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Abstract
We provide a novel family of generative block-models for random graphs that naturally
incorporates degree distributions: the block-constrained configuration model.
Block-constrained configuration models build on the generalized hypergeometric
ensemble of random graphs and extend the well-known configuration model by
enforcing block-constraints on the edge-generating process. The resulting models are
practical to fit even to large networks. These models provide a new, flexible tool for the
study of community structure and for network science in general, where modeling
networks with heterogeneous degree distributions is of central importance.
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Introduction
Stochastic block-models (SBMs) are random models for graphs characterized by group,
communities, or block structures. They are a generalization of the classicalG(n, p) Erdős-
Rènyi model (1959), where vertices are separated into B different blocks, and different
probabilities to create edges are then assigned to each block. This way, higher probabili-
ties correspond to more densely connected groups of vertices, capturing the structure of
clustered graphs (Fienberg et al. 1985; Holland et al. 1983; Peixoto 2012).
SBMs are specified by defining a B×B block-matrix of probabilities B such that each of

its elements ωbibj is the probability of observing an edge between vertices i and j, where bi
denotes the block to which vertex i belongs. Most commonly, block-matrices are used to
encode community structures. This is achieved by defining a diagonal block-matrix, with
the inclusion of small off-diagonal elements.
Thanks to its simple formulation, the edge generating process of the standard SBM can

retain the block structure of the graph that needs to be modeled (Karrer and Newman
2011). However, it fails to reproduce empirical degree sequences. The reason for this is
that in the G(n, p) model and its extensions, edges are sampled independently from each
other with fixed probabilities, generating homogeneous degree-sequences across blocks.
This issue impairs the applicability of the standard SBM to most real-world graphs.
Because of the lack of control on the degree distributions generated by the model, SBMs
are not able to reproduce the complex structures of empirical graphs, resulting in poorly
fitted models (Karrer and Newman 2011).
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Different strategies have been formulated to overcome this issue. Among others, one
approach is that of using exponential random graph models (Krivitsky 2012). These mod-
els are very flexible in terms of the kind of patterns they can incorporate. However, as
soon as their complexity increases, they lose the analytical tractability that character-
izes the standard SBM. This is due to the need for computing the partition function
that defines the underlying probability distribution (Park and Newman 2004). Another,
more prominent, approach taken to address the issue of uniform degree-sequences in
SBMs are degree-corrected block models (DC-SBM) (e.g. Peixoto (2014); Newman and
Peixoto (2015); Karrer and Newman (2011); Peixoto (2015)). Degree-corrected block-
models address this problem by extending standard SBMs with degree corrections, which
serve the purpose of enforcing a given expected degree-sequence within the block struc-
tures. Moreover, this is achieved without hampering the simplicity of the standard SBM.
For this reason, DC-SBMs are widely used for community detection tasks (Newman and
Reinert 2016; Peixoto 2015). Recently, they have further been extended to a Bayesian
framework, allowing non-parametric model estimation (Peixoto 2017; Peixoto 2018).
One of the main assumptions of G(n,p) models, SBMs, and DC-SBMs as well, is that the

probability of creating edges for each pair of vertices are independent of each others (Kar-
rer and Newman 2011). While such a modeling assumption allows defining distributions
whose parameters are in general easy to estimate, for many real-world graphs, this is a
strong assumption that should be verified, and which is possibly unrealistic (Squartini et
al. 2015). Many social phenomena studied through empirical graphs, such as triadic clo-
sure (Granovetter 1973), or balance theory (Newcomb and Heider 1958), are based on the
assumption that edges between vertices are not independent. Similarly, for graphs aris-
ing from the observation of constrained systems, like financial and economic networks,
it is unreasonable to assume that edge probabilities are independent of each other. This
is because the observed edges in the graph, which are the representation of interactions
between actors in a system, are driven by optimization processes characterized by lim-
ited resources and budget constraints, which introduce correlations among different edge
probabilities (Caldarelli et al. 2013; Nanumyan et al. 2015).
Moreover, one of the consequences of the assumption of independence of edge proba-

bilities is the fact that the total number of edges of the modelled graph is preserved only
in expectation. In the case of SBMs and DC-SBMs, the total number of edges is assumed
to follow a Poisson distribution. For a Poisson process to be the appropriate model for
an empirical graph, the underlying edge generating process needs to meet the following
conditions (Consul and Jain 1973): (i) the observation of one edge should not affect the
probability that a second edge will be observed, i.e., edges occur independently; (ii) the
rate at which edges are observed has to be constant; (iii) two edges cannot be observed at
precisely the same instant. However, it is often hard to evaluate whether these conditions
are verified because the edge generating process may not be known, or these conditions
are not met altogether.
Melnik et al. (2014) have proposed an alternative approach to the problem of preserving

degree distributions and the independence of edges. Such an approach is a generalisation
of the configuration model that allows constructing modular random graphs, charac-
terised by heterogeneous degree-degree correlations between each block. The model, in
particular, relies on specifying different values Pbi,bi′k,k′ for the probability that a randomly
chosen edge connects a degree-k node from block bi to a degree-k′ node from block
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bi′ . The so-called Pi,i
′

k,k′-model, though, only considers unweighted and undirected graphs
(Melnik et al. 2014).
Similarly to the approach discussed in Melnik et al. (2014), we address the problem

of incorporating degree distributions generalising the configuration model. Doing so, we
propose a family of block-models that preserves the number of edges exactly, instead of
in expectation. This circumvents the issue of assuming a given model for the number of
edges in the graph, treating it merely as an observed datum. The configuration model of
random graphs (Chung and Lu 2002a; 2002b; Bender and Canfield 1978;Molloy and Reed
1995) is, in fact, the simplest random model that can reproduce heterogeneous degree
distributions given a fixed number of edges. It achieves this by randomly rewiring edges
between vertices and thus preserving the degree-sequence of the original graph. Doing
so, it keeps the number of edges in the graph fixed.
Differently from what proposed by Melnik et al. (2014), though, we extend the stan-

dard configuration model to reproduce arbitrary block structures by introducing block
constraints on its rewiring process by means of the formalism provided by the gener-
alised hypergeometric ensemble of random graphs. While this approach is not as general
as the one proposed by Melnik et al. (2014) in terms of how degree-degree correlations
can be incorporated, it allows us to deal with multi-edge, directed graphs. We refer to
the resulting model as block-constrained configuration model (BCCM). Significant advan-
tages of our approach are (i) the natural degree-correction provided by BCCM, and (ii)
the preservation of the exact number of edges.

Generalised hypergeometric ensembles of random graphs (gHypEG)
Our approach builds on the generalized hypergeometric ensemble of random graphs
(gHypEG) (Casiraghi et al. 2016; Casiraghi and Nanumyan 2018). This class of models
extends the configuration model (CM) (Molloy and Reed 1995; 1998) by encoding com-
plex topological patterns, while at the same time preserving degree distributions. Block
constraints fall into the larger class of patterns that can be encoded by means of gHypEG.
For this reason, before introducing the formulation of the block-constrained configura-
tion model, we provide a brief overview of gHypEG. More details, together with a more
formal presentation, are given in Casiraghi et al. (2016); Casiraghi and Nanumyan (2018).
In the configuration model of random graphs, the probability of connecting two ver-

tices depends only on their (out- and in-) degrees. In its most common formulation, the
configuration model assigns to each vertex as many out-stubs (or half-edges) as its out-
degree, and as many in-stubs as its in-degree. It then proceeds connecting random pairs
of vertices joining out- and in-stubs. This is done by sampling uniformly at random one
out- and one in-stub from the pool of all out- and in-stubs respectively and then con-
necting them, until all stubs are connected. The left side of Fig. 1 illustrates the case from
the perspective of a vertex A. The probability of connecting vertex A with one of the ver-
tices B, C or D depends only on the abundance of stubs, and hence on the in-degree of
the vertices themselves. The higher the in-degree, the higher the number of in-stubs of
the vertex. Hence, the higher the probability to randomly sample a stub belonging to the
vertex.
Generalized hypergeometric ensembles of random graphs provide an expression for the

probability distribution underlying this process, where the degrees of the vertices are pre-
served in expectations. This result is achieved by mapping the process described above



Casiraghi Applied Network Science           (2019) 4:123 Page 4 of 22

Fig. 1 Probabilities of connecting different stubs. Graphical illustration of the probability of connecting two
vertices as a function of degrees (left figure), and degree and propensities (right figure)

to an urn problem. Edges are represented by balls in an urn, and sampling from the con-
figuration model is described by sampling balls (i.e., edges) from an urn appropriately
constructed. For each pair of vertices (i, j), we can denote with kouti and kinj their respec-
tive out- and in-degrees. The number of combinations of out-stubs of i with in-stubs of
j which could be connected to create an edge is then given by kouti kinj . To map this pro-
cess to an urn, for each dyad (i, j) we should place exactly kouti kinj balls of a given colour
in the urn (Casiraghi and Nanumyan 2018). The process of sampling m edges from the
configuration model is hence described by samplingm balls from this urn, and the prob-
ability distribution of observing a graph G under the model is given by the multivariate
hypergeometric distribution with parameters � = {kouti kinj }i,j:

Pr(G|�) =
(∑

ij �ij
m

)−1 ∏
i,j∈V

(
�ij
Aij

)
, (1)

where Aij denotes the element ij of the adjacency matrix of G, and the probability of
observing G is non-zero only if

∑
ij Aij = m.

Generalized hypergeometric ensembles of random graphs further extend this formu-
lation. In gHypEG, the probability of connecting two vertices depends not only on the
degree (i.e., number of stubs) of the two vertices but also on an independent propensity
of the two vertices to be connected, which captures non-degree related effects. Doing so
allows constraining the configuration model such that given edges are more likely than
others, independently of the degrees of the respective vertices. The right side of Fig. 1
illustrates this case, whereA is most likely to connect with vertexD, belonging to the same
group, even though D has only one available stub.
In generalized hypergeometric ensembles the distribution over multi-graphs (denoted

G) is formulated such that it depends on two sets of parameters: the combinatorial matrix
�, and a propensity matrix � that captures the propensity each pair of vertices to be
connected. Each of these two matrices has dimensions n × n where n is the number of
vertices in G. The contributions of the two matrices to the model are as follows. The com-
binatorial matrix � encodes the configuration model as described above. The propensity
matrix � encodes dyadic propensities of vertices that go beyond what prescribed by the
combinatorial matrix �. The ratio between any two elements �ij and �kl of the propen-
sity matrix is the odds-ratio of observing an edge between vertices i and j instead k and l,
independently of the degrees of the vertices.
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As for the case of the configuration model, this process can be seen as sampling edges
from an urn. Moreover, specifying a propensity matrix � allows to bias the sampling
in specified ways, so that some edges are more likely to be sampled than others. The
probability distribution over a graph G given� and� is then described by themultivariate
Wallenius’ noncentral hypergeometric distribution (Wallenius 1963; Chesson 1978).
We further denote with A the adjacency matrix of the multi-graph G and with V its set

of vertices, the probability distribution underlying a gHypEGX(�,�,m) with parameters
�, �, and withm edges is defined as follows:

Pr(G|�,�) =
⎡
⎣ ∏
i,j∈V

(
�ij
Aij

)⎤
⎦∫ 1

0

∏
i,j∈V

(
1 − z

�ij
S�

)Aij

dz (2)

with

S� =
∑
i,j∈V

�ij(�ij − Aij). (3)

In Eq. 2, the first term on the right-hand side represents combinatorial effects encod-
ing degrees, inherited from the configuration model. The second term, constituted by
the integral, encodes the biases that need to be enforced on top of the process defined
by the configuration model. Note that, if �ij = c for all i, j and for any constant c,
i.e., if no biases are enforced on the configuration model, Eq. 2 corresponds to Eq. 1
(Casiraghi and Nanumyan 2018). The probability distribution for undirected graphs and
graphs without self-loops are defined similarly: by excluding the lower triangular entries
of the adjacency matrix or by excluding its diagonal entries respectively (we refer to
Casiraghi and Nanumyan (2018) for more details).
In the case of large graphs, sampling from an urn without replacement can be approx-

imated by sampling with replacement from the same urn. Under this assumption, the
approximation allows to estimate the probability given in Eq. 2 by means of a multinomial
distribution with parameters pij = �ij�ij/

∑
kl �kl�kl.

Block-constrained configurationmodel
The main modelling assumption that differentiate gHypEGs from SBMs is in the depen-
dence/independence of edge probabilities. In particular, while SBMs assume independent
edge probabilities, and specifies a Poisson process for the edge generating process, gHy-
pEG fixes the total number of edges m in the model and removes the assumption of
independence between edge probabilities. This assumption has the conceptual advan-
tage of not assuming an arbitrary edge generating process, such as the Poisson process
considered by DC-SBMs.
We hence define the block-constrained configuration model (BCCM) building on the

framework provided by generalized hypergeometric ensembles of random graphs. We
achieve so by utilizing a particular form of the propensity matrix �. Specifically, we need
to encode the block structure that we observe in the propensity matrix �. We do so by
specifying a block propensity matrix �(B) where each of its elements �(B)ij = ωbi if the
vertices i and j are in the same block bi, and �(B)ij = ωbibj if the vertices i and j are in
different blocks bi and bj respectively. Figure 2 shows a block-propensity matrix charac-
terised by three blocks. Similarly to SBMs, in the presence of B blocks, we can specify
a B × B block-matrix B that captures the block structure through its parameters ωbibj .
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Fig. 2 Block-matrix. Structure of a block propensity matrix with 3 different blocks (blue, green, yellow). The
entries along the diagonal capture the within-block propensities, those away from the diagonal capture the
between-block propensities

However, in the case of a BCCM, the entries ωbibj capture the deviations in terms of edge
propensities from the configuration model defined by the matrix �, constraining edges
into blocks.
The block-matrix B can be specified to generate various structures, extending those

naturally produced by degrees only, such as a diagonal block-matrix can model graphs
with disconnected components. The inclusion of small off-diagonal elements gives rise to
standard community structures, with densely connected clusters of vertices. By specifying
different types of block-matrices, it is also possible to model core-periphery, hierarchical,
or multipartite structures.
The block-constrained configuration modelX(�,B,m)withm edges is thus completely

defined by the combinatorial matrix �, and by the block-matrix B generating the propen-
sity matrix �(B). We can then rewrite the general probability for a gHypEG given in Eq. 2
for BCCM:

Pr(G|�,B) =
⎡
⎣ ∏
i,j∈V

(
�ij
Aij

)⎤
⎦∫ 1

0

∏
i,j∈V

(
1 − z

ωbibj
SB

)Aij

dz (4)

with

SB =
∑
i,j∈V

ωbibj(�ij − Aij). (5)

Table 1 summarises the differences between the distributions underlying the DC-SBM
and the BCCM.
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Table 1 Comparison of the properties of DC-SBMs and BCCMs

Model DC-SBM BCCM

Multi-edges distribution n2 independent Poisson n2-variate Wallenius

Number of edges m preserved in expectation fixed value

Distribution of m Poisson(m) fixed value

Degrees preserved in expectation preserved in expectation

Distribution of degrees n independent Poisson n-variate Wallenius

Despite its complicated expression, the probability distribution in Eq. 4 allows comput-
ing probabilities for large graphs, without the need to resort to Monte-Carlo simulations
(Fog 2008a). This permits the study of large graphs and provides simple model selection
methods based on the comparison of likelihoods, such as likelihood-ratio tests, or those
based on information criteria. In this article, we will consider model selection based on
the comparison of information criteria.
We will adopt the two most commonly used ones: Akaike information criterion (AIC)

(Akaike 1974), and Schwarz or Bayesian information criterion (BIC) (Schwarz and et al
1978). Both criteria depend on the likelihood function of the models to be compared and
penalize for the number of parameters estimated by themodel. Themodel with the lowest
score is the preferred one, as it best fits the data without overfitting it. In particular, it is
not the absolute size of the score, but it is the difference between values that matters for
model selection.
Information-theoretic methods considered here provide a simple way to select the

best-approximating model from a candidate set of models. The concept of information
criterion has allowed major practical and theoretical advances in model selection and the
analysis of complex data sets (Stone 1982; Bozdogan 1987; DeLeeuw 1992). In particular,
AIC and BIC allow performing model selection without the need of simulations, nor the
assumption of specific asymptotic behaviors of the probability distribution of the model
(although BIC assumes that the priors for the parameters estimated are asymptotically
normal). Moreover, the aim of model selection by means AIC and BIC is not to identify
exactly the ‘true model,’ i.e., the actual process generating the data, but to propose simpler
models that are good approximations of it (Kuha 2004). They only allow the selection of
the best model among those within a specified set. This means that, if all models in the
set are very poor, information criteria will select the best model, but even that relatively
best model might be poor in the absolute sense (Burnham and Anderson 2004).
The Akaike information criterion for amodelX given a graph G is formulated as follows:

AIC(X|G) = 2k − 2 log
[
L̂(X|G)

]
, (6)

where k is the number of parameters estimated by X and L̂(X|G) is the likelihood of
model X given the graph G. AIC gives an estimate of the expected, relative Kullback-
Leibler distance between the fitted model and the unknown true mechanism generating
the observed data. Hence, the best model among a set of models is the one that has the
minimal distance from the true process, and thus the one that minimizes AIC.
The Bayesian information criterion for a model X given a graph G is given by:

BIC(X|G) = log(m)k − 2 log
[
L̂(X|G)

]
, (7)
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where k is the number of parameters estimated by X, m is the number of observations,
i.e., edges, and L̂(X|G) is the likelihood of model X given the graph G. Similarly to AIC,
the best model in a set according to BIC is the one whichminimizes the criterion. Because
of the presence of a higher penalty for model size, BIC tends to select models with lower
parameters compared to AIC.
As mentioned above, what matters for model selection is the difference between the

value of AICs or BICs and not their absolute values. For this reason, it is helpful to rank
models in terms of their differences from the model which minimizes a given criterion.
Suppose that there are R models, and we want to find the best one according to either
AIC or BIC. Let AICmin be the model which minimizes AIC for a given dataset. Then we
can define the AIC differences �AIC

i as the difference AICi −AICmin of the AIC score for
model i ∈ {1, . . . ,R}, and the model which minimizes AIC. BIC differences are defined
in a similar manner. While AIC and BIC differences are useful in ranking models, it is
possible to quantify the plausibility of each model by defining relative likelihoods for the
models. Specifically, the quantity e−1/2�i defines the relative likelihood of model i given
the data (Burnham and Anderson 2004). To better interpret relative likelihoods, statisti-
cians usually normalize relative likelihoods to be a set of positive weights wi defined as

wi := e−1/2�i∑R
r=1 e−1/2�r

. (8)

In the case of AIC, such model weights are usually referred to as Akaike weights and are
considered to be the weight of evidence in favor of model i being the best model. In the
case of BIC, instead, the weights define the posterior model probabilities. The bigger �i
is, the smaller wi and the less plausible is model i as being the actual best model based
on the design and sample size used. These weights provide an effective way to scale and
interpret the �i values and hence select the best model (Burnham and Anderson 2004).
In the next sections, we describe how BCCM can be used to generate graphs and how

to fit its parameters to an observed graph. Because the absolute values of AIC and BIC are
not important, and only relative �is matter, in the following we will usually report only
the value of the relative differences.

Generating realizations from the BCCM. BCCM is a practical generative model that
allows the creation of synthetic graphs with complex structures by drawing realizations
from the multivariate Wallenius non-central hypergeometric distribution. The process of
generating synthetic graphs can be divided into two tasks. First, it is needed to specify
the degree sequences for the vertices. It can be accomplished by, e.g., sampling the degree
sequences from a power-law or exponential distributions. From the degree sequences we
can generate the combinatorial matrix �, specifying its elements �ij = kouti kinj , where
kouti is the out-degree of vertex i. Second, we need to define a block-matrix B, whose ele-
ments specify the propensities of observing edges between vertices, between and within
the different blocks.
The block-matrix B takes the form given in Eq. 9:

B =

⎡
⎢⎢⎣

ω1 . . . ω1B
...

ωB1 . . . ωB

⎤
⎥⎥⎦ . (9)
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Elements ωkl, with k, l ∈ {1, . . . ,B}, should be specified such that the ratio between any
two elements corresponds to the chosen odds-ratios of observing an edge in the block
corresponding to the first element instead of the block corresponding to the second ele-
ment, given the degrees of the corresponding vertices were the same. For example,ω1/ω32
corresponds to the odds-ratio of observing an edge between vertices in block 1 compared
to an edge between block 2 and block 3. Note that in the case of an undirected graph,
ωkl = ωlk ∀k, l ∈ {1, . . . ,B}. On the other hand, in the case of a directed graph, blocks
may have a preferred directionality, i.e., edges between blocks may be more likely in one
direction. In this case, we may choose ωkl �= ωlk .
Once the parameters of the model are defined, we sample graphs with m edges from

the BCCM X(�,�B,m) defined by the combinatorial matrix �, and the block-propensity
matrix �B defined by B. As described in the previous section, sampling a graph from
X(�,�B,m) corresponds to samplem edges according to the multivariateWallenius non-
central hypergeometric distribution.

Examples We can specify different types of clustered graphs using this construction. As
a demonstrative example, we define a block-matrix with five blocks connected in a ring.
Each block is as dense as the others, and blocks are weakly connected with only their
closest neighbors. The block-matrix quantifying these specification is given as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.1 0 0 0
0 1 0.1 0 0
0 0 1 0.1 0
0 0 0 1 0.1
0.1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (10)

According to the choice made in Eq. 10, edges within diagonal blocks are 10 times more
likely than edges within off-diagonal blocks.
After fixing this block-matrix, we can define different degree sequences for the ver-

tices. We highlight here the results obtained when fixing three different options in a
directed graph without self-loops, with n = 50 vertices and m = 500 edges. We gener-
ate realizations by specifying the combinatorial matrix � and the block propensity matrix
and exploiting the random number generator provided by Fog (2008b) in the R library
BiasedUrn.
The first degree-sequence we can set is the most straightforward option, corresponding

to the standard non-degree-corrected stochastic block-model. This model corresponds
to setting each entry in the combinatorial matrix � equal to m2/(n(n − 1)) (Casiraghi et
al. 2016). If we assign the same number of vertices to each block, we expect the model to
generate graphs with homogeneous blocks. Figure 3a shows a realisation from this model.
The second degree-sequence we can set is defined such that the degrees of the vertices of
each block are drawn from a power-law distribution.We expect that each block shows the
same structure, with few vertices with high degrees, and many with low degrees. Because
of this, we expect that most blocks are connected with directed edges starting from high-
degree vertices. Figure 3b shows a realization from this model where this is visible. Finally,
we set a degree sequence where the degrees of all vertices are drawn from a power-law
distribution. Figure 3c shows a realization from this model. The combinatorial matrices
corresponding to Fig. 3b and c are included with this article as additional files.
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Fig. 3 Realisations from a block-constrained configuration model obtained by fixing the block-matrix B and
varying the out-degree distribution. Each realisation is obtained from a BCCM with N = 50 vertices and
m = 500 directed edges. The vertices are separated into 5 equally sized blocks and the block-matrix B is
given by Eq. 10. On left side, a is a realisation from a BCCM where the degree distributions are uniform. It
corresponds to a realisation from a standard SBM. In the center, b is a realisation obtained by drawing the
out-degree distribution of the vertices in each block from a power-law distribution with parameter α = 1.8.
On the right side, c is a realisation obtained by drawing the out-degree distribution of all vertices from the
same power-law. All graphs are visualised using the force-atlas2 layout with weighted edges. Out-degrees
determine vertex sizes, and edge widths the edge counts

Instead of varying the degree sequences of the underlying configuration model, we can
as well alter the strength of the block structure, changing the block-matrix B. Similarly to
what we did above, we show three different combinations of parameters. First, we set the
within group parameters ωbi equal to the between group parameters ωbibj ∀i, j. Second,
we set the parameters ωb1 = 10 so that the more edges are concentrated in the first
block. Third, we set the parameter to reconstruct a hierarchical structure. We modify the
parameters ωb1b2 = ωb3b4 = ωb4b5 = 0.8 to model graphs with two macro clusters weakly
connected, where the one is split into two clusters strongly connected and the other into
three clusters strongly connected. Realizations drawn from each of these three models are
shown in Fig. 4.

Fitting the block-matrix. In DC-SBMs the number of edges between each pair (i, j) of
vertices are assumed to be drawn from independent Poisson distributions, with parame-
ters θiθjωbibj . Let Abαbβ

= ∑
i∈bα ,j∈bβ

Aij denote the number of edges between all vertices
i that are in the block bα and j in block bβ . We further denote bi the partition of vertex
i. Exploiting the independence of probabilities, the maximum likelihood estimates θ̂i and
ω̂bibj of the parameters θi and ωbibj are given by θ̂i := ki/κbi and ω̂bibj := Abibj (Karrer and
Newman 2011).
Because BCCM does not assume independence among edge probabilities, the param-

eter estimation is necessarily more complicated than that of DC-SBMs. However, the
formulation of the block-constrained configurationmodel allows for the fast estimation of
the parameters of the block-matrix. Similarly to what is done with SBMs, we fit the BCCM
by preserving in expectation the observed number of edges between and within different
blocks. To estimate the entries ωb of the block-matrix B̂, we exploit the properties of the
generalized hypergeometric ensemble of random graphs.
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Fig. 4 Realisations from a block-constrained configuration model obtained by fixing the out-degree
distribution and varying the parameters within the block-matrix B. Each realisation is obtained from a BCCM
with N = 50 vertices andm = 500 directed edges. The out-degree distribution of the vertices in each block
follows a power-law distribution with parameter α = 1.8 The vertices are separated into 5 equally sized
blocks and the structure of the block-matrix B is given by Eq. 10, but in each graph the values of some of the
parameters ωbibj are changed. On left side, a is a realisation from a BCCM where the between-block
parameters are increased to 1. In the center, b is a realisation obtained by increasing the parameter ωb1 that
controls for the internal cohesion of the first block. On the right side, c is a realisation obtained by increasing
to 0.8 the between-block parameters ωb1b2 , ωb3b4 , and ωb4b5 , to create a hierarchical block structure where
the first two blocks are part of a macro cluster, and the last three blocks are part of another. All graphs are
visualised using the force-atlas2 layout with weighted edges. Out-degrees determine vertex sizes, and edge
widths the edge counts

In gHypE, the entries of the expected adjacency matrix 〈Aij〉 are obtained by solving the
following system of equations (Casiraghi and Nanumyan 2018):

(
1 − 〈A11〉

�11

) 1
�11 =

(
1 − 〈A12〉

�12

) 1
�12 = . . . (11)

with the constraint
∑

i,j∈V 〈Aij〉 = m.
Because to estimate BCCM we need to fix the expectation of the number of edges

between blocks and not between dyads, we proceed as described below. We denote with
�bα

= ∑
i,j∈bα

�ij the sum of all the elements of the matrix � corresponding to those
dyads. Then, we fix the expectations of the ensemble such that the number of edges
between and within blocks is given by Abα

s. Hence, in the case of the block-constrained
configuration model with B blocks we estimate the B · (B + 1)/2 parameters ωbαbβ

s con-
stituting the block-matrix B̂ solving the following set of independent equations, defined
up to an arbitrary constant k:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − Ab1

�b1

) 1
ωb1 = k

...(
1 − AbB

�bB

) 1
ωbB = k .

(12)

Solving for ωbαbβ
, we find that the entries of the block-matrix B̂ that preserve in

expectation the observed number of edges between and within blocks are given by

ωbαbβ
:= − log

(
1 − Abαbβ

�bαbβ

)
. (13)

The estimation of the parameters scales quadratically only with the number of blocks.
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When the parameters of the BCCM are estimated as described here, the block-
constrained configuration model has the advantageous property of asymptotic consis-
tency. It means that, if the method described here is applied to synthetic graphs generated
from a BCCM, the technique introduced in this article can correctly recover the original
model.

Estimating the � matrix. In the case of the configuration model defined by Eq. 1, the
elements �ij of the combinatorial matrix are defined as kini koutj . This definition gener-
ates a model that preserves the degree sequences of the observed graph (Casiraghi and
Nanumyan 2018). By generalizing the model according to Eq. 4, where the propensity
matrix is estimated as in Eq. 13, we introduce constraints on the edge sampling process
that allows preserving the observed number of edges in each block. The estimated param-
eters can hence be interpreted as the bias needed to modify the configuration model to
reproduce block structures.
To preserve the degrees of the observed graph in the BCCM, we need to update the

combinatorial matrix such that it defines the degree-sequences of the corresponding con-
figuration model like there were no block constraints. We achieve this by redefining the
combinatorial matrix elements as �ij = kini koutj θ ini θoutj . The estimation of � and � is then
performed by an expectation-maximization algorithm that iteratively estimates � and �

such that degrees and blocks are preserved in expectation. A pseudo-code for the algo-
rithm estimating the parameters of a BCCM model for directed graphs is provided in
Algorithm 1. In the case of undirected graphs, the algorithm is adapted according to the
fact that � and � are upper-triangular matrices.

Algorithm 1 estimateBCCM(G, tolerance): Adjust entries of � to match expected degrees
(based on �,�) to observed degrees (based on G), within ‘tolerance’ error, where the error
is computed as the mean absolute error (MAE).
Require: G observed graph, tolerance
Ensure: �,�
1: koutv ←∑

x Av,x {out-degrees}
2: kinv ←∑

x Ax,v {in-degrees}
3: m← ∑

v koutv {number of edges}
4: �vw←koutv · kinw {initialize � for all v,w ∈ G}
5: Abαbβ

←∑
x∈bα ,y∈bβ

Ax,y {number of edges in block bαβ }
6: �bαbβ

←∑
x∈bα ,y∈bβ

�x,y {combinatorial matrix for block bαβ }

7: ωbαbβ
:= − log(1 − Abαbβ

�bαbβ
) {initialize � for all v,w ∈ G}

8: repeat
9: k̂inv ←∑

x E(Ax,v) {Expectation for in-degrees}
10: �vw←�vw · kinw

k̂inw
{Correction for in-degrees}

11: k̂outv ←∑
x E(Av,x) {Expectation for out-degrees}

12: �vw←�vw · koutv
k̂outv

{Correction for out-degrees}
13: �bαbβ

← ∑
x∈bα ,y∈bβ

�x,y {new combinatorial matrix for block bαβ }

14: ωbvbw := − log(1 − Abvbw
�bvbw

) {ML estimation of ωbvbw for all v,w}
15: untilMAE(kout, k̂out)+MAE(kin, k̂in)≤ tolerance
16: return �,�
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Case studies
We conclude the article with a case study analysis of synthetic and empirical graphs. We
highlight the interpretability of the resulting block-constrained configuration models in
terms of deviations from the classical configuration model. In particular, a weak com-
munity structure in a graph is reflected in a small contribution to the likelihood of the
estimated block-matrix. On the other hand, a strong community structure is reflected in
a substantial contribution to the likelihood of the estimated block-matrix. Here, we quan-
tify this difference employing AIC or BIC. However, other information criteria may also
be used. Moreover, studying the relative values of the estimated parameters in the block
matrices quantifies how much the configuration model has to be biased towards a block
structure to fit the observed graph optimally. The more different are the values of the
parameters, the stronger is the block structure compared to what is expected from the
configuration model.
We start by analyzing synthetic graphs generated according to different rules, and we

show that fitting the block-constrained configuration model parameters allows selecting
the correct, i.e., planted, partition of vertices, among a given set of different partitions.
We perform three experiments with large directed graphs with clusters of different sizes.
Finally, we conclude by employing the BCCM to compare how well different partitions
obtained by different clustering algorithms fit popular real-world networks.

Analysis of synthetic graphs. We generate synthetic graphs incorporating ‘activities’ of
vertices in a classical SBM, to be able to plant different out-degree sequences in the syn-
thetic graphs. First, we need to assign the given activity to each vertex. Higher activity
means that the vertex is more likely to have a higher degree. Second, we need to assign
vertices to blocks and assign a probability of sampling edges to each block. Densely con-
nected blocks have a higher probability than weakly connected blocks. The graph is then
generated by a weighted sampling of edges with replacement from the list containing all
dyads of the graph. The product between the activity corresponding to the from-vertex
and the weight corresponding to the block to which the dyad belongs gives sampling-
weights for each dyad. The probabilities of sampling edges correspond to the normalized
weights so that their sum is 1.
For example, let us assume we want to generate a 3-vertices graph with two clusters.

We can fix the block weights as follows: edges in block 1 or 2 have weight w1 and w2
respectively; edges between block 1 and block 2 have weight w12. Table 2 shows the list
of dyads from which to sample together with their weights, where the activity of vertices
is fixed to (a1, a2, a3), and the first two vertices belong to the first block. Note that if the
activities of the vertices were all set to the same value, this process would correspond
to the original SBM. In the following experiments, we generate different directed graphs
with N = 500 vertices, m = 40000 edges, and different planted block structures and
vertex activities.
In the first experiment, we show the difference between estimating the parameters for

an SBM and the BCCM when the block structure is given. To do so, we first generate the
activities of vertices from an exponential distribution with parameter λ = N/m (such that
the expected sum of all activities is equal to the number of edges m we want to sample).
After sorting the activity vector in decreasing order, we assign it to the vertices. In this
way, the first vertex has the highest activity, and hence the highest out-degree, and so
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Table 2 Edge list with weights for the generation of synthetic graphs with given vertex activities and
block structure

dyad activity block id block weight sampling weight

1 – 1 a1 1 w1 a1w1

1 – 2 a1 1 w1 a1w1

1 – 3 a1 12 w12 a1w12

2 – 1 a2 1 w1 a2w1

2 – 2 a2 1 w1 a2w1

2 – 3 a2 12 w12 a2w12

3 – 1 a3 12 w12 a3w12

3 – 2 a3 12 w12 a3w12

3 – 3 a3 2 w2 a3w2

on. In the first experiment, we do not assign block weights so that the graphs obtained
do not show any consistent cluster structure, and have a skewed out-degree distribution
according to the fixed vertex activity (correlation ∼ 1).
First, we assign the vertices randomly to two blocks. We proceed by estimating the

parameters for an SBM and a BCCM, according to the blocks to which the vertex has been
assigned. Since no block structure has been enforced and the vertex has been assigned
randomly to blocks, we expect that the estimated parameters for the block matrices B̂SBM
and B̂BCCM will all be close to 1 (when normalized by the maximum value), reflecting
the absence of a block structure. The resulting estimated parameters for an exemplary
realisation are reported in Eq. 14.

B̂SBM =
[
1.0000000 0.9992577
0.9992577 0.9603127

]
B̂BCCM =

[
0.9808935 1.0000000
1.0000000 0.9805065

]
(14)

As expected, the estimated values for both models are close to 1.
After changing the way vertices are assigned to blocks, we repeat the estimation of the

two models. Now, we separate the vertices into two blocks such that the first 250 vertices
ordered by activity are assigned to the first block and the last 250 to the second one. We
expect that the SBM will assign different parameters to the different blocks because now
the first block contains all vertices with high degree, and the second block all vertices
with low degree. Hence, most of the edges are found between vertices in the first block or
between the two blocks. Differently, from the SBM, the BCCM corrects for the observed
degrees. Hence, we expect that the parameters found for the block-matrix will be all close
to 1 again, as no structure beyond that one generated by degrees is present. Thus the block
assignment does not matter for the estimated parameter. The block matrices for the two
models, estimated for the same realisation used above, are provided in Eq. 15.

B̂SBM =
[
1.000000 0.597866
0.597866 0.194896

]
B̂BCCM =

[
0.997024 0.995108
0.995108 1.000000

]
(15)

We observe that the SBM assigns different values to each block, impairing the inter-
pretability of the result. In particular, the parameters of B̂SBM show the presence of a
core-periphery structure which cannot be distinguished from what obtained naturally
from skewed degree distributions. The estimation of B̂BCCM, on the contrary, high-
lights the absence of any block structure beyond that one generated by the degree
sequence, and we can correctly conclude that the degree distributions entirely generate
the core-periphery structure of the observed graph.
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In the second synthetic experiment, we highlight the model selection features of the
BCCM. Thanks to the fact that we are able to compute the likelihood of themodel directly,
we can efficiently compute information criteria such as AIC or BIC to perform model
selection. We generate directed graphs with self-loops with N = 500 vertices,m = 40000
edges, and two equally sized clusters. Again, we generate vertex activities from an expo-
nential distribution with rate λ = N/m. We fix the block weights to be w1 = 1, w2 = 3,
and w12 = 0.1. Using this setup, we can generate synthetic graphs with two clusters, one
of which is denser than the other. If we fit a BCCM to the synthetic graph with the cor-
rect assignment of vertices to blocks, we obtain the following block-matrix B̂BCCM for an
exemplary realization:

B̂BCCM =
[
1.1760878 0.1108463
0.1108463 3.0000000

]
(16)

We note that we approximately recover the original block weights used to generate the
graph.
We can now compare the AIC obtained for the fitted BCCM model, AICBCCM =

662060, to that obtained from a simple configuration model (CM) with no block assign-
ment, AICCM = 693540. The CM model is formulated in terms of a gHypEG where the
propensity matrix � ≡ 1. The AIC for the BCCM is considerably smaller, confirming
that the model with block structure fits better the observed graph. In terms of AIC differ-
ences, �AIC

BCCM = 0 and �AIC
CM = 31480. This corresponds to model weights wBCCM ∼ 1

and wCM ∼ 0. That means that there is no evidence for model CM. As a benchmark, we
compute the AIC for BCCM models where the vertices have been assigned randomly to
the two blocks.
Table 3 reports the AIC differences obtained for 1000 random assignment of vertices to

the blocks, computed on the same observed graph. We observe that this usually results
in values close to that of the simple configuration model, as the block assignments do not
reflect the structure of the graph. In a few cases, a small number of vertices are correctly
assigned to blocks, showing a slight reduction in AIC, which is however far from that of
the correct assignment.
BCCM also allows comparing models with a different number of blocks. To do so, we

separate the vertices in one of the blocks of the model above into two new blocks. Because
we add more degrees of freedom, we expect an increase in the likelihood of the new
BCCMwith three blocks, but this should not be enough to give a considerable decrease in
AIC. Since the synthetic graph has been built planting two blocks, the AIC should allow
us to select as an optimal model the BCCM with two blocks. The resulting block-matrix
B̂(3)
BCCM with three blocks is reported in Eq. 17.

B̂(3)
BCCM =

⎡
⎢⎣
1.1739475 1.1797875 0.1088987
1.1797875 1.1706410 0.1129094
0.1088987 0.1129094 3.0000000

⎤
⎥⎦ (17)

Table 3 �AIC
i values from the model with the correct assignment vertices-blocks, obtained for 1000

random assignment of vertices to the blocks, computed on the same observed graph

Min. 1st Qu. Median Mean 3rd Qu. Max.

�AIC
i 31471 31483 31484 31483 31484 31484
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We see that the estimated model fits different parameter values for the two sub-blocks,
since the added parameters can now accommodate for random variations generated by
the edge sampling process. However, as expected, there is no (statistical) evidence to sup-
port the more complex model. In fact, comparing the AIC values we obtain AIC(3)

BCCM =
662065 > 662060 = AICBCCM. This corresponds to �AIC

BCCM = 0 and �AIC
BCCM(3) = 5. In

terms of model weights, we get wBCCM ∼ 0.92 and w(3)
BCCM ∼ 0.08. That means that there

is strong evidence against the more complex model, as the probability that the more com-
plex model is closer to the real process is only 0.08, given the data used to estimate the
model.
To provide more evidence in support of this selection procedure, we can repeat this

experiment on 100 samples from the samemodel used before. The results providemedian
AIC differences of �BCCM = 0 and �

(3)
BCCM = 4.32. Moreover, out of the 100 samples

only 7 have AIC(3)
BCCM < AICBCCM. This is aligned with the probability of 0.08 esti-

mated employing model weights. We can thus successfully use BCCM to perform model
selection, both when a different number of clusters or various vertex assignments are
used.
In the third experiment, instead of two clusters, we plant three clusters of different sizes

(|B1| = 250, |B2| = 125, |B3| = 125). We choose the block parameters such that one
of the smaller clusters is more densely connected with the bigger cluster, and the smaller
cluster is relatively denser than the others. To do so we choose the block weights as fol-
lows: w1 = w2 = 1, w3 = 3, w13 = w23 = 0.1, w12 = 0.8. As before, we draw vertex
activities from an exponential distribution with parameter λ = N/m. One exemplary real-
isation is plotted in Fig. 5. The plot clearly shows the separation into three clusters, with

Fig. 5 Visualisation of a synthetic graph with N = 500 vertices andm = 40000 directed edges, obtained with
the force-atlas2 layout. Vertices are separated into three blocks of different sizes, such that the largest block
(250 vertices, in purple) is strongly connected with one of the smaller blocks (125 vertices, in orange). Both
blocks are weakly connected to the third block, that is clearly separated (125 vertices, in green). The
out-degree sequence of the graph follows an exponential distribution with parameter λ = N/m. The joint
effects of the non-uniform degree sequence together with the asymmetric block structure makes the task of
community detection on this graph particularly hard for standard algorithms
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cluster 1 (purple) and 2 (orange) more densely connected to each other than to cluster 3
(green). Fitting the same BCCM as before allows comparing the AICs for the three-blocks
BCCM to the 2-block BCCM. In this case, we expect that the model with three blocks
will fit considerably better the graph. Results of the fitting for the realisation plotted in
Fig. 5 give AIC(3)

BCCM = 673585 < 699765 = AIC(2)
BCCM, correctly selecting the more com-

plex model. This corresponds to �AIC
BCCM(2) = 26180 and �AIC

BCCM(3) = 0. In terms of model
weights, we get w(2)

BCCM ∼ 0 and w(3)
BCCM ∼ 1. That means that there is strong evidence

against the simpler model.
It is known that AIC does not punish model complexity as much as BIC. For this reason,

in this case, we also compare the values of BIC obtained for the two models. Also in this
case, with BIC(3)

BCCM = 2822787 < 2848941 = BIC(2)
BCCM, the information criterion allows

to correctly select the model with 3 blocks. Comparing posterior probabilities for the two
models, we get again w(2)

BCCM ∼ 0 and w(3)
BCCM ∼ 1.

Finally, we can use AIC and BIC to evaluate and rank the goodness-of-fit different block
assignments that are obtained from various community detection algorithms. This allows
choosing the best block assignment in terms of deviations from the configuration model,
i.e., which of the detected block assignment better captures the block structure that goes
beyond that generated by the degree sequence of the observed graph. We compare the
result obtained from 5 different algorithms run using their igraph implementation for
R. In the following we use: cluster_fast_greedy, a greedy optimisation of modular-
ity (Clauset et al. 2004); cluster_infomap, the implementation of infomap available
through igraph (Rosvall and Bergstrom 2008); cluster_label_prop, label prop-
agation algorithm (Raghavan et al. 2007); cluster_spinglass, find communities in
graphs via a spin-glass model and simulated annealing (Reichardt and Bornholdt 2006);
cluster_louvain, the Louvain multi-level modularity optimisation algorithm (Blon-
del et al. 2008). As the modularity maximization algorithms are implemented only for
undirected graphs, we apply them to the undirected version of the observed graph. The
results of the application of the 5 different algorithms on the realisation shown in Fig. 5
are reported in the table in Table 4.
The five different community detection algorithms find three different block structures.

Three of them are not able to detect the third block, while the other two algorithms
split the vertices into too many blocks. AIC ranks best infomap even though it detects
one block too many. BIC punishes for the number of parameters more, so ranks best

Table 4 Comparison of the goodness-of-fit of 5 different block structures detected by five different
community detection algorithms

fast_greedy infomap label_prop spinglass louvain original

B 2 4 2 7 2 3

�AIC
i 4 0 4 40 4 -282

wi 0.12 0.88 0.12 0 0.12

B 2 4 2 7 2 3

�BIC
i 0 57 0 251 0 -260

wi 1 0 1 0 1

The different partitions are compared in terms of the AIC and BIC obtained by the corresponding BCCM. Note that model weights
are computed normalizing over three models because the three algorithms that detect two blocks detect the same partitioning.
In the right-most column, we give the results corresponding to the ground-truth block partitioning. Because none of the
algorithms was able to detect the original partitioning, we do not include the corresponding model when computing weights
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the 2-blocks. These results are consistent when repeating the experiment with differ-
ent synthetic graphs generated from the same model. It is worth noting that none of the
community detection algorithms was able to detect the planted block structure correctly.
However, both the AIC and BIC of the BCCM fitted with the correct block structure
are lower than those found by the different algorithms. This shows that information cri-
teria computed using BCCM have the potential to develop novel community detection
algorithms that are particularly suited for applications where degree correction is crucial.
However, the development of such algorithms is beyond the scope of this article and is
left to future investigations.

Analysis of empirical graphs We conclude this article by providing a comparison of the
BCCM obtained by fitting the block structures detected by the five community detection
algorithms described above on five different real-world networks. The results show that
different algorithm performs better for different graphs, highlighting the non-trivial effect
that degrees have on block structure and community detection in general.
We study five well-known graphs with heterogeneous characteristics and sizes. All

graphs are multi-edge, and are freely available as dataset within the igraphdata R pack-
age. The first graph analyzed is rfid: hospital encounter network data. It consists of
32424 undirected edges between 75 individuals (Vanhems et al. 2013). The second graph
analyzed is karate: Zachary’s Karate Club. It consists of 231 undirected edges between
34 vertices (Zachary 1977). The third graph analyzed is UKfaculty: Friendship network
of a UK university faculty. It consists of 3730 directed edges between 81 vertices (Nepusz
et al. 2008). The fourth graph is USairports: US airport network of December 2010.
It consists of 23473 directed edges between 755 airports (Von Mering et al. 2002). It has
self-loops. The graph is plotted in Fig. 6, using the force-atlas2 layout (Jacomy et al. 2014).
The four different plots are colored according to the block structures detected by four
of the five algorithms (cluster_spinglass cannot be applied as the graph is discon-
nected). They are ordered by increasing AIC. From the visualization, we can see that the
best block structure is the one who can separate three different blocks within the largest
cluster of vertices (top of the visualizations). In particular, it is essential to note that the
largest cluster consists of high- and low-degree vertices. If these vertices are belonging
to the same block, the configuration model predicts then high-degree vertices should be
connected by many edges (similarly to the first synthetic experiment described above).
However, we observe then some of these high-degree vertices are separated and mainly
connected to low-degree vertices. For this reason, block structures that can separate these
high-degree vertices into different blocks rank higher than others. The fifth graph ana-
lyzed is enron: Enron Email Network. It consists of 125409 directed edges between 184
individuals (Priebe et al. 2005). It has self-loops.
Each of these graphs has a clear block structure that could be detected. The differ-

ent algorithms provide different results, both in the number of blocks detected and
in the assignment of vertices. Ranking the different results employing the goodness-
of-fit of BCCM fitted according to the different block partitions shows that the best
results are not necessarily those with fewer or more blocks, nor those obtained from
a specific algorithm, as the results change with the graph studied. The results of this
analysis are provided in Table 5, where the smallest AICs and BICs for each graph
are highlighted in bold, together with the algorithm that provides the smallest number
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Fig. 6 USairports graph visualisation. USairports graph visualisation. The graph is plotted by means of
the force-atlas2 layout with weighted edges, and the size of the vertices reflects their out-degrees. Only the
largest connected component of the graph is shown. The visualisations clearly show the block structure that
characterises this graph. The vertices in the four visualisations are coloured according to the labels detected
applying four community detection algorithms, as described in Table 5. The visualisations are ordered from
left to right according to the AIC of the BCCM fitted to observed graph according to the corresponding block
structure. From left to right, we see the colours corresponding to the labels obtained from louvain,
fast_greedy, infomap and label_propagation detection algorithms respectively. We highlight the fact that
the ranking according to AIC corresponds approximately to the ability of the algorithms to detect the
separation between high-degree (and low-degree) vertices within the largest cluster, at the top of the
visualisations. The reason for this is that within the largest cluster there are clear deviations from what the
configuration model predicts, i.e., high-degree vertices tend to connect to each other, and the best BCCMs
captures more of these deviations

of blocks. The algorithm that provides the largest number of blocks is highlighted
in italic.

Conclusion
In this article we have presented a novel generative model for clustered graphs: the
block-constrained configuration model. It generalizes the standard configuration model
of random graphs by constraining edges within blocks, preserving degree distributions.
The BCCM builds on the generalized hypergeometric ensemble of random graphs, by
giving the propensity matrix � a block structure. The framework provided by gHypEG
allows for a fast estimation of the parameters of the model. Moreover, thanks to the fact
that the probability distribution underlying gHypEG is known, it allows for the generation
of random realizations, as well as to the effortless computation of likelihoods, and hence
various kinds of information criteria and goodness-of-fit measures, such as AIC and BIC.
There are many advantages of the formulation highlighted above. Firstly, the proposed

model seamlessly applies to directed and undirected graphs with or without self-loops.
Moreover, the BCCM preserves exactly the number of edges in the graph, avoiding the
need for assuming an arbitrary edge generating process. This also allows dropping the
assumption of independence between edge probabilities, which characterizes degree-
corrected stochastic block models. Finally, model selection, facilitated by the gHypE
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Table 5 Results of the fitting of BCCM to five real-world graphs, with vertex blocks given obtained
from five different community detection algorithms

Data specifications

dataset vertices edges directed self-loops

rfid 75 32424 False False

karate 34 231 False False

UKfaculty 81 3730 True False

USairports 755 23473 True True

enron 184 125409 True True

Number of clusters

dataset fast_greedy infomap label_prop spinglass louvain

rfid 6 4 3 7 6

karate 3 3 3 4 4

UKfaculty 5 10 7 7 5

USairports 28 57 40 NA 21

enron 11 22 20 NA 10

�AIC
i

dataset fast_greedy infomap label_prop spinglass louvain

rfid 1856 12370 13523 0 1856

karate 28 28 28 4 0

UKfaculty 992 0 960 523 992

USairports 1903 2759 5133 NA 0

enron 0 9881 46945 NA 1956

�BIC
i

dataset fast_greedy infomap label_prop spinglass louvain

rfid 1798 12219 13339 0 1798

karate 14 14 14 4 0

UKfaculty 743 0 792 355 743

USairports 3315 14227 9883 NA 0

enron 0 11702 48347 NA 1849

The first table reports information about the five different graphs used. The second table reports the number of clusters detected
by each algorithm for each dataset. The algorithm detecting the smallest number of clusters is highlighted in bold, and the
algorithm detecting the largest number of clusters is highlighted in italic. The third table reports AIC differences of the different
models computed using the different vertex blocks. The fourth table reports BIC differences of the different models computed
using the different vertex blocks. The best model, i.e., the one with the lowest AIC/BIC score, respectively, is highlighted in bold.
Because the spin-glass algorithm is not suitable for disconnected graphs, no result is reported for this method for the last two
real-world graphs

framework, provides a natural method to quantify the optimal number of blocks needed
to model given real-world graph. The statistical significance of a block structure can
be studied performing likelihood-ratio tests (Casiraghi et al. 2016), or comparing infor-
mation criteria such as AIC, BIC, or the description length of the estimated models.
Furthermore, within the framework of generalized hypergeometric ensembles block-
constrained configuration models can be extended, including heterogeneous properties
of vertices or edges (see Casiraghi (2017)).
The more complicated expression and estimation of BCCM compared to DC-SBMs

arises from dropping the assumption of independence between edge probabilities. How-
ever, thanks to the formulation provided in this article, BCCM is still practicable and
can be applied to empirical graphs of various sizes. BCCM opens new routes to develop
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community detection algorithms suitable for applications where degree correction is par-
ticularly valuable, and where the assumption of an arbitrary edge generating process is
not acceptable.
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