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Abstract
Analyzing available FAOdata from176 countries over 21 years, we observe an increase of complexity
in the international trade ofmaize, rice, soy, andwheat. A larger number of countries play a role as
producers or intermediaries, either for trade or food processing. In consequence, wefind that the
trade networks becomemore prone to failure cascades caused by exogenous shocks. In ourmodel,
countries compensate for demand deficits by imposing export restrictions. To capture these, we
construct higher-order trade dependency networks for the different crops and years. These networks
reveal hidden dependencies between countries and provide an estimate of necessary stock reserves to
protect countries from cascading export restrictions. They differ substantially from first-order
networks that do not take cascading effects into account.We find rice trademost prone to cascading
export restrictions. A great number of Asian andAfrican countries aremost exposed to cascades.
Noticeably, themain suppliers are similar formost of the crops: USA, Canada, Argentina, Brazil, and
India.While shocks in theUSAmainly affect SouthAmerica and several Asian countries, the south of
Africa is primarily dependent onAmerican andAsian exporters. The north of Africa depends strongly
on Europe, in particular via wheat imports.

1. Introduction

The production and trade of food involves almost all
countries in the world, this way forming a global
network of dependencies. This network is recon-
structed and analyzed in our paper. It reflects direct
import and export relations between countries and
further serves as a basis to estimate how shocks of food
production in one country can impact other countries
in an indirect manner. We focus on the international
trade network of staple food, in particular maize, rice,
soy and wheat, as the most important sources of
calories for human consumption [1]. The amount
traded internationally has vastly increased over the
past two decades [1] in the course of globalization.
This is facilitated by an enhanced globally widespread
production to meet the demand of a growing world
population [2], increasingmeat and feed consumption
linked to economic growth [3], or demand for biofuels
[4]. This has several advantages and disadvantages for
the resilience of the world food system. Countries can

specialize in the production of the food they have the
appropriate resources for and assume roles within
increasingly complex value chains [5]. A larger num-
ber of countries can benefit from food trade and added
value to food products by means of additional proces-
sing. Yet, longer global transportation distances
impose higher environmental costs [6], while more
transshipment points increase food loss and facilitate
the spreading of pests [7]. Still, they provide means to
respond to shocks due to climate trends, large-scale
pollution events, or soil degradation [8] or short term
harvest losses due to weather anomalies, droughts, or
pests [9]. Thus, on the one hand, global markets
facilitate risk diversification [10] to better mitigate
supply shocks. On the other hand, countries become
more exposed to shocks through these global markets
[11] either directly or indirectly [9, 12, 13]. The
complexity of international trade makes it difficult to
assess the resulting dependence of countries.

Our aim is to (i) reveal such direct and indirect
dependencies using data from 176 countries over 22
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years and (ii) to model the impact of different shock
scenarios on the international food trade network.
This is challenging for several reasons.

First, the roles of countries cannot be easily
reduced to producers, importers and exporters. Some
countries produce a given crop mainly for export (e.g.
Brazil exports 50% of its soy production in 2013),
whereas other countries obviously rely on the import
of their staple food (e.g. Saudi Arabia imports all of its
rice and 77.4% of its wheat in 2013). But many coun-
tries are important as intermediaries, either because of
their role as traders or because they produce inter-
mediate or final products from these staple foods. Our
data does not allow to distinguish theses cases. We
simply call countries that import and export a relevant
amount of the same grain intermediaries. Further-
more, countries that produce a given staple food can
appear as importers, while countries that do not pro-
duce a given staple food can appear as exporters.

Second,many factors that influence the generation
of the international food trade networks are (partially)
unobserved. Examples include subsidies, taxes, tariffs,
multi- and bilaterial trade agreements, harvest times of
crops or food prices that might be influenced by spec-
ulation, demand for fuel, the quality of the offered
products, price elasticities, etc [14, 15].

Third, many agents following different incentives
influence international trade flows [14]. For instance,
producers are interested to sell their products at the
highest bidding prize, while consumers demand
affordable, high quality food. Governments might
want to ensure food security of their population but
also facilitate trade benefits and maintain good inter-
national relations. All have different options to
respond to shocks or system changes. For instance,
governments can impose export bans, subsidize
imports, use stocks, promote local markets by
employing protective tariffs at harvest times, or, long
term, build up reserves for later shocks and negotiate
different trade agreements. Different decisions are
made in the course of a year.

Fourth, our data is aggregated over one year. Yet,
we can expect that the timing of events has a consider-
able impact on international trade. For instance, if a
country decides to impose an export ban in themiddle
of a year, it only applies to future trade but not already
exported products.

Some of these challenges are addressed by problem
simplification. Instead of a realistic generative model
of international food trade or the economy, the focus
is shifted towards modeling changes of an observed
international food trade network (which aggregates all
trade within a year) in response to a shock as, e.g. a
lower production in a specific country. While the
mechanisms of this change are not fully understood, it
is acknowledged that they contribute to the fragility of
international trade [9, 12] and some disaster or climate
impact studies try to estimate their effect [16, 17]. Sev-
eral modeling approaches have a component that

assumes that a shock propagates locally through the
trade network, i.e. a shocked country influences first
its direct trade partners, then, these trade partners
impact their trade partners, etc. This way, a cascade
builds up that can encompass a significant share of the
whole network. Termed as multiplier effect, such cas-
cades can also be observed empirically and are found
to influence food prices [18–21]. In particular, the
food crisis in 2008/2009 is linked to yield losses due to
a drought in China [22, 23] and export restrictions in
Russia [24]. The resulting increased wheat market
price has also affected countries in North Africa and
the Middle-East and are conjectured to have con-
tributed to theArab Spring [25].

Apart from international food trade [9, 20, 26, 27],
cascade processes have been encountered in different
fields. The financial crisis in 2008/2009 has triggered
the development of diverse models for financial con-
tagion [10, 28–30], which mainly serve the estimation
of systemic risk, i.e. the risk of a system’s break-down.
Such cascade models are characterized by predefined
possible losses that are independent of the cascade his-
tory. Another related approach are input–output
models that are, for instance, used for the assessment
of costs after a disaster [11, 16, 17, 31, 32] and take also
higher-order effects into account. They are often used
to model intersectorial dependencies, seldom on the
international level. In particular the production of
complex products is captured well, but data on input–
output tables needs to be available.

In contrast, we focus on a threshold model with
accumulating load that is more similar to fiber bundle
models in Physics [33, 34] and is also captured by the
framework introduced by [35]. It focuses on countries
imposing export restrictions as cascade propagation
mechanism. To our knowledge, such a model is not
yet implemented in stress tests that analyze the resi-
lience of international grain trade [9, 2, 36] with one
exception: [27] considers an aggregated grain trade
network and more complicated dynamics that assume
that the cascade process actually models the time evol-
ution of the network formation. This, however, con-
flicts with having only information about aggregated
trade between countries over one year.

Here, we follow a different philosophy and pro-
pose a simple model that assumes minimal change to
the observed trade network, which we account asmost
realistic. For the same reason, we assume that the rules
of global food trade do not change within a year and
countries keep their preferences for trade partners.
Specifically, the shock of a given country reduces its
production or supply of a given crop. If this results in
an unmet demand, this country can reduce this trade
flow by imposing export restrictions. Such restrictions
might motivate affected countries to do the same,
which can trigger cascades of export restrictions. A simi-
larmodel has been developed recently [26] to study the
vulnerability of global seafood trade with respect to
shocks that are proportional to a shocked country’s
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seafood exports. Different to that model, we focus on
the trade of maize, rice, soy, and wheat and consider
shock scenarios that depend on the production and
demand of countries. This acknowledges the nature of
most possible shocks and allows to study a country’s
exposure to local shocks in comparison to cascades
that started in far distant countries.

Our model is simple (but useful), as it considers
only export restrictions as response to supply shocks
and does not incorporate price dynamics. Yet, this is
also a feature. Our model is not biased by additional
assumptions about the network generation mech-
anism.We identify indirect trade flows between coun-
tries solely based on an observed trade network and
production data on the country level. On their basis,
we propose the construction of a higher-order trade
dependence network. While a first-order network only
captures the impact of shocks on direct export part-
ners, higher-order networks consider all indirect
effects resulting from cascades of export restrictions.
This alters the analysis considerably. For instance, ca.
50% of links in the first-order trade dependency
network for maize in 2013 vanish considering higher-
order effects, i.e. they are present in the first-order net-
work, but not in the higher-order network, because
countries compensate for demand deficits by export
restrictions. Meanwhile, 80% of links in the higher-
order network are not captured in a first-order
approach. Our visualizations of the higher-order trade
dependency network can be compared with other stu-
dies about international food trade. For instance, the
international rice andwheat trade networks from 1992
to 2009 are discussed by [9] where also their vulner-
ability to export restrictions (without considering cas-
cade effects) is analyzed in a first-order approach.
Considering poverty levels in addition, a first-order
analysis of wheat, maize, and rice trade has identified
200 million people below the poverty line at risk [22].
Further, the authors of [36] identify the main actors in
the international trade ofmaize and the trade structure
from 2000 to 2009, while [37] focus on clusters. Also
related is the analysis of caloric and monetary trade
flows [38] aggregating different food types and the
development of a dynamic flux model to measure the
countries’ vulnerability to food contamination [39].

In the following, we use the available data to (i)
reconstruct the international food trade network,
which then is used to (ii) evaluate the global impact of
different shock scenarios on such networks (which are
different for every crop and for every year).

2.Data analysis andnetwork construction

2.1. Available data on the country level
Food imported into a country can either be consumed
by the population or further exported, either directly
or after value is added, e.g. bread is produced from
flour. The available data provided by the Food and

Agricultural Organization of the United Nations [40]
at a resolution of one year only gives total numbers
about food production, import and export with
respect to different countries. For our analysis, we
consider data for N=176 countries over a period of
22 years, from 1992 to 2013. This period is particularly
interesting because, after the dissolution of the Soviet
Union, from 1992 onwards geographic territories have
been rather stable and an on-going globalization has
shaped also the international food trade.

We consider four different crops, maize, rice,
wheat and soy, because these are the main inter-
nationally traded crops and denote them with the
index c M R S W, , ,Î { }. N( c)(y) is the number of
countries that engage in trade or production of crop c
in year y. It is plotted in figure 1 over time and tend to
increase for all crops over the years. However, since
2001/2002, N( c)(y) seems to stagnate for maize, rice,
andwheat.

Our data set contains information about the
annual production, yprodi

c ( )( ) , of countries i=1,K,N

with respect to a given crop c, their exports, yexpi
c ( )( ) ,

and their imports, yimpi
c ( )( ) , measured in tons. From

this, we can already calculate a country’s demand for a
given crop in a given year as:

y y y ydem prod imp exp .

1
i
c

i
c

i
c

i
c= + -( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

These numbers change over time and vastly differ
across countries as figure 2 shows. For instance, the
combined harvest of only the five biggest producers in
2013 amounts to ca. 89% of the global soy, 79% of the
rice, 71% of the maize, and 52% of the wheat
production. Interestingly, as figure 2 demonstrates,
most countries are producers, importers and exporters
of the same crop at the same time. This already points
to the complexity of worldwide food trade, because
production shocks in a given country involve almost
every other country via import and export.

Figure 1.Number of countriesN( c)(y) that engage in trade or
production of staple food c M R S W, , ,Î in a year y.M:
maize,R: rice, S: soy,W: wheat.
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Eventually, we can obtain the global exports,
yExp c ( )( ) , and the global production, yProd c ( )( ) , as:

y y

y y

Exp exp

Prod prod , 2

c

i

N y

i
c

c

i

N y

i
c

1

1

c

c

å

å

=

=

=

=

( ) ( )

( ) ( ) ( )

( )
( )

( )

( )
( )

( )

( )

( )

where N( c)(y) denotes the number of countries.
yExp c ( )( ) is plotted in figure 3(a). While the respective

quantities steadily increase, it is more interesting to
compare them with the annual global production,

yProd c ( )( ) , of a given crop in the same year. Figure 3(b)
shows that total exports keep up to, or increase even
faster, than the global production. This fact should be
valued against the observation in figure 1 that the
number of countries involved in production or trade
of maize and rice is almost constant after the year

2000. Especially soy is traded internationally to a large
extent, although the least number of countries partici-
pate in trade or production. Accordingly, soy trade is
characterized by very high trade volumes.

2.2. Constructing the trade networks
In the following we construct from the available data
the trade networks with respect to the different crops
and the different years. Each country is represented by
a node i in a network G y V y W y,c c c=( ) ( ( ) ( ))( ) ( ) ( ) .
The set of all nodes is denoted by V( c)(y) with N( c)(y)
elements. In total, we consider N=176 countries.
However, not all engage in trade or harvest crops in
every year. So, usually N y 176c <( )( ) .

Exports of crop c from country i to j are repre-
sented by directed and weighted links, w y 0ij

c ( )( ) .

The set of all weighted links is denoted byW( c)(y). On

Figure 2. Fractions ofmaize production yprodi
M ( )( ) (outer circle), import yimpi

M ( )( ) (second outer circle), export yexpi
M ( )( ) (second

inner circle) and demand ydemi
M ( )( ) (inner circle) per country in y=1992 (left) and y=2013 (right). Each figure should be read as

the superposition of four separate pie charts. This allows a direct comparison of the respective quantities. Different colors indicate
countries according to theworldmap shown infigure 4. Abbreviations follow the name convention given in table A1. The
corresponding figures for rice, soy andwheat are shown infigures B1–B3 (appendix).

Figure 3. (a)Global exports yExp c ( )( ) in tons over time. (b)Global exports as a fraction of the total production, y yExp Prodc c( ) ( )( ) ( ) ,
over time.
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the basis of the weights w yij
c ( )( ) , we can express the

total exports and imports of a given country i as:

y w y y w yexp ; imp .

3

i
c

j

N

ij
c

i
c

j

N

ji
c

1 1
å å= =
= =

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

Wedo not regard self-loops and, thus, set w y 0ii
c =( )( ) .

The difference y y yexp impi
c

i
c

i
cD = -( ) ( ) ( )( ) ( ) ( ) is

used in figure 4 to indicate net importers and net
exporters.

The trade networks G V2013 2013 ,c c=( ) ( ( )( ) ( )

W 2013c ( ))( ) for the four different crops are visualized
in figure 4. We observe that the soy trade network has
the lowest number of links. However, the single trade
volumes are comparatively large and, compared to the
other three crops, the highest fraction of the total pro-
duction is traded internationally (ca. 34%). In con-
trast, the rice trade network has the highest number of
links, while its total trade volume sums up only to ca.
4% of the total rice production, which is the smallest
observed fraction.

We have also studied how the global trade net-
works of maize, rice, soy and wheat have evolved
between 1992 and 2013. The plots of the empirical net-
works are shown in figures D1, E1, F1, G1 in the
appendix and show clearly an increase in trade and
network complexity. At the same time, the dominant
role of a few hubs, i.e. big exporters, is compensated by
the many countries that enter the network, of which
some emerge as new hubs.

2.3. Change of network properties
The trade relationships between countries evolve over
time, as illustrated in the following. Figure 5(a) depicts
the change of the link density y L yc cr =( ) ( )( ) ( )

N y N y 1c c -( ( )( ( ) ))( ) ( ) , where L( c)(y) denotes the
number of all trade links in a network in year y. The
normalization is with respect to a fully connected
network with N N 1-( ) directed links. As shown,
ρ( c)(y) clearly increases over time, but not always at the
same growth rate as the global exports shown in
figure 3.

Considering the weight of the links, we can
also calculate the average link weight, w ycá ñ =( )( )

L y w y1 c
i j
N y

ij
c

,

c

å( ( )) ( )( ) ( ) ( )( )
N y L y yexpc c c= á ñ( ) ( ) ( )( ) ( ) ( ) ,

which is proportional to the average export per coun-
try. Figure 5(b) shows that the average total export in
fact decreases for maize and wheat trade and increases
for soy trade, while there is no clear trend for rice
trade. However, the average export is not a suitable
measure to describe such trends, because the weight
distributions are highly skewed. This is shown in
figure 6 for two different years, 1992 and 2013, to also
allow a comparison of the changes over time.

We note that in all cases the weights are much
smaller in 1992, but the distribution is always very
broad. While the distributions for maize, rice and soy
export are right skewed, i.e. have mostly smaller
weights, for wheat trade there is a larger fraction of
links with big export volumes. If we recast the total
trade volumes of the different crop in terms of caloric
values, we find that the highest amount of calories is

Figure 4. International trade networks in 2013 formaize (M), rice (R), soy (S), andwheat (W). Each node is colored according to the
worldmap. The color of a link (i, j) corresponds to the exporting country i, with a linkweight proportional to a logarithmic
transformation of the export quantity: wlog 1 ij+( ). Linkswith larger weights are plotted on top of smaller ones. Square node shapes
indicate that the respective country is a net importer, while circles refer to net exporters. The node size is proportional to a log
transformation of their net imports or net exports.More detailed information is provided infigure 2. The twenty biggest nodes have
their ISO-3 country code assigned (see table A1). Isolated nodes (i.e. without connections) are omitted in a network plot.

5

Environ. Res. Lett. 14 (2019) 114013



traded in form of wheat. Still, themost calories are pro-
duced in formofmaize in 2013.

3.Modeling the impact of shocks

3.1.Dynamics of cascades
The main goal of our model is to determine how
shocks in the production of one crop in a given
country k will affect its availability in other countries
i N ycÎ ( )( ) . Such shocks can have different origin as
discussed in the Introduction, butwemodel themhere
consistently as a one time exogenous reduction shockk

c

of the available crop in one country. Because of the
annual data, we cannot observe how a country
responds to such shocks on a shorter time scale t, e.g.
within days or weeks, and how such responses affect
other countries. Here, our model comes into play to
proxy such dynamics on the food trade network on the
discrete time scale t=1, 2,K,T, where themaximum
timeT is less than one year.

t=0 refers to the reported data at the end of year
y, i.e. we know for each country tdem 0i

c = =( )( )

demi
c, tprod 0 prodi

c
i
c= =( )( ) , timp 0i

c =( )( ) , expi
c( )

t 0=( ). But theses initial conditions change for every
year. Within one year, we assume that demand and
production are fixed to demi

c, prodi
c , whereas imports

and exports can change on a time scale t, i.e. timpi
c ( )( ) ,

texpi
c ( )( ) . If country k is shocked at t=1 by a shockk

c( ),

a demand deficit tdd 1 shockk
c

k
c= =( )( ) ( ) will result. To

compensate for that, k reduces its export in the next
time step, if possible, such that tdd 2 0k

c = =( )( ) . This
reduction, however, will affect all countries that
import the given crop from k. At t=2, these countries
will face a demand deficit ddi(t=2) which they try to
reduce, this way affecting all other countries that
import from them. Therefore, a cascade resulting
from export restrictions evolves in the food trade net-
work on time scale t, which involves more and more
countries. This is illustrated infigure 7.

To formalize the model, we have to express the
demand deficit of each country that was not shocked
initially:

t t tdd dem prod imp exp . 4i i i i i= - - +( ) ( ) ( ) ( )

If ddi(t)>0, i reduces its exports if possible:

t t t texp 1 exp min dd , exp . 5i i i i+ = -( ) ( ) { ( ) ( )} ( )

Hence, either its deficit vanishes in the next time step,
tdd 1 0i + =( ) , or at least all current exports are

stopped.
To complete equation (4), we have to specify how

impi(t) is affected by the export reductions of other
countries. According to equation (3), imports are
defined through the weights w tji

c ( )( ) which will change
on time scale t if export restrictions occurred. We
assume that exporting countries do not change their
preference for specific countries at the short time scale
t. I.e. in case of an export reduction every of their
importers is proportionally affected. This implies that
the ratio w t t wexp 0 exp 0ji j ji j=( ) ( ) ( ) ( ) is constant

Figure 5.Network density. (a) Link density: fraction of links in comparison to fully connected network. (b)Average positive trade
volume.

Figure 6.Histogramof the logarithmof the positive trade
volumes in the years 1992 (red or purple if behind the blue)
and 2013 (blue) formaize. The corresponding figures C1(a)–
(c) for rice, soy andwheat are provided in the appendix.
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over t and can be set to the initial value, where the
initial tradeswji(0) are entries of the tradematrixW for
a given year. This gives for the dynamics of the trade
weights

w t t
w

t w texp
0

exp 0
; imp .

6

ji j
ji

j
i
c

j

N

ji
c

1
å= =
=

( ) ( )
( )
( )

( ) ( )

( )

( ) ( )

Given an initial shock shockk, the combined
equations (4)–(6) determine the dynamics of the
cascade. Note that a country can be affectedmore than
once in the course of a cascade because of loops in the
network. The reduction of a country’s exports can
cause a reduction of its imports again at a later time.
The final step of the cascade at time t=T, which is
always smaller than one year, is reached if no country
with a demand deficit can further reduce its export.
This usually applies to more than one country because
the cascade has evolved along various paths, deter-
mined by the number of importers. How many
countries are eventually left with a non-reducible
demand deficit depends on the initial country that
could be an important producer, the size of the shock,
but also on the sequence in which countries are
involved. Hence, in order to systematically study such
effects, we need an approach that does not just
consider a single event. This is developed in the
following.

3.2. Shock scenarios
To assess the vulnerability of the trade network, we
consider two different types of shocks that each
represent a different limit case: An equal shock
generates a fixed demand deficit of the shocked
country, no matter whether this is a small or a large
country. This allows us to study how the same deficit
would affect different countries. To define the size of
the shock, we set this to 25% of the production of an
average country, yshock 0.25 prodk

c c= á ñ( )( ) ( ) in a
given year y. Only if the size of the shock exceeds the
shocked country’s production yprodk

c ( )( ) and demand

ydemk
c ( )( ) , we limit yshockk

c ( )( ) to the maximum of

both: y yshock max prod , demk
c

k
c

k
c= ( ( ) ( ))( ) ( ) ( ) .

The second type of shock, at differencewith thefirst
one, is not equal for all countries but proportional to
the production or demand of the shocked country, i.e.

y yshock 0.25 max prod , demk
c

k
c

k
c= ( ( ) ( ))( ) ( ) ( ) . There-

fore, we call this a proportional shock. It allows us to
study how countries with very different production
impact the size of the cascades. Proportional shocks of
25% can be seen as quite large. However, our data
shows that they have happened in more than 5% of all
changes of production and demand for all countries
and years. I.e. proportional shocks of this size are not
negligible, but realistic.

If we apply a shock to a given country k, we will
observe cascades of export restrictions as illustrated in
figure 7. The outcome characterizes the influence only
of country k, thus, we have to run themodel with every
possible country k N y1, , c= ¼ ( )( ) as the target of a
shock. In order to visualize the influence of all coun-
tries together, we generate a higher-order trade depen-
dency network as explained in the following.

4. Results

Our aim is to visualize the final outcome for the
collection of cascade processes starting in all countries.
We focusmainly on the impact of a shock on countries
at the end of value chains, where the final product is
consumed. Figure 8 explains this procedure for
the one-time exogenous shock of a single country, the
USA, in 2013, only formaize trade. All links start in the
shocked country, the US, and end in different coun-
tries which all face a demand deficit at the end of a
cascade. The link strength is proportional to this
deficit. We do not show the intermediate steps, only
the final outcome, i.e. each link connects the origin of
a cascade with a number of finally affected countries.
Figure 8 allows to compare the influence of an equal
shock (a) with that of a proportional shock (b) of the
main producer of maize. Because of the large produc-
tion, the proportional shock of the US (i.e. 88 424 860
tons) is larger than for the equal shock (1423 653 tons).
Therefore, it inflicts higher demand deficits also in
more countries. The difference, however, does not
scale linearly with the shock size due to threshold
effects during a cascade. For instance, Mexico (MEX)
is significantly affected by the proportional shock
(with a demand deficit of 6145 784 tons), but not at all
by the equal shock (no demand deficit). Japan (JPN),

Figure 7.Exemplary cascade process. The previous network is colored in gray, while changing links are colored according to the
exporting node. (t=0) Initial trade network. (t=1)The red node is shocked and reduces its exports. (t=2) Importers from the red
node compensate for their loss by reducing their own exports. (t=3) Further nodes face a demand deficit because of decreased
imports and reduce their exports.
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on the other hand, faces a high demand deficit even for
smaller shocks of the USA, i.e. 6332 099 tons for
proportional shocks and 447 629.7 tons for equal
shocks.

In order to visualize the influence of all countries
together, we generate a higher-order trade dependency
network by combining the final outcomes of cascades
for all possible countries k N y1, , c= ¼ ( )( ) as starting
points. A zero-order network would simply be the
empirically observed trade network shown in figure 4.
The first-order network would show the impact of
shocks on direct export partners. The second-order
network the impact on the export partners of those
direct partners. The highest order is given by the max-
imum number of steps in all cascades. Hence, higher-
order dependency networks reflect the ability of coun-
tries to compensate demand deficits by export
restrictions.

We explain the construction with our example
about the impact of a shock of the USA on Mexico
with respect to maize trade in 2013. The USA exports
0.32 of its total exports, i.e. 6579 107 tons, toMexico in
2013. Thus, in a first-order network, we would draw a
link between the USA and Mexico. The link weight is
0.32 shock M

USA* ( ) , i.e. 0.32 88 424 860 28 295 955* =
tons for proportional shocks and 0.32 1423 653* =
455 569 tons for equal shocks. In a second order net-
work, Mexico can try to compensate for the encoun-
tered demand deficit, i.e. 28 295 955 tons or 455 569
tons respectively, by reducing its own exports, i.e. in
total 581 777 tons. This way, Mexico can only reduce
its demand deficit in the proportional shock scenario,
since its demand deficit exceeds its total exports. Yet, it
can fully compensate for the demand deficit in the
equal shock scenario. Thus, in the second order net-
work, there remains a link between the USA andMex-
ico (with weight 28 295 955 581 777 27 714 178- =

tons, i.e. demand deficit of Mexico minus the exports
of Mexico) in the proportional shock scenario while
there is no link between them in the equal shock sce-
nario. In both shock scenarios, we further have links
between the USA and countries that import from
Mexico. For instance, Venezuela imports 0.92 ofMex-
ico’s exports. Thus, it faces a demand deficit of
0.92 581777 535 234.8* = (proportional shocks) or
0.92 455 569 419 123.5* = (equal shocks) tons after
two cascade steps (t= 2). Finally, the higher-order
trade network shows only links between the USA and
countries that cannot compensate for a demand deficit
in the course of a cascade that starts in theUSA.

The higher-order trade dependency network for
maize is shown in figures 9(a), (b) for equal shocks and
for proportional shocks. A sensitivity analysis of the
impact of different shock sizes is provided in
appendix H. With equal and proportional shock sce-
narios, we span the range ofmost shocks.We note that
proportional shocks emphasize the impact of the big-
gest producers, in particular USA, Brazil, and Argen-
tina. Interestingly, shocks in the USA finally impact
many countries in South America, while shocks in
Brazil mostly impact Asia, but also Africa. Equal
shocks, on the other hand, highlight dependencies in
general, not just on the biggest producers. Shocks of
European countries mostly impact other European
countries, with Italy as the most affected country.
With respect to Africa, a shock of South Africa gen-
erates the highest demand deficit not in Africa, but in
Japan and in SouthAmerica.

Furthermore, figure A1 shows what insights we
gain by a higher-order analysis in comparison with a
first-order approach. In the proportional shock sce-
nario, 53.9% of links in the first-order network are
spurious, i.e. they are not present in the higher-order
trade network, while 86.8% of all links of the higher-

Figure 8.An initial shock of the production ofmaize in theUSA in 2013 causes a cascade (not shown) that eventually leads to demand
deficit in countries withwhom theUSA is connected in the plot. The link strength is proportional to the size of the encountered
demand deficit.We do not show the intermediate steps, only thefinal outcome, i.e. each link connects the origin of a cascadewith a
finally affected country. (a)Equal shock, (b)proportional shock scenario.
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order trade dependency network are new, i.e. not
regarded in a first-order approach. In the equal shock
scenario, we have 55.4% versus 87.6% respectively. In
general, the higher-order trade dependency network
has ca. four (or 3.6) times more links than the first-
order trade dependency network. Interestingly, we
underestimate the impact of a shock of the USA,
Canada, or Brazil on Asian countries like Japan, Korea,
China, and Taiwan and on Venezuela in a first-order
approach. Yet, we overestimate the vulnerability of
Mexico, for instance, as it can compensate shocks by
reducing its own exports.

The higher-order trade dependency network of
maize can be also compared with the respective net-
works for rice, soy and wheat shown in figures A2(a)–
(c) both for equal (top) and proportional shock (bot-
tom) scenarios. It is apparent that shocks of the US, for
all crops and all scenarios, have a major impact on the
demand deficit of other countries, even for rice. Equal
shock scenarios highlight the importance of European
countries as intermediaries. I.e. they import, poten-
tially add value, and export. In particular, shocks of
wheat production and demand in European countries
affect the whole world as shown by the rather homo-
geneous link distribution.

Looking at the impact of the biggest producers of
soy, we find that the strongest dependencies are
between theUS, Brazil andArgentina on the one hand,
and China on the other hand. The higher-order trade
dependency network appears to be similar to the one
of maize (figure 9(b)) as both maize and soy share the
main producers. On the other hand, both the zero-
order (figure 4) and the higher-order trade depen-
dency network of soy are less dense than the ones for
maize. In consequence, the impact of shocks is more
concentrated on a few countries.

Regarding rice, we observe the prominent role of
Asian countries. Shocks of India or Thailand appear to
have the most critical impact on other countries, in
particular in Africa. Surprisingly, also shocks of the
USA are relevant for a few Asian countries like Japan
andKorea.

Africa mainly depends on rice and wheat imports
from Asian and European countries, as illustrated by
the fact that the incoming links in the higher-order
trade dependency network have a color different from
theAfrican countries.

5.Discussion

In this paper, we provide a quantitative analysis of the
global food trade of the four major internationally
traded crops, maize, rice, soy, and wheat. This analysis
makes two major contributions. First, from the avail-
able data we have reconstructed the global trade
network between 176 countries for 21 years and have
evaluated network properties such as link density and
distribution of link weights over time. This is comple-
mented by an empirical analysis of the production,
import, export and resulting demand of each country
for each year. We show that the roles of countries in
the global food trade cannot be separated, i.e. many
countries are producers, importers and exporters of
the same crop at the same time. This highlights the
importance of countries as intermediaries, either for
trade or food processing, and points to the increasing
complexity of global value chains [12].

This insight has motivated our second major
contribution, amodel to reveal the indirect dependen-
cies between countries if the the production or
demand for food in a specific country was shocked
exogeneously (e.g. by natural disasters). The model

Figure 9.The higher-order trade dependency network formaize in 2013. The bar size of each country represents its weighted degree,
i.e. the sumof all in-coming and out-going linkweights. Links are defined as infigure 8. (a)Equal shock, (b) proportional shock
scenario. For the visualizations, we use the circlize package in R [47]. Smaller links that cannot not be visualized in relation to the large
ones are not shown.
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reflects that countries can compensate for shortages in
the supply of a given staple food by imposing export
restrictions. These impact their direct trade partners,
which try to compensate supply deficits as well by
export restrictions. This way, cascades emerge on the
given trade network which involve many countries.
They only stop if all countries cannot further compen-
sate their demand deficit by export restrictions. Our
cascade model captures a process that cannot be
observed given the available data. That means, it
allows to relate the country shocked originally with the
country that eventually suffers the most from this
shock, at the end of a cascade. These indirect relations
are neither obvious, nor have they been revealed in the
existing literature.

To reflect these dependencies on the global level,
we have developed higher-order trade dependency net-
works. They visualize the impact of an initial shock in
any country on those countries that eventually get a
demand deficit from this shock.We have created these
visualizations for two different shock scenarios. Pro-
portional shocks highlight the impact of big produ-
cers, while equal shocks highlight general
dependencies. The value of these higher-order trade
dependency networks is in revealing indirect depen-
dencies between countries. As food trade becomes
more complex and more countries become involved
(see figure 1), disentangling a country’s impact on the
globalized food trade gives valuable information also
for policy makers. They are enabled to anticipate how
shocks of different sizes in a given country impact
other countries directly and indirectly, via export
restrictions.

In summary, we could quantify that a great num-
ber of Asian and African countries aremost exposed to
cascades. Noticeably, themain suppliers are similar for
most of the crops: USA, Canada, Argentina, Brazil,
and India. While shocks in the USA mainly affect
South America and several Asian countries, the south
of Africa is primarily dependent on American and
Asian exporters. The north of Africa depends strongly
on Europe, in particular via wheat imports. Remark-
ably, a great number of European countries appear fre-
quently among the main trade intermediaries.
According to our analysis, especially rice trade is prone
to cascading export restrictions. Cascades of similar
nature, i.e. based on export restrictions, have been
observed also empirically [20], but also other crop
trade is vulnerable to cascading export restrictions. At
the same time, cascades can provide means for good
shock diversification. To which extent food losses are
critical for specific countries is decided by the amount
of national stocks available for compensation.

Our modeling approach provides a way to proxy
the necessary size of such stocks. These can serve as
relevant input for policy makers. An alternative to
reserves would be to reduce a country’s import
dependence, either by increased domestic production
or by incentives for a diversification of diets (to reduce

the dependence on specific crops). It might also be
worthwhile to consider the assessment of the impact of
changes to the trade network, for instance, by import
subsidies, a diversification of the supplier base, or the
formation of additional trade agreements.

Yet, it is important to keep in mind that our mod-
eling approach is limited to small changes of the inter-
national trade network. The reason is that we do not
model many of the network’s constituting factors
explicitly, but indirectly by distortions starting from a
realistic observed network.

We do not consider substitution effects. For
instance, in ourmodel, demand deficits are considered
as independent across the considered crops maize,
rice, soy, wheat, whereas in practical situations a short-
age of one foodmay be compensated, at least partially,
by other food. Such couplings have to also include pri-
ces which are currently left out in ourmodel.

Price dynamics could affect the dynamics and the
outcome of cascades because both supply and demand
depend on price [20, 41]. Therefore, studies on sea-
food trade [26] have considered decreasing demand
due to price increases. Yet, these are not based on data,
data on price elasticity of countries with respect to the
studied crops are not readily available. We argue that
they are also less relevant for staple foods. While
increasing market prices translate into increasing con-
sumer prices [42, 43], the price elasticity of staple food
is relatively small [44], i.e. the demand does not change
substantially despite increasing prices. This reflects
that staple food is a basic need for most of the popula-
tion to exist. Nevertheless, food imports in general
could respond more strongly to price changes. Sub-
stitution of one crop by other (cheaper) crops may be
an alternative for less processed products. This leads to
joined price movements of the alternatives so that the
overall demand for one crop should not change drasti-
cally. Eventually, for highly processed products the
price of raw ingredients constitute only a smaller share
thus price changes do not alter the consumer price sig-
nificantly. Still, particularly low income countries
reduce the consumption of staple food if prices
become too high [44]. Exactly this leads to hunger and
might be the motivation for a country to implement
an export ban.

Yet, countries have alternative response options
that imposing export bans. They could increase their
imports or use available stocks to compensate for
shocks [27]. So far, we do not consider these. Those
could reduce cascading export reductions and thus the
need for stocks. Some countries could thus free-ride
on the stocks of others. A country with stocks might
still not use them to keep them as reserve for more
severe circumstances. Thus, a country with less stocks
still depends on the choice of a country with higher
stocks.

We emphasize that integrating alternative shock
responses in a cascade model that alters an observed
trade network is a challenge, as we cannot observe the
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effect of different choices directly in the data. The rea-
son for that is that an international trade network is
just an aggregation of all international trade activities
within a year. Prices change over time—in particular
close to harvest times [45]. A country comprises many
agents with different utilities. Consumers might have
an interest in export bans to keep food prices lower,
while exporters have an interest to sell at higher prices
internationally. Governments try to create policies for
both sides. None of the agents base their decisions on
the trade network as we observe it. The state of the sys-
tem when such agents make decisions determines the
aggregate network that we study here.

With our model of cascading export restrictions
we offer a description of this network. We identify
effective trade flows between countries and thus an
analysis of dependency with respect to the observa-
tions. In future, our work can be extended to estimate
the likelihood of adverse events and their con-
sequences for specific countries taking also poverty
levels of the population [22] and resilience indicators
[12] into account. Furthermore, our model can be
used to study intermediaries. In this work, we have
focused on the impact that a cascade has on countries
at the end of a value chain, where the final products are
consumed and assumed that countries that can com-
pensate for lost imports are not at risk. Yet, a country
that imports grains and exports a considerable pro-
portion usually adds value in between those two steps.
Thus, the country’s economy might depend crucially
on the imports. This dependence can be analyzed by
regarding the whole cascade process and is left for
futurework.

Acknowledgments

RB acknowledges support by the ETH48 project of the
ETH Risk Center. RB thanks the participants of the
conference ‘Tackling World Food System Challenges:
Across Disciplines, Sectors, and Scales’ in 2015 for
fruitful discussions.

Data availability statement

The data that support the findings of this study are
openly available at FAOSTAT [40].

AppendixA. Available data and
inconsistencies

The data on each regarded country in the years from
1992–2013 has been provided by by the Food and
Agricultural Organization of the United Nations
(FAO) [40]. The crop production data is taken from
the production section of FAOSTAT, while the
detailed trade matrix dataset defines the trades. The
FAO distinguishes between reported exports and
imports. In some cases, the reports of a trade as export
and as import are not consistent. We take a conserva-
tive approach by regarding only the minimum of both
trades. This way, we underestimate the total interna-
tional trade. According to the rule of thumb that a high
network connectivity and thus high international
trade support long cascades, we usually tend to under-
estimate the severity of cascades, but also their possible
shock diversification effect. An alternative approach
would be to take the average between the reported
export and import, as for instance implemented by [9].
In this case, we could not guaranty that we over- or
underestimate the international trade connectivity.
However, both network construction approaches lead
to qualitatively similar results.

In consequence of theminimal trade approach, we
only consider reporting countries by the FAO. A full
list of all countries that engage at least once in the trade
or production of a crop between 1992 and 2013 and
their ISO-3 code is given by table A1. Although the
international borders have been rather stable from
1992–2013, we still have to handle a few changes. Since
Belgium and Luxembourg form an economic union
and their trade statistics are only available for the com-
bination of both till 1999, we merge their data in our
whole analysis to provide consistency and acknowl-
edge their economic union. Czechoslovakia was divi-
ded into Czech Republic and Slovakia in 1993, so
rather in the beginning of our observation period. So,
we keep both countries separated in our analysis (and
simply assign the 1992 value to one of the countries
without any consequence). Yugoslavia (1992–2003)
and the state union of Serbia and Montenegro
(2003–2006) was split into Montenegro and Serbia.
We regard them as one entity till 2005, and afterwards
as separate.
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Figure A2.Cascade dependencies in 2013 for (a)/(d) rice, (b)/(e) soy, and (c)/(f)wheat trade. (Top row)Equal shock, (bottom row)
proportional shock scenario.

Figure A1.Difference between the higher-order and first-order trade dependency network formaize in 2013. The first row shows
links that are larger in thefirst-order network than in the higher-order network, while the second row shows links that are larger in the
higher-order network than in thefirst-order. Both plot the excess weight, i.e. the difference between the first-order and higher-order
network. (a)Equal shock, first-order links, (b) proportional shock, first-order links, (c) equal shocks, higher-order links, (d)
proportional shocks, higher-order links.
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TableA1. List of countries considered in our analysis.

ISO 3166-1

alpha-3

codes Official country name

ISO 3166-

1 alpha-3

codes Official country name

USA United States of America TWN Taiwan, the Republic of

China

CAN Canada KAZ Republic of Kazakhstan

ATG Antigua andBarbuda KGZ Kyrgyz Republic

ARG Argentine Republic AFG Islamic State of

Afghanistan

BHS Commonwealth of the Bahamas BGD People’s Republic of

Bangladesh

BRB Barbados BTN Kingdomof Bhutan

BMU Bermuda LKA Democratic Socialist

Republic of Sri Lanka

BOL Republic of Bolivia IND Republic of India

BRA Federative Republic of Brazil IRN Islamic Republic of Iran

ABW Aruba MDV Republic ofMaldives

BLZ Belize NPL KingdomofNepal

CHL Republic of Chile PAK Islamic Republic of

Pakistan

COL Republic of Colombia BRN Negara Brunei

Darussalam

CRI Republic of Costa Rica IDN Republic of Indonesia

CUB Republic of Cuba KHM KingdomofCambodia

DMA Commonwealth ofDominica MYS Malaysia

ECU Republic of Ecuador PHL Republic of the

Philippines

SLV Republic of El Salvador SGP Republic of Singapore

GRD Grenada THA Kingdomof Thailand

GTM Republic of Guatemala BHR State of Bahrain

GUY Cooperative Republic ofGuyana QAT State ofQatar

HND Republic ofHonduras SAU Kingdomof Saudi Arabia

JAM Jamaica OMN Sultanate ofOman

MEX UnitedMexican States ARE theUnited Arab

Emirates

MSR Montserrat YEM Republic of Yemen
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TableA1. (Continued.)

ISO 3166-1

alpha-3

codes Official country name

ISO 3166-

1 alpha-3

codes Official country name

NIC Republic of Nicaragua JOR Hashemite Kingdomof

Jordan

PAN Republic of Panama KWT State of Kuwait

PRY Republic of Paraguay LBN Lebanese Republic

PER Republic of Peru SYR SyrianArabRepublic

KNA Federation of Saint Kitts and

Nevis

ISR State of Israel

LCA Saint Lucia DZA People’s Democratic

Republic of Algeria

VCT Saint Vincent and the

Grenadines

EGY ArabRepublic of Egypt

SUR Republic of Suriname LBY Great Socialist People’s

LibyanArab

Jamahiriya

TTO Republic of Trinidad and

Tobago

MAR KingdomofMorocco

URY Oriental Republic ofUruguay SDN Republic of the Sudan

VEN Bolivarian Republic of

Venezuela

TUN Republic of Tunisia

AUT Republic of Austria CMR Republic of Cameroon

DNK KingdomofDenmark CPV Republic of CapeVerde

FRO Fxoroyar (Faroe Is.) CAF Central African Republic

FIN Republic of Finland COG Republic of theCongo

FRA FrenchRepublic GAB Gabonese Republic

DEU Federal Republic of Germany STP Democratic Republic of

Sao Tome and

Principe

GRC Hellenic Republic COD Democratic Republic of

the Congo

ISL Republic of Iceland BEN Republic of Benin

IRL Ireland GMB Republic of theGambia

ITA Italian Republic GHA Republic of Ghana

MLT Republic ofMalta GIN Republic of Guinea

NLD Kingdomof theNetherlands CIV
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TableA1. (Continued.)

ISO 3166-1

alpha-3

codes Official country name

ISO 3166-

1 alpha-3

codes Official country name

Republic of Cote

D’Ivoire

NOR KingdomofNorway MLI Republic ofMali

PRT Portuguese Republic MRT Islamic Republic of

Mauritania

ESP Kingdomof Spain NER Republic of Niger

SWE Kingdomof Sweden NGA Federal Republic of

Nigeria

CHE Swiss Confederation SEN Republic of Senegal

GBR UnitedKingdomofGreat

Britain andNorthern Ireland

SLE Republic of Sierra Leone

GRL Greenland TGO Togolese Republic

BELLUX theKingdomof Belgium and the

GrandDuchy of

Luxembourg combined

BFA Burkina Faso

REU Réunion BDI Republic of Burundi

ALB Republic of Albania KEN Republic of Kenya

BGR theRepublic of Bulgaria RWA Rwandese Republic

CYP Republic of Cyprus UGA theRepublic ofUganda

EST Republic of Estonia ETH Federal Democratic

Republic of Ethiopia

BIH Bosnia andHerzegovina BWA Republic of Botswana

HUN Republic ofHungary MWI Republic ofMalawi

HRV Republic of Croatia NAM Republic of Namibia

LVA Republic of Latvia ZWE Republic of Zimbabwe

LTU Republic of Lithuania ZAF Republic of SouthAfrica

MKD Republic ofMacedonia SWZ Kingdomof Swaziland

CZE CzechRepublic TZA UnitedRepublic of

Tanzania

POL Republic of Poland ZMB Republic of Zambia

ROU Romania COM Federal Islamic Republic

of theComoros

SVN Republic of Slovenia MDG Republic ofMadagascar

SVK Slovak Republic MUS Republic ofMauritius
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TableA1. (Continued.)

ISO 3166-1

alpha-3

codes Official country name

ISO 3166-

1 alpha-3

codes Official country name

TUR Republic of Turkey SYC Republic of Seychelles

SRB Republic of Serbia AUS Commonwealth of

Australia

MNE Montenegro SLB Solomon Islands

ARM Republic of Armenia COK theCook Islands

AZE Republic of Azerbaijan FJI Republic of the Fiji

Islands

BLR Republic of Belarus PYF Territory of French

Polynesia

GEO Georgia KIR Republic of Kiribati

MDA Republic ofMoldova NCL Territory ofNew

Caledonia and

Dependencies

RUS Russian Federation VUT Republic of Vanuatu

UKR Ukraine NZL NewZealand

CHN People’s Republic of China PNG Independent State of

PapuaNewGuinea

HKG HongKong Special

Administrative Region

TON Kingdomof Tonga

JPN Japan TUV Tuvalu

KOR Republic of Korea GUF FrenchGuiana

MAC Macau Special Administrative

Region

GLP Guadeloupe

MNG Mongolia MTQ Martinique
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Appendix B. Production, import, export
and demand of rice, soy andwheat across
countries

The figures B1–B3 complement figure 2 for maize.
They also refer to the years 1992 (left) and 2013 (right).

Figure B1. Fractions of rice production yprodi
R ( )( ) (outer circle), import yimpi

R ( )( ) (second outer circle), export yexpi
R ( )( ) (second

inner circle) and demand ydemi
R ( )( ) (inner circle)per country in y=1992 (left) and y=2013 (right).

Figure B2. Fractions of soy production yprodi
S ( )( ) (outer circle), import yimpi

S ( )( ) (second outer circle), export yexpi
S ( )( ) (second inner

circle) and demand ydemi
S ( )( ) (inner circle) per country in y=1992 (left) and y=2013 (right).
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AppendixC. Inequalities in the trade
dependency networks

The figures C1(a)–(c) complement figure 6 for maize.
Also for rice, soy and wheat we find that the weight
distributions are highly right skewed, indicating that

over time the trade volumes along a link are very
different. To emphasize this, figure C1(d) shows the
evolution of the Gini coefficient [46], which serves as
measure for the dissimilarity between positive trade
volumes. We note the rather high values of the Gini
coefficient, which do not changemuch over time.

Figure B3. Fractions of wheat production yprodi
W ( )( ) (outer circle), import yimpi

W ( )( ) (second outer circle), export yexpi
W ( )( ) (second

inner circle) and demand ydemi
W ( )( ) (inner circle) per country in y=1992 (left) and y=2013 (right).
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FigureC1.Histogramof the logarithmof the positive trade volumes in the years 1992 (red or purple if behind the blue) and 2013
(blue) for (a) rice, (b)soy, (c)wheat. (d)Gini coefficient of the distribution of positive trade volumes over time.
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AppendixD. Evolution of the globalmaize
trade network

FigureD1.Maize trade. Snapshots of the years: (a) 1992, (b) 2000, (c) 2008 and (d) 2013. For further information about the color code,
etc, see the caption offigure 4.We observe a clear increase in the number ofmarket participants and in interconnectivity. In 1992, the
USAdominated the internationalmarket with almost 46%of theworldwidemaize production. ARG,CANandAUS are additional
bigger exporters that serve other continents, while CHNmainly serves the Asianmarket, and FRA andHUNexport primarily within
Europe. Over the years, further countries cultivatemaize so that the share of the production by theUSAdeclines to 35% in 2013.
Accordingly, additional exporters and importers enter themarket.
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Appendix E. Evolution of the global rice
trade network

Figure E1.Rice trade. Evolution of the international rice trade network. Snapshots of the years: (a) 1992, (b) 2000, (c) 2008 and (d)
2013. For further information about the color code, etc, see the caption offigure 4. As formaize, we observe an increasing
interconnectivity in the global trade of rice over the years. Still, only about 4%of the total production is traded in 2013 because
national production is often subject to export (or even import) restrictions or other protective policies. In Asia, rice is primarily
produced for national consumption, while overproduction is traded.
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Appendix F. Evolution of the global soy
trade network

Figure F1. Soybean trade. Snapshots of the years: (a) 1992, (b) 2000, (c) 2008 and (d) 2013. For further information about the color
code, etc, see the caption offigure 4. This global trade network seems to be less dense than the ones formaize, rice, orwheat, although
we observe growing interconnectivity.With an increasing number ofmarket participants, also a diversification of production and
trade links is associated.While in 1992 theUSAproduces 52%of the total production, this share decreases to 33% in 2013 andBRA
produces a similar amount of soy.Whereas CHN is a net exporter in 1992, it imports farmore than it produces in 2013.
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AppendixG. Evolution of the global wheat
trade network

FigureG1.Wheat trade. Snapshots of the years: (a) 1992, (b) 2000, (c) 2008 and (d) 2013. For further information about the color
code, etc, see the caption offigure 4. TheUSA, CAN, andARG, as well as several European countries, for instance, FRA,DEU, and
HUN, together withAUS are themain exporting nations. Especially since 2000, UKR andRUS as big producers and exporters add
several links to the network and increase interconnectivity.
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AppendixH. Sensitivity to shock sizes

To give an idea of the effect of different shock sizes and
the nonlinear response by the cascade process, we take
a closer look at different initial shocks of the USA with
respect to maize trade in 2013 as also discussed with
figure 8. We vary the initial shock size from
0.001 exp 2013M

USA( )( ) to exp 2013M
USA( )( ) in 0.001 points of

themaize exports by the USA in 2013. The equal shock
scenario translates in a shock of ca. 0.07 of the maize
exports by the USA, while the proportional shock

scenario results in a shock of the complete exports by
the USA. We therefore capture quite well the relevant
range of shocks with our analysis of equal and
proportional shock scenarios. Figure H1(a) visualizes
the threshold effects, where we define the state of a
country as si(T)=1 if ddi(T)>0 and si(T)=0
otherwise. Higher shocks do not necessarily increase
the number of countries with demand deficit at the
end of a cascade, as long as countries can still
compensate for the shock. Yet, they usually lead to
longer cascades.

FigureH1. Sensitivity to different shock sizes of theUSA in 2013with respect tomaize trade. (a)The number of countries with
demand deficit at the end of a cascade when theUSA is shocked initially. (b)Number of cascade steps (i.e. cascade process time) until a
cascade reaches an equilibrium.
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Appendix I. Differences betweenhigher-
order andfirst-order dependency networks

The differences between first-order and higher-order
trade networks of rice, soy, and wheat are provided in
figures [I1-I3].

Figure I1.Difference between the higher-order and first-order trade dependency network for rice in 2013. The first row shows links
that are larger in thefirst-order network than in the higher-order network, while the second row shows links that are larger in the
higher-order network than in thefirst-order. Both plot the excess weight, i.e. the difference between the first-order and higher-order
network. (a)Equal shock, first-order links, (b) proportional shock, first-order links, (c) equal shocks, higher-order links, (d)
proportional shocks, higher-order links.
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Figure I2.Difference between the higher-order and first-order trade dependency network for soy in 2013. The first row shows links
that are larger in thefirst-order network than in the higher-order network, while the second row shows links that are larger in the
higher-order network than in thefirst-order. Both plot the excess weight, i.e. the difference between the first-order and higher-order
network. (a)Equal shock, first-order links, (b) proportional shock, first-order links, (c) equal shocks, higher-order links, (d)
proportional shocks, higher-order links.
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