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Abstract
Active matter, as other types of self-organizing systems, relies on the take-up of
energy that can be used for different activities, such as active motion or structure
formation. Here we provide an agent-based framework to model these processes
at different levels of organization, physical, biological and social, using the same
dynamic approach. Driving variables describe the take-up, storage and conver-
sion of energy, whereas driven variables describe the energy consuming activ-
ities. The stochastic dynamics of both types of variables follow a modified
Langevin equation. Additional nonlinear functions allow one to encode system-
specific hypotheses about the relation between driving and driven variables. To
demonstrate the applicability of this framework, we recast a number of existing
models of Brownian agents and active Brownian particles. Specifically, active
motion, clustering and self-wiring of networks based on chemotactic interactions,
online communication and polarization of opinions based on emotional influence
are discussed. The framework allows one to obtain critical parameters for active
motion and the emergence of collective phenomena. This highlights the role of
energy take-up and dissipation in obtaining different dynamic regimes.

Keywords: self-organization, active matter, communication, Brownian agents

1. Introduction

The term Active matter [1–3] was recently introduced to describe the dynamics of systems with the
ability to take-up energy from the environment. This energy can be transformed into active motion
of the system elements, which is the most studied case [4, 5], but also complex interactions such as
chemotaxis [6–8], clustering [9, 10] or chiral pattern formation [11] have been investigated.
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It is worth noticing that the term active matter is not a synonym of living matter. The
focus of most publications is indeed on biological applications, but also the active (self-
propelled) motion of artificial particles (micro swimmers) has been experimentally realized
(see table 1 in [12]).

The literature features two different approaches for modeling active matter, one dealing
with macroscopic equations, the other one with particle-based methods. This publication shall
mainly contribute to the second strand. Therefore, it is advisable to contrast these two
approaches in the beginning. We thus start with some general reflections.

1.1. Some historical remarks

To put the recent research about active matter into perspective, it is useful to recall some
relations to existing scientific paradigms. The systemic capabilities of active matter to develop
and to maintain coherent structures, or collective states, based on the input and the conversion
of energy were previously described using the term self-organization. It was heuristically
defined as the ‘spontaneous formation, evolution and differentiation of complex order
structures forming in nonlinear dynamic systems by way of feedback mechanisms involving
the elements of the systems, when these systems have passed a critical distance from the
statical equilibrium as a result of the influx of unspecific energy, matter or information’ [13].
The physics of self-organization and evolution [14] has made fundamental contributions to
the scientific understanding of self-organizing systems—the thermodynamics of irreversible
processes, deterministic and stochastic models of nonlinear dynamics, the theory of reaction-
diffusion processes, information-theoretical approaches to sequences, to name just a few.

While self-organization could be seen as the leading paradigm of the 1970s and 1980s, it
was gradually replaced by complex systems as the leading paradigm after the year 1990. This
development came along with a shifting focus. Self-organization and pattern formation could
be well described on the macroscopic or systemic level, for example by coupled partial
differential equations. With complex systems, i.e. systems composed of a large number of
(strongly) interacting elements, the focus was more on the emergence of systemic properties
from these interactions. Hence, the methodological framework to address this process turned
towards agent-based modeling, where agents represent the system elements [15]. They have
their own internal degrees of freedom and follow their own dynamics.

The latest leading paradigm, complex networks which became prominent after the year
2000, can be seen as a special case of the complex systems paradigm in that it decomposes all
interactions between agents into dyadic interactions, i.e. interactions between pairs of agents.
The complex network then consists of nodes representing agents and links representing
dyadic interations. With this, the focus shifted again: away from the agents and their internal
dynamics (which became dots, now) and towards the topology and the dynamics of the
network composed by the lines between dots. This abstraction leaves out a lot of important
details about the system elements, to favor generality and universality of the network. Hence,
active matter is one of those application areas where the complex network approach cannot be
readily applied.

We have sketched this development to highlight that the natural sciences, in particular
statistical physics, have addressed the potentiality of matter to become active in the sense
described above for quite a long time. So, active matter is in fact a self-organizing system, and
the existing theoretical concepts to model such systems can be applied and should be
rediscovered, if needed.
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1.2. Different modeling approaches

As the discussion also makes clear, there are different methodological approaches to describe
active matter—the systemic approach largely builds on phenomenological macroscopic
equations, while the agent-based approach tries to understand those macroscopic properties
based on interactions on the micro, or agent, level.

Both of these approaches have their justification dependent on the application area. For
many experiments in soft matter physics and biophysics, a continuum model is the most
appropriate way to explain the system dynamics, e.g. turbulence in bacteria or structure
formation in the cytoskeleton [1, 16, 17]. Other experiments, on the other hand, require to
take a particle-based or agent-based approach, i.e. their explanation depends on modeling the
details of the particles’ motion and their interaction [12]. In fact, an advantage of the active
matter concept is in its ‘microscopic’ foundation, i.e. the ability to derive equations for
the macroscopic phase from the particle interaction [18]. This links the system dynamics and
the dynamics of the system elements in a way that is both analytically tractable (on the macro
level) and efficient to simulate (on the micro level).

Going from physical systems to animal societies or to online communities, a continuum
model would not allow us to understand the system dynamics. It simply does not address the
rules by which the system elements have to interact, in order to collectively create the pattern
we observe. With an increasing level of organization, also the internal degrees of freedom for
the system elements increase. To explain new experiments in biological or social systems, e.g.
about swarming behavior or online communication, requires us to take an agent-based
approach that matches the available data about individual interactions.

Consequently, our research interest turns from continuous models to agent-based models.
The challenge then is to extent the dynamic framework applicable for non-animated systems
to animated ones in a concise manner, which is the aim of this paper.

1.3. Active Brownian particles

Active walkers [6, 19], introduced in the early 1990s, were a first attempt to conceptualize this
‘micro’ approach. Similar to random walkers, the dynamics of active walkers is influenced by
random processes. But additionally, they are capable of changing their environment, which is
described by an environmental potential. This constantly adapting potential then feeds back
on the further motion of the walkers.

Active Brownian particles were first introduced [20] as a generalization of active walkers,
using modified Langevin equations. The adaptive potential became a self-consistent adaptive
field which, similar to a chemical substance, could decay and diffuse. This extension allows
one to simulate structure formation in reaction-diffusion systems in a very efficient manner,
using particle-based methods.

The most important extension of this concept was to include the energetic conditions that
enable active Brownian particles to become active. This was first done by considering
negative friction [21], a mechanism to pump energy into a system already discussed by Lord
Rayleigh [22]. This energy was used to accelerate the Brownian particle, i.e. to allow for
active motion. A space dependent negative friction coefficient models the take-up of energy
only in certain areas, similar to the feeding places of animals. The drawback, however, was
the instantaneous use of this energy.

This problem was cured by assuming that active Brownian particles have an internal
energy depot [23]. Energy taken up from the environment is stored in this energy depot with a
certain dissipation rate and can be transformed into kinetic energy, to allow for active motion.
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This was a concise way to explain the conditions for active biological motion, as opposed to
postulating a non-trivial velocity. Considering further the ability of active Brownian particles
to generate a self-consistent adaptive field, this modeling approach has become the starting
point to model a variety of biological phenomena, such as swarming and chemical
communication.

Noteworthy, this concept has been already generalized 20 years ago as a framework for
agent-based modeling [24] with interdisciplinary applications [15]. And the concept of active
Brownian particles has also become a corner-stone in modeling active matter, with [12] or
without [3] reference to these earlier investigations.

1.4. How to proceed

The aim of this paper is not to present all details of the variety of models and applications
discussed in the following. For these, we refer to the existing publications that also provide
agent-based simulations and analytical investigations. Our goal is rather to demonstrate that
these different dynamics can be captured in a unifying and overarching framework. The
generalizing perspective taken here allows one to highlight common principles in the
dynamics of active matter and to point out critical (energetic) conditions for the emergence of
systemic properties. With this, we provide an agent-based framework that, rarely enough,
bridges between physical, biological and social phenomena.

2. A dynamical framework for active matter

2.1. Non-equilibrium systems: micro and macro perspective

Following the tradition of statistical physics, active matter can be described on two different
levels. On the macro level we focus on the system as a whole, to distinguish processes within
the system from exchange processes between the system and its surrounding. From this
perspective, active matter can be described as an open system characterized by an influx of
free energy (or matter, or information), by internal dissipation and entropy production, and an
outflux of energy with high entropy. As such, active matter has the properties of a non-
equilibrium thermodynamical system and the established methods can be applied. Hence,
systemic properties, in particular thermodynamic functions and phase diagrams, have been
investigated [25].

On the micro level we focus on the elements of the system and their interactions. From
this perspective, active matter is composed of an ensemble of elementary units, denoted as
agents. These agents are active in the sense that they can take-up energy from the system, to
use it for different activities. Examples discussed in this paper include active motion, com-
munication and other energy consuming types of interaction, or internal processes such as
metabolism. The laws of thermodynamics then require an open system that can import and
export energy/entropy, in accordance with the macrodynamics described above.

In this paper, we mostly focus on the micro level, i.e. on the agent-based approach. The
dynamics of these agents are described by a set of stochastic equations which resemble the
Langevin equation of Browian motion, therefore the notion of Brownian agents has been
established [15]. The idea builds on Langevin’s approach to explain the dynamics of a
Brownian particle with velocity v(t) by a superposition of two forces:
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v t

t
v t S t

d

d
2 . 1vg x= - +

( ) ( ) ( ) ( )

The first term denotes the friction force with γv being the friction coefficient. It essentially
describes a dissipative process, i.e. kinetic energy is decreased. Hence, after some relaxation
time expressed by 1/γv the Brownian particle would to come to rest, which is not observed
under the microscope. To keep the particle moving, Langevin therefore assumed a stochastic
force, expressed in the second term. ξ(t) is Gaussian white noise, i.e. it has the expectation
value of zero and only delta-correlations in time:

t t t t t S
k T

m
0; ; . 2v

Bx x x d g= ¢ = ¢ - =⟨ ( )⟩ ⟨ ( ) ( )⟩ ( ) ( )

S denotes the strength of the stochastic force and is determined in physics by the fluctuation-
dissipation theorem. kB is the Boltzmann constant, T the temperature of the liquid the
Brownian particle is immersed in and m is the mass of the particle.

For our further consideration, the structure of equation (1) is important. The dynamics
results from a superposition of two different types of influences. The first term denotes
deterministic forces which can be specified at the temporal and spatial scale of the agent. This
is the relaxation term, for the most simple case of a Brownian particle. The second term
denotes stochastic forces which summarize all influences that are not specified on these
temporal and spatial scales. Of course, today it is known that the Brownian particle keeps
moving because of random collisions with molecules from the liquid too small to be observed
in the microscope. So, in principle, on could derive the second term from a more refined
model. But the ingenious idea here is to resist that temptation and instead proxy those
unexplained influences by a random force as long as they do not exert a directed impact.

To develop the dynamics of a Brownian particle into the dynamics of a Brownian agent,
this picture still misses interactions between agents, internal degrees of freedom to allow for
different responses to the forces assumed, control parameters to capture the influence of the
environment. Noteworthy the picture also does not contain yet sources of energy for activities
that go beyond the level defined by the fluctuation-dissipation theorem. Active matter, i.e.
agents, if the micro perspective is considered, have the ability to perform certain activities,
ranging from directed motion to communication, from structure formation to collective
excitations, which cannot be simply taken for granted. Hence, a microscopic model of active
matter has to make the influx of energy explicit.

2.2. Driving and driven variables

Our micro level approach to active matter builds on an agent-based model that follows the
concept of Brownian agents discussed above. Precisely, in an ensemble of N agents, each
agent is described by two variables that follow a similar formal dynamics:

a t

t
a t a b A tu

d

d
, , 3a a a ag x= - + +

( ) ( ) ( ) ( ) ( )

b t

t
b t a b A tu

d

d
, , . 4b b b bg x= - + +

( ) ( ) ( ) ( ) ( )

While the dynamics for the two variables is constructed in the same way, their meaning is
very different. a is the driving variable, i.e. it describes the input of energy and how this is
related to different forms of activity. b, on the other hand, is the driven variable that describes
the output resulting from the use of energy.
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We will give a number of examples for the meaning of a, b below. At this point, we
mention that the damping factor γa, γb ensures that, in the absense of any stimulus or external
force, each of these variables will approach zero in the course of time. However, the additive
stochastic term, Aξ(t), that denotes the influence of random events, may prevent the relaxation
toward zero. Different forms for this term are also discussed below.

The two functions a b u, ,( ) eventually describe nonlinear couplings between the
variables a and b, where u represents a set of control parameters. For their further specifi-
cation, we use the following general ansatz:

a b b a tu u, , , 5a a
k

n

k
k

0

  å a=
=

( ) (·) ( ) ( ) ( )

a b a b tu u, , , . 6b b
k

n

k
k

0

  å b=
=

( ) (·) ( ) ( ) ( )

The power series should be seen as a general expression of hypotheses about the nonlinear
relation, examples of which are given later in the paper. Dependent on the application, we will
consider different orders of the power series where the coefficients αk, βk are determined by
plausible arguments. The two free functions a (·), b (·) are left unspecified at the moment, we
will use them later in introduce some non-local coupling between the variables a, b.

To model the input of energy into the system, we are mostly interested in the dynamics of
the driving variable a, for which we discuss different representations. Importantly, the driving
variable a is usually assumed to relax fast compared to the driven variable b, i.e. following an
adiabatic approximation we will in many cases describe a by its quasistationary equilibrium
resulting from a 0»˙ :

a t
a b A tu, ,

. 7a a a

a

 x
g

=
+

( )
( ) ( )

( )

3. Application: active motion

3.1. Input of energy

Let us start with the most studied example in the context of this paper, namely active motion.
It describes the ability of biological entities, from bacteria to fish and mammals, to move
actively in a desired direction with a non-trivial velocity much larger than the thermal
velocity, v2∼kBT/m. Active motion plays a major role in models of swarming behavior
[26–28]. However, many of these models just postulate the non-trivial velocity, to focus on
the interaction between agents. They rarely discuss the energetic conditions for active motion.

We have provided a model of active Brownian particles [23] which takes these energetic
conditions explicitely into account. Since in this model agents do not interact, we drop the
agent index i in the following. To cast this model in the framework of active matter, the
driving variable a(t) represents an internal energy depot e(t) of an agent, i.e. an internal
degree of freedom. Considering terms up to first order in a b u, ,a ( ), the dynamics of the
internal energy depot reads

a t

t

e t

t
e t v e t A tu

d

d

d

d
, . 8e a a0 1g a a xº = - + + +

( ) ( ) ( ) { ( ) ( )} ( ) ( )
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The damping of the driving variable should model internal dissipation of the energy depot at
a rate eg . The term α0=q(r, t) considers the fact that the energy depot e(t) can be filled up
with a rate q(r, t) that may explicitely vary with the location r of the agent and with time t.

The energy stored in the internal depot can be used for different activities. In the example
at hand internal energy is converted into kinetic energy to propel the agent, with a rate
proportional to the depot and a velocity dependent conversion function d(v). Hence, the
driven variable is the agent’s velocity, b≡v, and α1(v, u)=−d(v). For the conversion
function, in the absence of empirically tested relations, we use again the ansatz of a power
series:

d v d v t . 9
k

n

k
k

0
å=
=

( ) ( ) ( )

The constant term d0, which yields d e t0 ( ) in equation (8) describes the dissipation of energy
during the transformation of internal into kinetic energy. Hence, it makes sense to combine the
two dissipative processes described by γe and d0 and to define the dissipation rate c=γe+d0.
d1=0 because otherwise it would generate a bias toward positive/negative velocities [29].
Hence, we are left with d v d v2

2=( ) . So, equation (3) reads with α1(v, d2)=−d2v
2, where the

control parameter d2 is the conversion factor:

e t

t
c v e t q r t A t

d

d
d , . 10a a2

2 x= - + + +
( ) [ ] ( ) ( ) ( ) ( )

We note that this way the dynamics of the internal energy depot has effectively become a
balance equation. The influx, or ‘gain’, of energy is obviously given by the take-up of energy
from the environment, q(r, t), but also the stochastic force can result in a gain of energy if
their mean value is not zero, which is discussed further below. The outflux, or ‘loss’, of
energy results from dissipative processes during energy storage and conversion
(c de 0g= + ), but most importantly from the conversion of depot energy into kinetic
energy for the movement of the agent. Before we further investigate the latter, we want to
discuss different assumptions for q(r, t).

3.1.1. Constant, fluctuating or localized take-up of energy. The take-up function q(r, t) can
cover different cases for energy take-up. The most common one is to simply assume a
constant function q(r, t)=q0 independent of location and time. Such a constant take-up is
reasonable for biological species that exist in a energy-rich environment which does not
change fast. For example, bacterial cells, Salmonella typhimurium, have been used to test the
take-up of energy in relation to the nutrition concentration of their environment [29].

Usually the take-up of energy may slightly fluctuate around a mean value q0

q r t q q t q A t, ; , 11a a0 0 0 x= = +( ) ˜ ( ) ( ) ( )

where the stochastic process tax ( ) is assumed to be Gaussian white noise with the properties
given by equation (2), i.e. at any given time ξa(t) is drawn from a normal distribution with
mean zero and standard deviation A 2as = , where q0s  . Equation (10) leads us in
adiabatic approximation, equation (7), to

a t e t
q t

c v t
e

d
, 120

2
2 0º =

+
º( ) ( )

˜ ( )
( )

( )

where e0 is the quasistationary value of the energy depot. It still depends on the actual
velocity, but it is assumed that the energy depot relaxes very fast if v(t) changes. A stationary
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value results only if also the velocity has reached a stationary value v(t)→v0 and white noise
fluctuations of the energy take-up are neglected, q t q0 0˜ ( ) .

A more realistic assumption for the take-up of energy would depend on time and space,
to model for example localized food sources [5]. Then, q r t q, 0=( ) holds only inside a
spatial domain and the energy depot is only charged if the agent, during its motion, hits such a
food source. This leads to an interesting intermittent dynamics, i.e. a switch between periods
of active motion, as long as the depot is filled, and periods of passive motion. It is also related
to bursty dynamics [30], dependent on the availability of energy.

3.1.2. Activity driven by shot noise. Instead of assuming a rather continous energy take-up of
the agent, we can also model a stochastic process that increases the energy depot of the agent
independent of the agent’s active involvement [4, 31]. If the stochastic process is, for
example, given by white shot noise, then we get for the energy increase [32, 33]:

q r t q t A t q t t, 0; . 13a a
k

n t

k0
0

åx d= = = -
=

( ) ˆ ( ) ( ) ( ) ( )
( )

Different from q0, which is the rate of energy take-up, the parameter q defines the amount of
energy obtained in a pulse that occurs at each time step tk. For white shot noise, the tk are the
arrival times of a Poissonian counting process n(t), i.e. the probability that n(t)=k such
pulses occur in a time interval (t−T, t) follows the Poissonian distribution:

n t k
y

k
y y TPr exp ; . 14

k

l= = - ={ ( ) }
!

( ) ( )

Here λ is the mean number of Dirac delta pulses per time unit, and 1/λ the average sojourn
time between two delta pulses. Because the stochastic process ξa(t), different from the above
example, is the major source of energy, the average is not zero as in equation (2), but

t q q , 15a 0x l= º⟨ ( )⟩ ( )

i.e. the averaged dynamics of the energy depot results in the same quasistationary limit given
by equation (12).

3.2. Velocity

Assuming that the driving variable describes the internal energy depot e(t) of an agent, the
conjugate driven variable for active motion is given by its velocity, v(t), for which the
dynamics reads

b t

t

v t

t
v t e v t S tu

d

d

d

d
, 2 . 16v 0 1g b b xº = - + + +

( ) ( ) ( ) { ( ) ( )} ( ) ( )

This dynamics follows the already discussed Langevin equation (1) for the velocity of a
Brownian particle, with the addition of the nonlinear function a b u, ,b ( ) from equation (4),
for which we consider terms up to first order. One should note that the terms vk

kb all have the
physical meaning of a force that is responsible for the acceleration/deceleration of the agent.
Hence, we choose for β0=F(r), where the force is assumed to result from an external
potential, i.e. F(r)=−∇U(r), or from interactions with other agents.

The first order term e v tu,1b ( ) ( ) describes the acceleration of the agent thanks to the
energy taken from the internal depot e(t). This term is of course is related to the term α1(v, u)
e(t) describing the energy taken from the energy depot in the corresponding equation. To see
how, let us assume that we consider kinetic energy e=mv2/2 and set the mass m=1. Any
change of the energy is then related to a change in velocity by e vv=˙ ˙. If only the first order
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terms are compared, this yields α1e=vβ1v or

e d
v e t

v
d e t

u
,

,
. 171 2

1
2 2b

a
= =( ) ( ) ( ) ( ) ( )

β1 has the meaning of a negative friction, i.e. it compensates, and can even exceed, the
‘positive’ friction γv. Negative friction was already discussed by Lord Rayleigh in his theory
of sound [22]. A violin bow transfers energy to the violin string by means of negative friction,
which allows friction-pumped oscillations, often recognizable as a nice sound. In our case, the
negative friction is responsible for the active motion of the agent with a non-trivial velocity,
v k T m2

B . It results from the energy taken from the internal depot e(t) and converted with
a rate d2 into kinetic energy, i.e. β1=d2e(t). Hence, we find for the dynamics of the velocity
as the driven variable:

v t

t
e v t U r S t

d

d
d 2 , 18v 2g x= - - -  +

( ) [ ] ( ) ( ) ( ) ( )

which is coupled to the driving variable e via equation (10).

3.2.1. Stationary states. The dynamics of the driven variable, equation (18), and of the
driving variable, equation (10), have to be solved together, to determine the stationary states.
If we only consider a deterministic dynamics, i.e. neglect the additive stochastic term for the
moment, and further set F r 0=( ) , we have a set of coupled equations:

e c d v e q v d e v; 19v2
2

0 2g= - + + = - -˙ [ ] ˙ [ ] ( )

with the stationary solution resulting from e 0=˙ , v 0=˙ [5, 23, 29, 34]:

v
q c

d

c

d
Q Q

q d

c
1 ; . 20

v v
0

0

2

1 2

2

1 2

2
1 2

2
0 2

g g
=  - =  - =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

This gives different insights with relevance for active matter:

(i) We find a bifurcation dependent on the control parameter Q2. For Q2<1, v0=0 is the
only (trivial) solution, for Q2>1 non-trivial solutions v 00 ¹ exist. The control
parameter Q2 precisely describes the relation between energy take-up q0 and energy
conversion d2, on the one hand, and energy dissipation from friction γv and metabolism
c, on the other hand, i.e. we need a critical input of energy to observe active motion, or
activity in general.

(ii) Neglecting the decay of the driving variable, −ce(t), which represents internal dissipation
at the rate c, we do not find the bifurcation in the active behavior. Instead, we would
observe continuous activity, albeit at different levels. Hence, the emergence, i.e. the
sudden appearance of non-trivial phenomena, is inherently coupled to the existence of
such dissipative processes.

We add that the above discussion holds for the specific assumption d(v)=d2v
2 used in

equation (9). Other possible assumptions for this conversion of internal into kinetic energy are
discussed in [29] and compared with experiments in bacteria.

3.2.2. External potential. The potential U(r) in equation (18) can be utilized to model
different forces acting on the agent. A quadratic function, U(r)=ar2/2, for example, could
model a force toward the origin representing a ‘home’ [5, 35]. Hence, the two location
dependent functions q(r, t) and U(r) already allow one to describe a rich environment for the
agent with different ‘food’ and ‘nest’ locations.
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A linear function, U(r)=ar, on the other hand, results in a drift, i.e. the agent is forced
to move into the negative direction, for example because of a current [36]. We could identify
the energetic conditions under which the agent can change its motion along the gradient into a
active motion against the gradient. This further allowed us to obtain conditions for a steady
current of agents actively moving in a ratchet potential [31, 33]. Interestingly, if stochastic
forces are considered the net current of moving agents could be reversed [36]. Hence,
including stochasticity into the description of active matter affects the dynamics not just
quantitatively, but also qualitatively.

3.2.3. Interaction potential. The choice of β0=F(r) is not restricted to forces resulting from
an external potential. We could as well consider forces resulting from interaction potentials,
i.e. F fi j ij= å with fij=∇U (ri, rj) where ri and are rj are the agents’ positions. This extends
the framework to include various models of collective motion [26, 28, 37] with relevance to
biological systems. For example, a long-range attraction potential can be used to control the
spatial dispersion of a multi-agent system. On the other hand, if the distance between two
agents is below a certain threshold, a short-range repulsion potential ensures that they do not
collide when moving, this way modeling avoidance behavior [38]. Combining various forces
to model, e.g. alignment or follow-the-leader behavior allows to model coherent swarming
behavior of different species in a realistic manner.

4. Application: communication

4.1. Communication field

In the above examples, the energy take-up was always used for active motion, but not yet for
interaction between agents which is another important ingredient of active matter. Interaction
can be seen as a generalized form of communication [15], even if that is not the conventional
view in physics. Electrons generate an electrical field to ‘communicate’, i.e. to provide
information about their charge and location, to other electrons which can respond to this.
Coming closer to the biological and social realm, agents ranging from bacteria, cells and
insects to higher organisms, including humans, interact by means of communication. This
implies to generate and to transmit a signal, but it also requires responses of other agents that
receive and process this signal. Both, generating and responding to signals, come at a cost
which is rarely explicitly considered in modeling approaches. Our framework of active matter
fills this gap, by considering that the energy take-up can be also used for communication.

Let us first discuss the example of chemical communication. We assume that the agent
produces a chemical marker at a rate s(t) which requires energy, i.e. s[e(t)]. If the production
of s(t) is simply proportional to the internal energy depot, we find for the corresponding term
in equation (8):

v e t e t s tu, . 211a aº - = -( ) ( ) ( ) ( ) ( )

Note that α is considered a constant here, i.e. there is no coupling to the velocity, but still to
the driven variable via s(t). Combining the two energy consuming processes, internal
dissipation at a rate γe and production of a marker at a rate α, we can now define c eg a= +ˆ .
Considering again a continuous, slightly fluctuating take-up rate q0̃, equation (11), the
quasistationary limit for the energy depot as the driving variable reads

Eur. J. Phys. 40 (2019) 014003 F Schweitzer

10



e t e
q

c
s e; , 220

0
0 0a = =( )

˜
ˆ

⟨ ⟩ ( )

where the quasistationary production rate s0 is proxied by a constant derived from the mean of e0.
The driven variable, in the communication scenario, is the communication field h r t,( )

that is generated by the chemical markers produced by the agents. Assuming that these
markers are continuously placed in the environment at the positions r of the agents, the spatio-
temporal communication field h(r, t) aggregates these markers and defines their local con-
centration. In line with the general dynamics assumed for the driven variable, equation (4), the
chemical concentration can decay over time at a rate γh. The additive stochastic term Abξb is,
on the aggregated level of the field, transformed into a diffusion term with D A 2h b h

2 2g= ( ) as
the spatial diffusion coefficient of the chemical marker. This gives us the dynamics of the
communication field as the driven variable as follows [6]:

h r t

t
h r t s r r t D h r t

,
, , . 23h
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i h0
1

åg d
¶

¶
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=
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The driving variable, i.e. the energy depot, and the driven variable, i.e. the communication
field, are coupled through s0. The summation goes over all agents i=1, K, N that produce
the chemical marker with the quasistationary rate s0 at their current position ri(t), i.e. from
now on, we will use the agent index i to refer to a larger number of agents interacting.

4.2. Biological aggregation

We note that the dynamics of the communication field indeed captures essential processes
involved in communication, such as writing, i.e. the generation of information, dissemination,
i.e. the distribution of information as a diffusion process, but also a certain memory effect.
Generated information has a certain life time, and its value (novelty, importance) fades out
over time.

Only the impact of the generated information is missing in this picture. Communication
implies that there is also a reading of these markers, and a certain type of response to the signal
which depends very much on the system under consideration. To illustrate this, we take first the
example of biological aggregation. Different biological organisms from cells, to slime molds,
amoebae and myxobacteria use a chemical field to communicate. That means they generate
chemical signals, but they also respond to these signals by changing their direction of motion
dependent on gradients in the concentration. This process is widely known as chemotaxis [39].
We capture this by assuming the following equation of motion for the agents [6]:

r
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D t
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d
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This stochastic dynamics results from the already discussed Langevin equation in the
overdamped limit, i.e. γv is large and therefore the velocity becomes quasistationary.
D S v

2g= is the spatial diffusion coefficient. The additional term is the deterministic force
resulting from a gradient in the communication field. The agent reads the information and
responds to it by preferably moving towards higher local concentrations of the chemical
markers, with ωi as the (individual) sensitivity.

Our model of active matter now includes a feedback loop: agents produce chemical
markers at their current position, this way establishing the communication field, but the
communication field feeds back to the movement of the agents. This leads to a local
amplification: agents reinforce higher concentrations of markers because they preferably go
there. The local reinforcement is counterbalanced by two processes, (i) the decay and (ii) the
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diffusion of information. The latter can be seen as a long-range coupling of the distributed
activities of agents. The decay, on the other hand, ensures that all information that is not
reinforced will disappear over time. This induces a competition process, where local maxima
of chemical markers compete for the agents to be maintained.

This model has direct applications in biological aggregation. For example, larvae of the
bark beetle Dendroctonus micans, after hatching, need to gather and to form clusters, to
defeat some poison emitted by their host plant [40]. This is done by means of chemotactic
communication. In a first stage, larvae form small local clusters by following the chemical
gradient. In a second stage, these local clusters start to compete, i.e. their further growth is at
the expense of other clusters disappearing, a process known as Ostwald ripening in physics
[41]. This way, eventually all larvae meet in one large cluster.

The dynamics of this aggregation process can be described on two levels, the micro level
of communicating agents which is investigated by means of agent-based stochastic computer
simulations, and the macro level of distribution functions analyzed mathematically by means
of two coupled differential equations. In the current case, these distributions represent (i) the
chemical concentration and (ii) the spatial density of agents. Different adiabatic approx-
imations then allow one to formally derive selection equations for the competing clusters or
effective diffusion equations for the agent density [6]. We note again that the dissipation, i.e.
the decay of information, plays a crucial role in the emergence of structures in active matter,
which is the formation of clusters in our case.

4.3. Self-assembling networks

The basic communication model described above can be extended to describe the self-
assembing/self-wiring of networks, as it was found, e.g. in neuronal networks [42]. Networks
consists of nodes and links to connect them. The terms self-assembing/self-wiring refer to the
fact that links between nodes cannot simply be drawn as lines, but have to be physically
created in active matter.

To model this by means of our agent-based framework [43], we consider two different
kinds of nodes distinguished by the index −1,+1. These nodes are spatially distributed, their
positions denoted as rj

z. Agents, while moving, first have to discover these nodes and then
have to connect nodes of opposite type, i.e. ‘−’ nodes are connected to ‘+’ nodes, and
vice versa. Each agent is characterized by a discrete internal degree of freedom θiä
{−1,+1}, which is changed only if the agent hits a node and then takes the value of the
node index, i.e. −1 or +1. Once an agent hits a node, its energy depot is charged to a
maximum value emax. Hence, the take-up of energy is not assumed to be constant in space and
time. Instead,

q r t t r r t t t, e e , 25i i i j
z

i i
z

max d d= - - -( ) [ ( )] [ ( )] ( ) ( )

where t zi is the time when the agent i hits one of the nodes z.
With equation (21) the dynamics of the energy depot reads in the deterministic limit:

e t

t
ce q r t

d

d
, . 26i

i i i= - +
( ) ˆ ( ) ( )

As before, the energy from the depot is used to generate information, e.g. chemical markers.
In this application, instead of one diffusing chemical two different non-diffusive markers are
produced. The new element is a state dependent production rate s t,i iq( ),
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i
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i
- are the times when agent i hits any of the nodes +1 or −1. The

time dependent production rate results from the fact that the internal energy depot of the agent
is not in a quasistationary equilibrium, i.e. s(t)∝e(t) as given by equation (21).

The driven variable is again the communication field, which now has two components to
reflect the two different information, {−1,+1}. Because information does not diffuse here,
the dynamics of the communication field reads

h r t
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h r t s t r r t
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In order to close the feedback loop of communication, we have to specify how agents respond
to the information from the communication field. Here, we use equation (24) again, i.e. agents
respond to the gradient, but because there are two different fields −1,+1, our main
assumption is that agents only pay attention to the component of the field they currently not
produce. That means agents departing from a ‘+’ node, generate a marker +1 at an
exponentially decaying rate, but in their movement they are guided by the gradient resulting
from the field component −1. This gradient, by construction, guides them to one of the ‘−’

nodes. Arriving there, agents switch their internal state to −1, start creating the marker −1,
but follow the gradient from component +1, and vice versa.

This rather simple feedback mechanism determines agents to ‘weave’ connetions
between nodes of opposite sign [43]. Of course, established links provide a screening effect in
the neighborhood, therefore the link density becomes saturated over time. Dependent on
control parameters such as the spatial density of agents, N/A, the relative production smax/γh
and the diffusion constant D, the agents are able to discover and to link all nodes in the system
that are within a critical distance, i.e. in the optimal range of parameters, the connectivity of
the system is high and the spatial distribution of ‘+’ and ‘−’ nodes can be used to control the
topology of the resulting networks, to obtain, e.g. lattices or hub-spoke structures [43].

This model of structure formation in active matter has its application in the self-wiring of
neural structures. A neuron grows, for example, from the retina of the eye towards the optic
tectum (or superior colliculus) of the brain, without ‘knowing’ from the outset about its
destination node in the brain. It is known that gradients of different chemical cues play a
considerable role in this navigation process. They provide a kind of positional information for
the navigation of the growth cones [44]. But in the very beginning, this positional information
has to be generated interactively, and only in later stages may lead to established pathways.

The model can be also applied to the formation of trails in ants [45]. The two different
kinds of nodes are then the nest (−1) and the food sources (+1). Starting from the nest, ants
have to discover the food sources and then link them back to the nest, for exploitation. The
success information is only produced after ants have discovered the food, and will lead other
ants to that area. The information generated by the ants leaving the nest, on the other hand, is
utilized by the successful ants to return to the nest. This model becomes more realistic by
using refined assumptions, such as a success dependent sensitivity expressed by the strength
of the stochastic force, or different rules for scouts and recruits [45]. We note that this model
was also applied to the formation of trail system by pedestrians [46]. Hence, the notion of
active matter can be expanded also to biological and social systems.
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4.4. Human online chats

The framework of active matter can be also applied to human communication, for example in
online chatrooms [47]. Again, the driven variable is the communication field which now
consists of only one component and updates instantaneously, without diffusion. It could be
imagined as a computer screen that displays all messages from a chat within a certain time
interval. New messages arrive at the top of the screen and make the highest impact, whereas
older messages move down to the bottom as new messages come in, this way becoming less
influential. So the screen is always updated and information can fade out.

The difference to the above communication examples is in the specification of the driving
variable, which is the energy depot. Before, it was assumed that energy from the depot is
available either constantly, as in the case of biological aggregation, or continuously but with a
decaying amount, as in the case of self-assembling networks. This availability of energy then
directly determines the amount of information produced by the agent, equation (21).

For human communication, both offline [48] and online [47], we know that the inter-
activity time τ between two communication acts of a given person follows a power-law
distribution:

P ; 3 2. 29t t kµ =k-( ) ( )

That means in an agent-based model the agent produces a constant amount of information
s0(t) only at times that are defined by the sequence of τ values. This can be ensured by an
energy depot that has a nonzero, but constant, value e0(t) only at these respective times, and is
zero otherwise to prevent writing. To cope with this, the driving variable can in adiabatic
approximation be written as
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where τk are realizations drawn from the interevent time distribution P(τ), equation (29),
which is different the from the Poissonian distribution for shot noise, equation (14). But still,
at each of these arrival times the depot is filled with a rate q, which then allows the immediate
generation of information.

Noteworthy, a mean inter-activity time t⟨ ⟩ is in general only defined if we assume a
minimum and maximum inter-activity time τmin, τmax. Then
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and we can again calculate an average take-up rate q q0 t= ⟨ ⟩ for the energy depot which
brings us back to equation (22).

5. Application: emotional influence

5.1. Valence and arousal

So far, we have always considered the internal energy depot as the driving variable, whereas
the driven variable was either the velocity, as in the case of active motion, or the commu-
nication field, as in the case of interacting agents. Now, we keep the communication field as
the driven variable, but use different assumptions for the driving variable, to model emotional
influence.
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For this, we consider that the information generated by the agent is no longer just a
function of the internal energy depot, si[ei(t)], equation (21), but a function of two different
driving variables, valence, xi(t), and arousal, yi(t), i.e. si[xi(t), yi(t)]. According to the so-called
circumplex model [49], the two variables are used to quantify emotions, x y,( ), by a position
in the two-dimensional (x, y) space.

Valence x refers to the pleasure associated with an emotion, while arousal y refers to the
degree of activity induced by the emotion. Both are normalized to a range 1, 1- +( ) and can
be measured in different ways. Of interest in our context is the sentiment analysis which
allows one to extract emotions from written text, i.e. the underlying assumption, as before, is
a communication between agents, e.g. in an online setting (chats, fora) via the exchange of
text messages. These text pieces, in addition to some factual information, also contain
emotions that affect other agents when reading the text. They may then respond by writing a
reply, this way expressing their emotions. If we abstract from the text, this interaction
describes an emotional influence of agents.

For an individual, changing emotions generate a trajectory in the (x, y) plane char-
acterized by a large amount of noise [50]. Therefore, it is reasonable to assume for both
driving variables the stochastic dynamics proposed in equation (3). It remains to specify the
nonlinear function, a , for which we start with the general ansatz of equation (5). This time,
however, we make use of the free functions a (·) by choosing

h t h t h t h t; . 32x y = = = + + -(·) ( ) (·) ˆ( ) ( ) ( ) ( )

That means, the dynamics of both valence x and arousal y are expressed by the power series
further discussed below, but there are noticeable differences in the assumed dependence on
the existing emotional information, expressed by x (·) and y (·). Both free functions depend
on the respective communication field h, which is the driven variable. Because of positive and
negative emotions, we assume that their information is aggregated in two different
components of the communication field, h+ and h−. Both components follow the same
dynamics given by equation (28), i.e. their value decays with a rate γh but is increased by the
emotional information produced by the agents, si[xi(t), yi(t)]. Additionally, we can also
consider input from external events, I±(t), that increase the value of the positive or negative
emotional information. To further specify the production rate of emotional information, we
choose

s x t y t f x t y t, . 33i i i i i i= Q -[ ( ) ( )] [ ( )] [ ( ) ] ( )T

zQ[ ] is the Heaviside function, which is 1 if z 0 and 0 otherwise. It means that agent i
produces emotional information only if its arousal yi reaches the level of the individual
threshold iT . Whether this information contains positive or negative emotions is decided by
the agent’s valence xi(t). The function f[xi(t)] can for simplicity just distinguish between
positive and negative emotions, but other dependencies are also possible.

Once the communication field is established by the emotional expressions, it feeds back
on the driving variables as specified in equations (5) and (6). Here we assume that valence is
only affected by the emotional information that matches the agent’s emotion, i.e. by h− for
agents with negative valence or by h+ for agents with positive valence. For arousal, on the
other hand, it is considered that both positive and negative emotional information increases
the arousal of the agent, hence the information is additive. Importantly, if the arousal reaches
the individual threshold iT , yi is set back to zero.
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5.2. Nonlinear feedback

To complete the feedback cycle, we have to further specify the coefficients of the power series
in a b u, ,a ( ), equation (5). For the dynamics of valence we find [51]

x t

t
x t h t x t x t x t A t

x t x t h t x t A t

d

d
. 34

i
x i x x i x i x i x x

x i i x x i x x

0 1 2
2

3
3

1 3
2

g a a a a x

g a a x

=- + + + + +

=- + + +





( ) ( ) { ( )[ ( ) ( ) ( )]} ( )

( ) ( ) ( ){ ( )} ( ) ( )

Here, we have considered contributions up to 3rd order in x. To allow for a ‘silent’ mode x
(t)→0, α0x=0 has to be chosen. Further, in order to treat positive and negative valences as
‘equal’ and to not introduce a bias, we have to set α2x=0. The analysis of the remaining
equation [51] then tells that non-trivial solutions x 0¹ require hx x1a g>· . In this case,
collective emotions can emerge which involve all agents. We note again that emergence, i.e.
the sudden appearence of collective states, occurs only if dissipation ( xg ) is involved.

To obtain activity, a regime with high (positive or negative) valence and high emotional
information h± is required. But this regime can only occur if arousal is high enough to
generate some emotional expression si in the first place. We obtain from equations (3), (6):
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Here, a b u, ,a ( ) considers contributions up to 2nd order in a. A positive arousal requires the
coefficient 0y0a > , which can be seen as analogy to the constant take-up of energy q0 in
the case of the internal energy depot. The two other coefficients y1a , y2a are responsible for
the nonlinear self-reinforcement of arousal, thus 0y1a ¹ should be chosen [51]. The crucial
coefficient is y2a because it decides about the long-term dynamics possible. If 0y2a < , the
arousal dynamics becomes saturated. If this saturation level is above the individual threshold

i , the agent will generate an emotional expression. After that yi is set back to zero. If
fluctuations are included these may then push the agent’s arousal to negative values, from
which it will not return to positive arousal. Hence, we obtain a scenario where agents express
their emotions most likely only once. This may lead to collective emotions, but not
repeatedly.

The situation changes if we consider 0y2a > . Then, instead of a saturated dynamics, we
may obtain two different stationary solutions with negative arousal. At low levels of emo-
tional information h tˆ ( ), e.g. no generation of emotional information, fluctuations are able to
push the agent’s arousal to positive values, from where a new communication cycle starts.
Hence, we obtain a scenario with waves of collective emotions over time.

To summarize the dynamics of emotional influence, stochastic fluctuations are in fact
crucial to reach an active regime. They first push agents to a positive arousal which is then
amplified by the positive feedback, until it reaches the threshold. This then generates emo-
tional expressions that establish a communication field which in turn feeds back on the
agent’s valence and arousal. While valence, in this dynamics, is responsible for the ‘content’,
i.e. the sign of the emotional information generated, arousal decides about the activity pattern.
But it is worth noticing that arousal does not drive valence, consequently both are the driving
variables, whereas the emotional expressions and the components of the resulting commu-
nication field are the driven variables.

Despite the rather abstract description, this model has performed remarkably well in
reproducing significant features of emotional online communication, such as the emotional
persistence of users, activity patterns of users dependent on emotional stimuli, or the emer-
gence of collective emotions [47, 52, 53].
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5.3. Emotions driving opinions

As the last application, we consider the case that the driving variables, valence and arousal,
drive opinions through the production of information, si[yi(t), vi(t)]. This information results
again in a communication field that influences opinions, i.e. opinions are driven by underlying
emotions. Taking for example political systems [54], the frequently observed strong polar-
ization in opinions can hardly be explained just by rational or utility-based arguments.
Instead, the emergence of polarization in a heated political climate is rather due to ‘irrational’
processes fast enough to impact opinions beyond control.

Emotions are defined as short-lived psychological states, hence their dynamics relaxes
fast compared to the dynamics of opinions and we can indeed separate the time scales of these
two dynamics. For the dynamics of emotions, we utilize equations (34) and (35). For the
dynamics of the opinion tiq ( ), which is the driven variable here, we assume in accordance
with equations (4) and (6) [55]:

t

t
t t t t A t

d

d
. 36i

i i i i i0 1 2
2

3
3q

g q b b q b q b q x= - + + + + +q q q
( ) ( ) { ( ) ( ) ( )} ( ) ( )

Here θiä(−1,+1) denote continuous opinions where negative values may indicate left-wing
and positive values right-wing positions. Their values are not necessarily bound to the range
given, even more extreme opinions may be possible but not frequent. Again, for the dynamics
we consider contributions of the power series in a b u, ,b ( ) up to 3rd order. The higher-order
terms are useful to encode subtleties in the opinion formation, e.g. 02b ¹ would account for
a global bias toward left/right opinions. β3<0, on the other hand, indicates a common
preference for consensus. If 3b∣ ∣ is large, this favors consensus, whereas small 3b∣ ∣ favor
polarization [55].

The coupling between the driving variables xi(t), yi(t), and the driven variable θi(t) is
effectively provided via the communication field h with its two components h+ and h−, on
which the coefficients βk depend. The important coefficients are β0 and β1. Obviously, if
β0=0 and no bias β2 is considered, β1 already decides whether there is only one (trivial)
opinion in the long run (β1<γθ) or whether there could be (a coexistence of) two different
opinions 0q ¹ (β1>γθ).

Hence, what matters for the term (β1−γθ)θi is the difference between β1 and γθ. A
coexistence of two different opinions, i.e. polarization, should occur in a regime with high
emotional information, h t h t h t= ++ -

ˆ ( ) ( ) ( ). We recall that the communication field h tˆ ( )
measures the activity resulting from the emotions. So it makes sense to set (β1−γθ) equal to
h t hbase-( ˆ ( ) ˆ ), i.e. h tˆ ( ) has to overcome some threshold value hbase

ˆ in order obtain non-trivial
opinions and polarization.

Eventually, we have to consider that both left- and right-wing opinions, even if they
coexist, may be present in the system with different frequency. This is decided by the
coefficient β0 for which we choose x h w x t h t,0b = -( ) ¯ ( ) ˆ ( ) [55]. w is a dimensional con-
stant. Note that x t h t h t= -+ -¯ ( ) [ ( ) ( )] is a measure of the average valence in the system
which, in the simplest case, can be expressed by the difference in the available positive and
negative emotional information.

If 00b > and 0b∣ ∣ is large, i.e. if we have a situation with high emotional information
which is mostly negative, then the corresponding opinions are also mostly ‘negative’. On the
other hand, if β0<0 and 0b∣ ∣ is large, the corresponding opinions are mostly ‘positive’. The
interesting case is for intermediate values of 0b∣ ∣ because they allow for the nonstationary
coexistence of left/right opinions dependent on the emotional response of agents, i.e. this is
the parameter range where polarization of opinions emerges based on emotional interactions.
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6. Discussion

Active matter is a recent concept to describe the active motion and the formation of coherent
structures in systems with the ability to take-up, and to convert, energy. As such, active matter
shares features of self-organization, which is found not only in physical systems, but also in
biological and in social systems. This raises the question about an overarching framework that
allows one to model active matter on these very different levels of organizations by using the
same principles. Macroscopic approaches have proven useful to model, for instance, the
hydrodynamics of active matter [1, 2, 16], but cannot be easily extended to model swarming
behavior of animals or social communication [26]. Therefore, ‘microscopic’, i.e. agent-based,
approaches are more promising to capture the complex interactions in such systems.

But can we employ the same agent-based approach for these very different systems, or do
we need specific agent-based models for each of them? This problem is addressed in this
paper. We demonstrate that there are indeed unifying dynamic principles that can be utilized
to model physical, biological and social systems as active matter.

Our agent-based framework is characterized by the following features.

(i) Distinction between driving and driven variables: driving variables allow one to model
the take-up, storage and conversion of energy which is crucial to model subsequent
activites, whereas driven variables describe what the energy is used for. In this paper, we
have discussed as application scenarios three different activities: (a) active motion
(section 3), (b) communication (section 4) and (c) emotional influence (section 5). (a) and
(b) can be widely found on different levels of biological organization. Both cases have
the same driving variable, the energy depot, whereas the driven variable is in (a) the
agent’s velocity and in (b) the communication field to model indirect interaction. (b) and
(c) can be observed on different levels of biological and social organizations. Both cases
share the same driven variable, i.e. a two-component communication field, but the
driving variable is in (b) the agent’s energy depot and in (c) the agent’s emotion
characterized by valence and arousal.

(ii) Stochastic dynamics and nonlinear feedback: for both driving and driven variables we
have assumed the same kind of stochastic dynamics that resembles the Langevin
equation of Brownian motion, equations (3) and (4). This contains a damping term for
relaxation and an additive stochastic force. The new element is the additional term in
each equation to describe the nonlinear feedback between driving and driven variable.
These nonlinear functions a b u, ,a ( ), a b u, ,b ( ) are introduced by means of a power
series, equations (5), (6), where the coefficients αk, βk are in fact functions that depend on
the driving and driven variables and on a number of control parameters u.

(iii) Analytical and empirical assessment: the nonlinear functions allow us to encode testable
hypotheses about the relation between driving and driven variables. Such tests can be
performed mathematically, in particular applying bifurcation and stability analyses.
These reveal the conditions under which a certain dynamic behavior of the system can be
expected [5, 36, 43, 45, 51, 56]. Moreover, the energetic conditions for active motion,
self-assembling of networks, swarming behavior or collective emotions have been
determined. The role of dissipation in obtaining different dynamical regimes could be
highlighted. But these hypotheses can be also tested in experiments [29, 47, 52, 57]
which allow one to calibrate the respective parameters.

(iv) Formal relation between micro and macro description: using methods of statistical
physics, the framework of Brownian agents [15] was developed such that it allows one to
formally derive the systemic dynamics from the dynamics of the system elements, at least
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in some approximation (mean-field assumptions, separation of time scales). This is a
considerable advantage in comparison to other agent-based approaches that only rely on
freely defined rules and extensive computer simulations. This advantage takes effect also
for modeling active matter in the broader sense used in this paper. That means, in
addition to efficient agent-based simulations that already include stochastic influences,
we are able to project the systemic properties, to estimate conditions under which
collective behavior and structure formation emerge.

While comparable methods for physical systems already exist for long, the major
advantage of our framework, as pointed out in this paper, is its applicability to a variety of
non-physical systems, in particular biological and social systems. To bridge a modeling
approach between non-animated and animated systems is quite rare and could be highly
criticized for fundamental reasons. But such arguments can already be refuted because it was
demonstrated that seemingly ‘social’ phenomena, such as collective emotions in online social
media, can be remarkably well described using this framework—not in an abstract manner,
but based on data-driven model calibration.
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