals is determined by the graph topology
and the edge traversal statistics. We develop HYPA, an
algorithm for detecting paths with unexpected temporal
traversal patterns.

This problem is of practical relevance in a num-
ber of scenarios. For example, in graphs representing
transportation systems, such as passenger flights, we
can study trajectories generated by passengers navigat-
ing through the network. Here anomalous paths convey

1In this paper, we use the term heterogeneous in reference to
statistical distributions of edge and path frequencies in networks.
We are not working with heterogeneous graphs, where nodes and
edges in the same graph may have di↵erent types (e.g. [30]).
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information about the role of airports in routing people
through the system.

Our main contributions are:
(i) We introduce path anomalies, paths through a

graph that are traversed significantly more or less
often than expected under a null model. We
show that the problem of detecting length k path
anomalies can be reduced to detecting anomalous

edges in a kth-order De Bruijn graph.
(ii) We introduce HYPA, an algorithm for detecting

path anomalies. HYPA finds paths that occur sig-
nificantly more or less often than expected at ran-
dom, leveraging an analytically tractable statisti-
cal model of random weighted De Bruijn graphs to
derive closed-form expressions for the cumulative
weight distribution of paths of any length k.

(iii) We test HYPA in empirical data representing
paths through transportation systems, validating
detected anomalies with geographical information.
The remainder of this paper is organized as follows.

In the next section, we discuss related work and intro-
duce relevant background that forms the basis of our
method. In Section 3, we formally define path anoma-
lies, walk through an illustrative example, and intro-
duce HYPA. In Section 4, we validate HYPA in syn-
thetic data, before applying it to analyze a dataset of
passenger trips through an airport network.

2 Related Work and Background

In this section we summarize related work on anomaly
detection and sequential pattern mining and provide
background on the higher-order graph models and sta-
tistical graph ensembles underlying HYPA.

2.1 Related Work Considering the large body of
research on anomaly detection in time series data [21],
and keeping in mind the focus of this paper, we limit
our review to related work on (i) anomaly detection
in discrete sequences, (ii) sequential pattern mining,
and (iii) graph-based anomaly detection. Since we
are concerned with the unsupervised detection of path
anomalies, we further exclude (semi-)supervised and
reinforcement learning techniques.

Anomaly Detection in Sequence Data. Following
[16, 15], anomaly detection techniques for discrete se-
quences fall into di↵erent categories that address fun-
damentally di↵erent application scenarios. Sequence-
based anomaly detection assumes that we are given a set
S = {s1, s2, . . . , sn} of sequences si = (xj)j=1,...,li over
a discrete alphabet ⌃, possibly with variable lengths li.
Anomalous instances si in S are then detected. For
example, each sequence may be assigned an anomaly
score, then ranked from most to least anomalous by
the magnitude of this score. Di↵erent approaches have

been used to establish a random baseline against which
sequences are defined as “anomalous”. Some methods
have used (hidden) Markov chain models, e.g., to detect
(groups of) sequences which show significant di↵erences
in terms of state transition probabilities [40, 26, 29, 4].
Other methods use nearest-neighbours algorithms [31]
or distance measures [42] to quantify how any given se-
quence sj di↵ers from other instances in S. Adopting
a collective definition of anomalies [14], a third class
of methods is based on hypothesis testing techniques
to detect outliers in the distribution of features of se-
quences [41, 28, 5]. Our problem setting is di↵erent
because we are interested in discovering patterns in an
underlying network structure, not in marking individual
sequences as anomalous.

Sequential pattern mining. A common feature of the
methods outlined above is that they focus on anomalies
at the level of a whole sequence si within S. Addressing
a di↵erent problem, some methods instead attempt to
find anomalous patterns or subsequences within a long
sequence S = (xi)i=1,...,n [15]. This is called sequential
pattern mining, where the goal is to develop algorithms
that quickly find the most frequent subsequences in
large sequence data [1, 24, 18, 38]. Some work addresses
this problem based on statistical methods, e.g., using
Markov modeling techniques [22, 36, 45, 10, 44, 34, 23],
hypothesis testing [39, 6, 43], or information-theoretic
methods to detect “surprising” subsequences [25, 13, 7].
Applications include the detection of common patterns
in user trajectories [44, 35], testing hypotheses about
generative processes of trajectory data [39], or finding
clusters in sequence data [10, 34].

Temporal Anomaly Detection in Graphs. The prob-
lem motivating our method is di↵erent from those de-
scribed so far, mainly due to the fact that these meth-
ods make no assumptions about the relational struc-
ture of the data, while we study sequential data captur-
ing paths in a (weighted and directed) graph topology.
This aligns our work more closely with anomaly detec-
tion techniques for temporal graph data that have been
developed in the graph mining community [33, 3]. As
summarized in [3], temporal anomaly detection discov-
ers change events [2] or cluster structures in evolving
graphs [8, 9, 34].

Di↵erent from these problems, our method uses a
set S of sequences to identify paths through a graph
that are traversed more or less often than expected.
Hence, rather than making statements about anomalous
instances in S, we use collective statistical information
in S to identify paths through the graph that are
traversed with anomalous frequencies.

2.2 Background In this section, we provide defini-
tions necessary to the formulation of path anomaly de-
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Figure 2: Example of path data S observed in a graph G illustrates path anomaly detection with HYPA (focusing on k=2).
Given a set of sequences traversing nodes A, B, X, C, and D in a graph (a), HYPA uses higher-order De Bruijn graphs
to derive closed-form expressions for the cumulative distribution function of all possible paths in the graph (b). HYPA
computes HYPA-scores (c) that allow reliable detection of over- and under-represented paths, even in situations where the
least frequent path (AXC) is over-represented, while the most frequent path (BXC) is under-represented. Progressive
randomization of the data gradually levels HYPA-scores (d), translating to a decreasing confidence in detected anomalies.

tection and our solution.
We reduce the problem of detecting anomalous

paths in a (first-order) graph to detection of anomalous
edges in higher-order graph models that resemble De
Bruijn graphs [17]. Similar to [37], we define a higher-
order De Bruijn graph model of paths as:

Definition 2.1. (k-th order De Bruijn graph model)

For a given graph G = (V,E) and k 2 N we de-

fine a k-th order De Bruijn graph of paths in G
as a graph Gk = (V k, Ek), where (i) each node
#”v := #                           ”v0v1 . . . vk�1 2 V k

is a path of length
2 k� 1 in G,

and (ii) ( #”v , #”w) 2 Ek
i↵ vi+1 = wi for i = 0, . . . , k � 2.

This definition has several implications. First, any two
nodes #”v and #”w connected by an edge in a k-th order
graph Gk represent 2 paths of length k� 1 that overlap
in exactly k � 1 out of k nodes. Since paths in a graph
are transitive, each edge ( #”v , #”w) in Gk represents a path
of length k in graph G. This implies that the graph G
itself is a first-order De Bruijn graph of paths of length
one (i.e., edges) in G. We can see De Bruijn graphs as a
generalization of standard, first-order graphs to higher-
order models of paths of length k, where any path of
length q in Gk translates to a path of length k + q � 1
in G. We iteratively construct De Bruijn graph models
of order k by means of a line graph transformation on
the k � 1st order model.

This representation is powerful because it allows us
to encode the frequencies of paths of length k through a
first-order graph to the weights of edges in a k-th order
De Bruijn graph. This can be seen in the illustration
of a De Bruijn graph with order k = 2 in Fig. 2, where
nodes represent paths of length k�1 = 1 that overlap in
k� 1 = 1 nodes (i.e., edges in G), while edges represent
all paths of length k = 2.

This projection of paths allows us to reduce the
problem of detecting paths of length k that exhibit
anomalous frequencies to the problem of detecting

2We assume path length is the number of edges traversed.

anomalous edge weights in a k-th order De Bruijn graph.
To understand which edge weights exhibit “anomalies”,
we need a null model that provides a baseline against
which we compare the observed weights. For this com-
parison, we need to generate randomized configurations
of the path data that selectively destroy only the pat-
terns that we are interested in while preserving all other
statistics. Since we can project the path data to the
edges of a directed and weighted graph, we can address
this problem by employing statistical graph ensembles,
which randomize certain aspects of a graph (i.e., the
weights of edges or the topology itself) while preserv-
ing other characteristics. Examples include models that
randomize the topology of a graph while preserving the
(expected) number of edges [20], as well as combinato-
rial models that preserve the degrees of nodes [32].

An analytically tractable formulation of such a
model for directed and weighted graphs was recently
proposed in [11]. It treats the random generation of
weighted graphs as an urn problem, where random
edges are drawn without replacement from a popula-
tion of multi-edges connecting di↵erent pairs of nodes.
Through this formulation, the probability of generat-
ing edges with specific weights can be calculated based
on the multivariate hypergeometric distribution. This
formulation can be used to detect anomalous edges in
social networks [12]. However, no analytically tractable
null models have been proposed that account for the
distinctive characteristics of De Bruijn graphs, i.e., the
fact that a directed edge between two nodes in a k-th or-
der De Bruijn graph can only exist if the corresponding
path exists in the underlying graph. Closing this gap,
we develop a method to detect path anomalies based on
statistical ensembles of k-th order De Bruijn graphs.

3 Higher-order Hyper-geometric path anomaly
detection

We now define the problem of path anomaly detection,
illustrate it in an example, and propose our solution.

462
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

09
/1

8/
20

 to
 1

29
.1

32
.1

83
.2

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Definition 3.1. (Path Anomaly Detection) Let

G = (V,E) be a directed graph and S a set of n
sequences si, where each sequence si = v0v1 . . . vli is

a path of arbitrary length li in G, i.e. vj 2 V for

j 2 [0, . . . , li] and (vj , vj+1) 2 E for j 2 [0, . . . , li � 1].
For k > 1, identify all paths

#”p = #               ”v0 . . . vk of length

k in G whose frequencies (including as subpaths) in S
significantly deviate from the frequencies expected in a

(k � 1)-order model of paths in G.

Unlike sequence-based anomaly detection [15], we are
not interested in assigning an anomaly score to each
sequence in S. Instead we use the instances in S to
identify paths through the graph that exhibit anoma-
lous frequencies compared to a null model, discovering
the paths in G that are traversed in unexpected ways
given the underlying weighted network structure. To
complete our definition of anomalies, we define a gener-
ative null model for paths that builds on definition 2.1,
which we use to establish a baseline against which we
detect anomalies.

Definition 3.2. (k-th order model of paths) For

a graph G let Gk = (V k, Ek) be a k-th order De Bruijn

graph of paths in G (cf. Def. 2.1). For each edge

e := ( #                     ”v0 . . . vk�1,
#               ”v1 . . . vk) 2 Ek

let the weight f(e)
be the frequency of subpath

#               ”v0 . . . vk in S. Let Tk

be the transition matrix of an edge-weighted random

walk on Gk
, i.e., Tk

#”v #”w := f( #”v , #”w)P
#”x 2V k f( #”v , #”x ) . For a path

#”p = #                   ”v0v1 . . . vl with l � k the k-th order model of paths
generates

#”p with probability
Ql

i=k T
k
#                     ”vi�k...vi�1

#                     ”vi�k+1...vi
.

This model generates paths of length l by performing
l � k + 1 random walk steps in a k-th order De Bruijn
graph. We can use the model to generate random paths
of length l � k that respect (i) the topology of the
underlying graph G, and (ii) the frequencies of paths of
length k observed in S.

Our definition of path anomalies of length k is based
on a null model of order k � 1. For k = 2, the null
model of order (k � 1) = 1 is simply an edge-weighted
random walk on the graph G. In this case, the sequence
of nodes traversed by paths is Markovian, i.e., the node
vi+1 on a path only depends on the current node vi
and the graph topology. Apart from the topology, the
model accounts for the frequencies at which paths in
S traverse edges in G. That is, if an edge (b, c) is
traversed more often than (b, d) we expect path

#   ”
abc to

occur more often than
#   ”
abd. For k > 2, the null model

corresponds to an edge-weighted random walk on a De
Bruijn graph of order (k�1) > 1, where weighted edges
capture the frequencies of subpaths of length k � 1 in
S. This approach to generating a null model is key to
disentangling path anomalies that unfold at di↵erent
lengths: For any given length k, we can exclusively

detect those path anomalies that do not trivially result
from anomalous path frequencies at shorter lengths. In
other words, to answer the question whether a specific

path
#      ”
abcd of length k = 3 is observed more or less often

than expected, we discount for any anomalies of shorter
paths

#   ”
abc and

#   ”
bcd contained in

#      ”
abcd.

3.1 Illustrative Example A simple example to il-
lustrate the path anomaly detection problem for k = 2
is shown in Fig. 2, which gives a high level overview of
HYPA. Limiting our focus to paths that traverse nodes
A, B, X, C, and D, we consider a set S that contains
235 (sub)paths of length two. We observe strong het-
erogeneities in the path frequencies, where the most fre-
quent path

#          ”
BXC occurs 105 times, while the least fre-

quent observed path
#         ”
AXC occurs only 30 times.

Assume we want to detect for which paths of length
k = 2 the frequencies deviate from the expectation in
a first-order null model. If all paths were expected to
occur with similar frequency (e.g. if observed frequency
was drawn from a normal distribution), we could di-
rectly answer this question based on the observed dis-
tribution of path frequencies (cf. Fig. 1). Such an ap-
proach would trivially detect that path

#         ”
AXC occurs

more often than expected while path
#          ”
BXC occurs less

often than expected. However, the edge frequencies in
our toy example show strong heterogeneities; for exam-
ple, edge (B,X) is traversed about seven times more of-
ten than edge (A,X). If we account for this heterogene-
ity of edges (i.e., paths of length k�1 = 1), the question
of which paths of length k = 2 exhibit statistically sig-
nificant deviations becomes non-trivial. In particular,
the same observed frequency could be“normal” (i.e., ex-
pected) for one path, a significant over-representation
for another, and an under-representation for a third.
Whether the frequency of a path is anomalous based on
definition 3.1 can not be determined by direct compar-
ison with the overall frequency distribution alone.

We can address this problem by randomizing the
data using random walk simulations on the first-order
model and preserving the distribution of path lengths.
We then count the average frequency of each path of
length 2 across many simulations. A comparison of ob-
served vs. average frequencies of paths then indicates
which paths exhibit deviations from the random base-
line. In Fig. 2c, we report the average of 100 such
simulation runs, which indicate that paths

#         ”
AXC and

#          ”
BXD occur more often than expected, while paths
#          ”
BXC and

#          ”
AXD occur less often than expected. This

simple example highlights an important problem: due
to the heterogeneous frequency of edges, paths that oc-
cur with the smallest frequency (

#         ”
AXC) can be over-

represented, while paths that occur with the highest
frequency (

#          ”
BXD) can be under-represented.
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This observation rules out collective anomaly detec-
tion techniques that assess anomalies based on a single

frequency distribution. We must instead consider the
joint distribution of frequencies under the null model for
each possible path and each length k separately. While
a simulation-based approach is possible in principle, the
combinatorial growth of the required computational ef-
fort for large systems is prohibitive. Moreover, such sim-
ulations leave open the question of whether the observed
deviations in the data indicate a significant pattern or
are likely due to chance.

Projecting paths of length k onto edges in a k-
dimensional De Bruijn graph, we use closed-form ex-
pressions for the cumulative distribution function of
path frequencies under the (k � 1)-order null model for
each path individually (see Fig. 2b). This enables us
to analytically calculate HYPA-scores, which, for each
path #”p , represent the likelihood that a null model gen-
erates realizations where frequencies of #”p are larger (or
smaller) than in the data. The calculated scores can
then be used to detect path anomalies at various levels
of significance without expensive simulations.

3.2 Hypergeometric Ensemble of Higher-Order
De Bruijn Graphs We now introduce the details
of higher-order hypergeometric path anomaly detection

(HYPA), the main contribution of our work.
Mapping of null model to ensemble of k-th

order De Bruijn graphs In the illustrative example,
we showed that assessing whether a path of length k
exhibits anomalous frequencies requires considering the
distribution of frequencies under a null model for each

path separately. The key idea of HYPA is to map the
di�cult problem of finding the frequency distributions
of paths of length k under a null model to the simpler
problem of finding the edge weight distribution in a
null model for k-th order De Bruijn graphs. For this,
we remember that the weights on the edges in a k-
th order De Bruijn graph can exactly represent the
frequencies of paths of length k observed in a dataset
(cf. definition 3.2). We are thus interested in identifying
which of these weights are anomalous compared to
the baseline given by a (k � 1)-order null model of
paths. In each realization generated by such a (k � 1)-
order model, frequencies of paths of length k � 1 are
fixed, while the frequency of each path of length k
follows a di↵erent distribution that depends on the null
model. We can map each random realization to a
di↵erent weighted k-th order De Bruin graph, obtaining
a statistical ensemble of k-th order De Bruijn graphs

whose probabilities are given by the null model. Since
the frequencies of paths of length k�1 are fixed, the total
out-degree fout

#”v =
P

#”x f( #”v , #”x ) and the total in-degree
f in

#”v =
P

#”x f( #”x , #”v ) for each node #”v is the same across

all realizations in this ensemble. However, De Bruijn
graphs that correspond to di↵erent random realizations
di↵er in terms of the exact edge weights f( #”v , #”w), which
represent frequencies of paths of length k.

Distribution of edge weights in random k-
th order graphs This mapping allows us to compute
frequency distributions for individual paths of length k,
conditional on the frequencies of paths of length k � 1,
based on a random model for k-th order De Bruijn
graphs that preserves the total in- and out-degrees of
all nodes while randomly shu✏ing the weights of edges.
We can formalize the model as a stochastic process
that randomly draws m edges, where m is the sum
of all k-th order edge weights (the total number of
paths of length k observed in the data). Di↵erent from
simple random graph models, in this sampling process
we must account for the fact that di↵erent edges in a
k-th order De Bruijn graph have di↵erent probabilities
to be drawn. Specifically, we are more likely to generate
edges between pairs of nodes with a high in- and out-
degree. In our null model of paths, this translates to the
fact that a path of length k is more likely to occur if it
continues a frequently occurring path of length k�1. We
capture the fact that di↵erent edges in a k-th order De
Bruijn graph occur with di↵erent probabilities using a
matrix ⌅, where each entry corresponds to one possible
pair of higher-order nodes that can be connected by
an edge, and the value of the entry denotes how many
times this pair of nodes can possibly be drawn. We thus
obtain a sampling procedure that can be described by
the multivariate hypergeometric distribution.

Since we consider k-th order De Bruijn graphs we
must additionally account for the fact only pairs of
higher-order nodes representing paths overlapping in
k � 1 first-order nodes can be connected (cf. Def. 2.1).
When sampling from the multivariate hypergeometric
distribution, we avoid drawing such pairs by setting
their corresponding entry in ⌅ to 0. This modification
introduces the complication that weighted degrees are
no longer guaranteed to be preserved, which violates the
constraint that the frequency of paths of length k� 1 is
fixed. We overcome this with an optimization approach
(Algorithm 2 in Appendix A.2.13) to redistribute values
of the ⌅ matrix that were substituted by zeroes across
the rest of the matrix, such that the weighted degrees
fout

#”v and f in
#”v of the k order nodes #”v are preserved.

HYPA Algorithm The random De Bruijn graph
model of order k introduced above is the basis for the
HYPA algorithm to detect path anomalies (pseudocode
in Appendix A.2, Algorithm 1). In particular, we ar-
gued that the distribution of edge weights in the sta-
tistical ensemble of random realizations are jointly de-

3Appendix A is available in the online version [27].
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scribed by a multivariate hypergeometric distribution.
We use the marginals of this distribution to calculate
the distribution of edge weights for each edge as:
(3.1)

Pr (X #”v #”w = f( #”v , #”w)) =

✓P
ij ⌅ij

m

◆�1✓ ⌅vw

f( #”v , #”w)

◆✓P
ij ⌅ij � ⌅vw

m� f( #”v , #”w)

◆
,

where m =
P

v f
out
v =

P
v f

in
v is the sum of all weights

in the graph and X #”v #”w is a random variable assuming
the weight of edge ( #”v , #”w) in a random realization of
a k-th order De Bruin graph. We use these marginal
distributions to define the HYPA(k) score for a path
#  ”vw of length k with observed frequency f( #”v , #”w) as the
cumulative distribution corresponding to Eq. (3.1):

(3.2) HYPA(k)( #”v , #”w) := Pr (X #”v #”w  f( #”v , #”w))

Since the HYPA(k) score is a probability, it assumes
values in [0, 1]. Paths whose HYPA(k) scores are close
to 0 are likely to be under-represented compared to the
random baseline. That is, the probability to obtain at
random a frequency for this path that is lower or equal
to the frequency in the data is small. On the other hand,
a path whose HYPA(k) score is close to 1 is likely to
be over-represented, meaning the frequency obtained at
random for that path is likely to be smaller than the one
observed in the data. A path that has a HYPA(k) score
of 0.5 is equally likely to be observed with a higher or
lower frequency at random, showing the least indication
of an anomaly. Anomalous paths are determined by
setting a discrimination threshold ↵ 2 (0, 1] and
classifying as under-represented any path ( #”v , #”w) with
HYPA(k)( #”v , #”w) < ↵ and as over-represented any path
( #”v , #”w) with HYPA(k)( #”v , #”w) � 1� ↵.

Computational Complexity The asymptotic
runtime of HYPA is O

�
N +�k(G)

�
, where N is the

size of S, �k(G) is the number of edges in a k-th order
De Bruijn graph model Gk of paths in G. An upper
bound on �k(G) is proved in Appendix A.2.2. The
implication of this bound is that for sparse real-world
graphs, moderate values of k, and above a su�ciently
large value of N , our method scales linearly with the size

of the data.

4 Experiments

In this section we show that we can use the scores
calculated by HYPA to detect paths with anomalous
frequencies.4 We note that the datasets we consider
do not come with anomaly labels, and that we do not
expect our notion of anomalous paths to correspond
directly with any existing labeled data, since we have
defined the anomalies we are detecting within a specific
mathematical frame, rather than as deviation from a
domain dependent “normal”. With this in mind, we

4An implementation is available at github.com/tlarock/hypa.

apply HYPA to synthetic data with known anomalies
and empirical data representing trajectories through a
transportation network. We show that the under- and
over-represented paths detected without supervision fall
into classes that can be validated using semantic and
geographic information.

4.1 Baseline Method In the below experiments, we
compare HYPA to a simple frequency-based anomaly
detection (FBAD) of our own design. We note that
despite similar problem settings, the methods for hy-
pothesis testing on human trails presented in [39, 6] are
not directly comparable with our work because the out-
put is Bayesian evidence for a hypothesis on an entire
dataset (a single number), whereas we are interested
in edge-level analysis. Further, we did not compare
with a method like [36] because, while based on detect-
ing significant deviations from a Markov chain model,
this method assumes that the data is given as one long
sequence and detects anomalous subsequences, which
does not correspond to any of the datasets we analyze
here. Finally, a recently proposed method identifies sig-
nificant sequential patterns via a permutation strategy
with a Monte Carlo estimation procedure [43]. Despite
similarity in purpose, the method has limited utility in
our setting for two main reasons. First, it relies on the
PrefixSpan algorithm [24] to mine the sequences for rel-
atively frequent patterns. As can be noted from Fig. 1,
low-frequency patterns can be path anomalies. Second,
it does not incorporate constraints on the possible se-
quences, instead sampling from a uniform space of all
possible permutations. For these reasons, we were un-
able to make a fair comparison and do not report results.

The baseline method FBAD computes the average
µ and standard deviation � of path counts and employs
a user-defined threshold ↵ to detect over- and under-
represented paths. FBAD implicitly assumes that the
distribution of edge weights is normal and thus paths
should be considered anomalous if they are outliers
with respect to this distribution. In particular, a path
is labeled as over-represented if its frequency exceeds
µ + �↵, and as under-represented if its frequency is
smaller than µ � �↵. More details on FBAD are
available in Appendix A.3 and Algorithm 3.

4.2 Synthetic Data We validate HYPA using a
stochastic model that generates synthetic datasets of
paths with varying lengths, in which a known set of
paths with given length l exhibit anomalous frequen-
cies. Adopting the well-known Erdős-Rényi model [19],
our model generates paths in a random directed graph
G with n nodes, where pairs of nodes are connected
with probability p. Following definition 3.2, the ran-
dom model generates paths based on an edge-weighted
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Figure 3: HYPA(k) detects injected path anomalies at the
correct length with high accuracy. Each curve corresponds
to one length l of generated anomalous paths, and represents
the performance of classifying the anomalous paths using
HYPA (left) or the naive FBAD method (right) applied
at increasing orders k. HYPA detects the exact generated
anomalies, i.e., performs highly at k = l. FBAD only
performs relatively well in detecting short sub-paths (e.g.,
k = 2) of longer anomalies (e.g., l = 5). Averages and
standard errors are over 10 independent experiments.

random walk in a k-th order De Bruijn graph of paths
in the random graph G. By selectively changing tran-
sition probabilities in Tl (cf. definition 3.2), we intro-
duce anomalous frequencies for a known set of paths at
length l. Since all paths longer than l are generated by a
(Markovian) random walk on a De Bruijn graph with or-
der l, these paths will not exhibit anomalous frequencies
beyond those expected from the anomalous frequencies
of paths of length l. For details of the random path con-
struction, see Algorithms 4 and 5 in Appendix A.5.1. In
the following we report results for graphs with n = 50
nodes and an edge probability of p = 0.05 (our conclu-
sions do not depend on these parameters).

We test whether HYPA detects anomalous path fre-
quencies (i) with high accuracy, and (ii) at the correct
length l introduced by our model. To this end, we calcu-
late the performance of HYPA in a binary classification
experiment, categorizing path frequencies as anomalous
based on variable discrimination thresholds ↵ for the
HYPA(k) scores at di↵erent orders k. For each threshold
↵, we compute the true and false positive rates of de-
tected anomalies w.r.t. the known ground truth and ob-
tain a receiver operating characteristic (ROC) curve for
which we can calculate the area under the curve (AUC).
We repeat this experiment 10 times for each combina-
tion of anomalous path length l 2 [2, 5] and detection
order k 2 [1, 5]. Each curve in Fig. 3 presents the mean
and the standard deviation of the AUC for anomalies
detected at varying orders k, for a given anomaly length
l. For k 6= l, we use as ground-truth the paths of length
k that either include or are included in an anomalous
path of length l generated by the synthetic model. For
each l we observe that HYPA with the “correct” order
k = l is able to identify ground truth anomalies with
high accuracy (AUC ⇡ 0.9, left plot), while the baseline

FBAD method (� = 2) is unable to detect path anoma-
lies with high accuracy at any order, regardless of the
order used for detection (max AUC ⇡ 0.78, right).

E�ciency and Balance in Flight Itineraries
We analyze an empirical dataset of paths taken through
a transportation system using HYPA. Flights comprise
5% of all travel itineraries of passengers flying in the
US in the first quarter of 2018.5 Characteristics of the
dataset are presented in Table 3 (Appendix A.6).

Our first hypothesis is that return flights (ABA)
are significantly over-represented, since passengers often
leave from and return to the same airport. We first
compute HYPA scores for k = 2, then separate return
from non-return flights and compute the fraction of
over-represented paths in each category for varying
discrimination thresholds ↵. The results in Table 1
support the hypothesis that return flights are strongly
over-represented compared to the null model.

Table 1: Fractions of over-represented paths of length
2 between airports for return flights (5840 unique paths)
and non-return flights (409254 unique paths) at di↵erent
discrimination thresholds ↵.

↵ 0.05 0.01 0.001 0.0001 0.00001
Return 0.915 0.851 0.760 0.688 0.628

Non-return 0.340 0.130 0.023 0.004 0.001

However, we still observe a number of over-
represented non-return flight paths. We hypothesize
that many of these paths connect small airports to large
airports via regional hubs. This means that a relatively
short distance trip (e.g. from ORL to ATL) is required
before a flight from the regional hub to a relatively dis-
tant destination (e.g. ATL to LAX). Rather than clas-
sifying airports by their size and role in the network,
we test this hypothesis by defining distance balance, a
measure that captures to what extent one leg of a trip
dominates the total trip distance. In a perfectly bal-
anced trip (ABC), the distance of the two legs is equal,
e.g. d(A,B) = d(B,C). The most common example of a
perfectly balanced trip is the return trip, where A = C.
In an imbalanced trip, one of the legs of the trip is much
larger. We define balance by the ratio d(A,B)�d(B,C)

d(A,B)+d(B,C) . It
approaches -1 or 1 when the distance of one leg of the
trip is much greater than on the other. We expect flights
with extreme values to be over-represented as they rep-
resent long distance flights that start from small, local
airports, fly a short distance to a regional hub, then
on to a much further o↵ destination (as well as the re-
verse). The distribution of balance for over- and under-
represented paths of length two (↵ = 0.05) is shown in
Fig. 4 (left). We find very few under-represented flights
near extreme values of balance, while a larger fraction

5Data from US Bureau of Transportation Statistics TransStats
http://www.transtats.bts.gov/Tables.asp?DB_ID=125.
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of over-represented paths are found near -1 and 1. This
supports our hypothesis that unbalanced flights tend to
be more over-represented than balanced flights.

We now formulate hypotheses based on a notion of
e�ciency for airline trips. We measure e�ciency as the
ratio of the distance between source and destination,
d(A,C), with the actual flight distance, d(A,B) +
d(B,C). Using this measure, a straight line between
airports A, B and C has maximum e�ciency of 1,
while a low e�ciency trip implies that the actual flight
distance is much larger than the straight line distance
between the origin and destination. We hypothesize
that highly e�cient paths are over-represented, while
ine�cient paths are under-represented in the data. The
middle plot of Fig. 4 shows a large peak in the fraction
of under-represented paths at very low e�ciency, then a
steady decrease in under-represented paths as e�ciency
increases. In the right hand plot we see that after
return flights are accounted for (peak at e�ciency
0), the fraction of over-represented paths increases
monotonically with e�ciency. These results indicate
that more e�cient paths are indeed more likely to be
over-represented, and that the more e�cient a path is,
the less likely it is to be under-represented.

Figure 4: Left: extreme values of balance correspond to
over-represented paths, confirming that short flights followed
by long flights are typical (e.g. flights to a regional hub,
then a national hub). Middle/Right: The fraction of over-
and under-represented paths varies with the e�ciency of
the itinerary. After return flights are accounted for, the
fraction of under-represented paths decreases with e�ciency
(middle), and vice versa for over-represented paths (right).

5 Conclusion

We presented HYPA, a novel approach for unsuper-
vised detection of path anomalies in sequential data
on networks. By providing a new theoretical basis for
anomaly detection in graphs, our work advances the
state-of-the-art in multiple directions. We introduced
the problem of path anomaly detection and showed that
frequency-based anomaly detection techniques cannot
address it. Projecting paths through a first-order net-
work onto higher-order De Bruijn graphs, we showed
that path anomaly detection can be reduced to the
detection of anomalous edge weights in a higher-order
graph. Building on an analytically tractable null model
of higher-order De Bruijn graphs, we developed a scal-
able method, HYPA that is able to detect paths that

exhibit significant deviations from a random baseline,
allowing us to assess statistical deviations in frequen-
cies of paths traversing the nodes of a graph. Some
limitations of HYPA could be addressed in future work,
including (i) automatically selecting an appropriate dis-
crimination threshold, (ii) combining analysis at di↵er-
ent orders, and (iii )incorporating domain specific no-
tions of anomalous paths.
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