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Efficient message passing for 
cascade size distributions
Rebekka Burkholz1,2,3

How big is the risk that a few initial failures of networked nodes amplify to large cascades that 
endanger the functioning of the system? Common answers refer to the average final cascade size. 
Two analytic approaches allow its computation: (a) (heterogeneous) mean field approximation and (b) 
belief propagation. The former applies to (infinitely) large locally tree-like networks, while the latter 
is exact on finite trees. Yet, cascade sizes can have broad and multi-modal distributions that are not 
well represented by their average. Full distribution information is essential to identify likely events 
and to estimate the tail risk, i.e. the probability of extreme events. We therefore present an efficient 
message passing algorithm that calculates the cascade size distribution in finite networks. It is exact on 
finite trees and for a large class of cascade processes. An approximate version applies to any network 
structure and performs well on locally tree-like networks, as we show with several examples.

Mean field theories are core to the analysis of stochastic processes on networks, as they make them analytically 
tractable and allow the estimate of average quantities of interest. Fundamental to this approach is the configura-
tion model and its variants1. These create random network ensembles whose locally tree-like network structure 
is exploited to approximate the average neuronal activity in a brain2,3, estimate the size of an epidemic outbreak4, 
measure systemic risk5, or analyze the formation of opinions6. Their analysis has deepened our understanding 
of cascade phenomena and provided insights into the average role of connectivity in the spreading of failures or 
activations7–10. In consequence, many of our insights rely on Local Tree Approximations (LTA) and, thus, the 
assumption that large systems can be approximated well by their infinitely large counterpart and that neighbors 
of the same node are independent.

Finite systems that are small enough so that finite size effects have to be considered are subject of study in 
many important applications. For a given and fixed network, belief propagation (BP), also termed cavity method 
in Physics, serves the computation of average node states and thus the average final cascade size. Furthermore, 
it can provide means to estimate the probability of extreme events in large systems11. As LTA, BP relies on inde-
pendent neighbors and is thus exact on trees, while an iterative application (i.e., loopy belief propagation) approx-
imates well average cascade results on locally tree-like networks12.

Yet, finite networks, even when they are large, can behave quite different from the expected, in particular 
close to phase transitions. Even for large systems, the distribution of the final cascade size can be broad and of 
multi-modal shape. This has been shown for specific topologies, i.e., complete networks and stars13. Another 
example is the well known Curie-Weiss model14, whose magnetization density distribution is bi-modal for low 
temperature. Also real world applications elucidate the need for distribution information in addition to averages15.

Multi-modality has been frequently observed close to phase transitions based on Monte Carlo simulations and 
also used to characterize them. Yet, also for parameters far away from sudden regime shifts, we can observe broad 
multi-modal distributions. BP or LTA analysis cannot capture these and report a single, potentially improbable 
event: the average of the distribution.

As alternative, we propose a message passing algorithm that computes the full cascade size distribution. 
Message passing is a natural algorithmic choice that lends itself to efficient parallelization and makes use of the 
fact that cascades emerge from local interactions. Also LTA16 and BP12 can be formulated according to this prin-
ciple, yet, are structurally quite different. In contrast to BP, we only have to go through a tree once instead of 
twice. As in each node cascade size distributions of subtrees rooted in its children are combined, we term this 
approach Subtree Distribution Propagation (SDP). It is exact on trees and efficient. For limited resolution of the 
cascade size, it only requires a number of operations that is linear in the number of network nodes: O(N). The 
exact approach scales as O(N2logN). Yet, the involved convolutions are still approximated with the help of Fast 
Fourier Transformations. To further approximate the cascade size distribution on general networks, we introduce 
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a second algorithm: termed Tree Distribution Approximation (TDA). It relies on loopy belief propagation (or 
another algorithm to compute marginal activation probabilities of nodes) and SDP. By comparison with extensive 
Monte Carlo simulations, we show that TDA approximates the cascade size distribution on locally tree-like net-
works well. As we discuss further, our derivations can form the basis of algorithms for general network topologies.

Cascade Model Framework
We assume that a fixed undirected network (or graph) G = (V, E) with node (or vertex) set V and link (or edge) set E 
is given. Each i ∈ V of the N = |V| nodes is equipped with a binary state si ∈ {0, 1}, where si = 1 indicates that i is active 
(or failed) and si = 0 that i is inactive (or functional). In the course of a cascade, node states can become activated by 
local interactions with network neighbors, i.e., the nodes a node is connected with by links. Note that activation can 
travel in both directions of a link. We assume that the process evolves over discrete time steps = t T0, ,  and that 
the activation of a node i at time t depends on the number ai(t − 1) of active neighbors at the previous time step.

The respective cascade model is defined by the response functions Ri for each node i ∈ V. A node i becomes 
active with probability Ri(a) when exactly a of its neighbors are active (while a − 1 would not have been enough). 
Thus, i activates with probability Ri(0) and never activates with probability Ri(di + 1), where di denotes i’s degree, 
i.e., the number of its neighbors. We further define R a( )i

c  as probability that a node becomes active whenever a 
neighbors are active. Usually, this is the cumulative sum = ∑ =R a R l( ) ( )i

c
l
a

i0  and we have ∑ ==
+ R a( ) 1a

d
i0

1i . This 
reflects the reasoning that each active neighbor increases the chance to activate the node. For instance in opinion 
formation models, also opposite effects could be thought of, i.e., a high number of active neighbors reduces the 
probability of adopting the same opinion. For simplicity, we assume that Ri is not time dependent itself and 
exclude the possibility of recovery, i.e., that a node switches from an active/failed (si = 1) back to an inactive/
functional state (si = 0). In principle, the recovery of a node could be considered by the introduction of a third 
node state si = ‘recovered’, but would introduce additional computational complexity that we avoid here.

In this setting, we are interested in the final cascade size that is measured by the final fraction of active nodes 
ρ = ∑ = s T( )

N i
N

i
1

1 . It answers, for instance, the question how many nodes receive a certain information or how 
many pass on a disease. Regardless whether we want to minimize or maximize ρ, considering the probability of 
adverse events can improve the decision making.

This framework covers many cascade models, ranging from neural dynamics to Voter models17,18. Two com-
mon examples shall be discussed in more detail: (a) a threshold model (TM) of information propagation6,19. 
and (b) a simple model of epidemic spreading, also termed independent cascade model (ICM)4,20,21. Details are 
provided in the method section.

Message Passing for Cascade Size Distributions
In the following, we only provide an intuition for the main guiding principles of the two algorithms that we pro-
pose: subtree distribution propagation (SDP) and tree distribution approximation (TDA). SDP applies to trees 
only and is exact, while TDA deploys SDP to approximate the final cascade size distribution on a general network. 
Details and the main theorem that SDP works correctly are given in the method section.

Subtree distribution propagation (SDP). The goal is to compute the final cascade size distribution on a 
tree. To achieve this, the high level idea of SDP is to solve similar smaller problems repeatedly by computing sub-
tree cascade size distributions and successively merging them. Hence, we chose the name subtree distribution 
propagation. In each node n, we calculate the cascade size distribution for the subtree Tn rooted in n dependent 
on the state of its parent p, and send this as message to p. Figure 1(a) visualizes the general procedure. We start in 
the leaves (i.e., the nodes with degree 1) at the highest level (i.e., at the bottom of the picture) and proceed itera-
tively upwards to the root r by combining the subtree distributions Tci

 corresponding to the children ci.
In slight abuse of notation, let Tn denote the number of active nodes in the subtree rooted in n, which we also 

call subtree cascade size (as Tn/N). This is a random variable that can be expressed as sum over the node state sn 
and children subtrees: = + ∑ =

−T s Tn n i
d

c1
1n

i
. Tn and all involved node states depend on sp (and each other) in com-

plicated ways.
We control for this dependency by introducing an order-conditioning operator || that has a similar function 

as conditioning on random variables. Yet, exact conditioning Tn | sp = 1 would consider events where n causes the 
activation of p and vice versa. In contrast, we have to keep track of the right order of activations and do so with the 
help of ||. ||T sn p removes the influence of n on p. We only focus on the impact of p on n. Specifically, ||T sn p denotes 
the cascade size of a tree Tn where the rest of the original network has been removed and n has an additional 
neighbor p, whose state is set to sp with probability 1.

Computing the distribution of ||T sn p is challenging for two reasons: (a) the random variables are dependent 
and (b) the right order of activations needs to be respected. The solution for (a) is to order-condition Tn on events 
involving sn (and sp) that make the subtree distributions independent so that Tn is given by their convolution. 
Convolutions can be computed efficiently with the help of Fast Fourier Transformations (FFTs).

To solve (b), we define artificial variables In, An that capture the right order of activations and the dependence 
structure of sn on sp and Tci

. In refers to an inactive and An to an active parent p. Key to the definition of An is an 
artificial node state visualized in Fig. 2 that considers whether n triggers the activation of its parent p. The distri-
butions pIn

, pAn
 are advanced iteratively so that we can assume their knowledge for the children Ici

, Aci
. Combined, 

they add the subtree cascade sizes and, separately, the number of active children an that can trigger the activation 
of n. Thus, in our subtree distribution propagation algorithm, each node (except the root) sends exactly one mes-
sage to its parent: the distribution of In and An. This message is a combination and update of the messages the 
node received by its children, which is detailed in the method section. The root finally combines all received 
messages to compute the final cascade size distribution = =ρp x T xN( ) ( )r .
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This can be achieved computationally efficiently. The worst case algorithmic complexity of SDP is O(N2logN). 
Yet, for limited resolution of the cascade size. i.e., when we restrict ρ on an equidistant grid of [0, 1], the algorith-
mic complexity of SDP is linear in the number of nodes: O(N). It can further be brought down to O(h), where h 
denotes the height of the tree, if the computations are distributed to computing units corresponding to nodes of 
the tree. A detailed analysis is provided in the Supplementary Information.

Tree distribution approximation (TDA). SDP is exact on trees. However, activations are stronger coupled 
in the presence of loops and the probability of large and small cascades tends to increase13 so that the variance 
of the cascade size distribution grows. To take this into account, we propose an approximation version of SDP.

The idea is to first calculate individual activation probabilities on the original network and second to use them 
for adapting the response functions Ri. These are given as input to SDP which is applied to a minimum spanning 

(a) Subtree Distribution Propagation. (b) Tree Distribution Approximation.

Figure 1. Illustration of relevant variables in the message passing algorithm. n denotes a focal node, p its 
parent, and Tn the subtree rooted in n. The calculation starts in the leaves (the bottom nodes with degree 1) 
and successively computes the cascade size distribution of each subtree Tn given the state of the parent p by 
combining the distributions corresponding to trees rooted in the children ci. The resulting distribution is exact 
for a tree (a). If the network contains loops (b), (purple) links are deleted until a tree is obtained. Each deleted 
link is replaced by two new links that reconnect a independent (purple) copy of a cut-off neighbor. Such a 
copy is not counted as additional node in the final cascade size, but influences the activation probability of its 
neighbor n.

(a) Subtree snippet. (b) Before activation of n. (c) After activation of n.

Figure 2. Illustration of artificial state rci
. n denotes the focal node with degree d, p its parent, and c1, …, cd−1 its 

children. Tci
 is a subtree rooted in a child ci. An active node is represented by a red square. rci

 denotes an artificial 
state of child ci that indicates with =r 1ci

 whether (b) it became active before its parent n and can thus trigger its 
activation or with =r 0ci

 whether (c) it activates after its parent n or not at all.
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tree of the original network. Since this approach is only approximate and is based on the cascade size distribution 
on a tree, we call it tree distribution approximation (TDA).

In detail, we employ loopy BP to calculate the activation probabilities = = || =p s s( 1 0)in i n  of a neighbor i 
given that n is not active (before) to update the response function Rn, as outlined in the method section. Loopy BP 
itself is not exact, yet, usually approximates pin well on locally tree-like networks. It could be substituted by any 
alternative algorithm. For instance, the Junction Tree Algorithm22 would be exact (for directed acyclic graphs) but 
computationally costly and does not scale to large networks.

Next, we compute a minimum spanning tree of the original network (i.e., delete links of loops until we obtain 
a tree). Further, we assume that lost neighbors i of a node n activate initially and independently (before n) with 
probability pin so that they can still contribute to the activation of n. Figure 1(b) illustrates this approach. We cre-
ate an independent copy of a lost neighbor i (which is colored purple) and connect it with n. The copy’s activation 
is not counted in the final cascade size ρ. It only influences the response Rn.

Therefore, this algorithm neglects certain dependencies of node activations in the presence of loops. If these 
loops are large enough, their contribution is usually negligible. We expect to approximate cascade size distribu-
tions well on locally tree-like networks. Next, we test this claim in numerical experiments.

Numerical Experiments
We focus on three exemplary networks that are representative of different use cases and visualized in Fig. 3: a 
tree, a locally tree-like network constructed by a configuration model with power law degree distribution, and a 
real world network defined by data on corporate ownership relationships23, which is is locally tree-like. For each 
network, we compare the cascade size distributions obtained by our message passing algorithm, i.e., SDP for the 
tree and TDA for the two other networks, with Monte Carlo simulations.

We present results for the two introduced cascade models with the same parameter setting for all networks as 
specified in the method section. This provides a proof of concept and allows us to assess the approximation qual-
ity of TDA in Fig. 3. Results for further parameter settings and larger configuration model graphs are reported in 
the Supplementary Information.

First, we observe that SDP and TDA match perfectly the cascade size distributions obtained by extensive 
Monte Carlo simulations for the tree and the locally tree-like corporate ownership network. For the power law 
configuration model, where the task is much harder, TDA identifies the modes correctly, yet, tends to slightly 
underestimate the variance of the cascade size distribution. A considerable number of loops introduces additional 
correlations of note states that we cannot capture by our tree approximation.

Second, we note the broad cascade size distributions. This is unexpected by heterogeneous mean field or BP 
analysis, as our parameter choices for the cascade models are in no case critical: Neither does the average cascade 
size undergo a phase transition close to the chosen parameters in an infinitely large network with the same degree 
distribution as the original network, nor does the average cascade size change abruptly in the finite network for 
small changes in the parameters.

For the threshold model, we also observe several modes of the distribution on the tree and corporate own-
ership network. Clearly, the average cascade size does not represent the cascade risk well in these cases. Our 
approaches, SDP and TDA, add cascade size distribution information. These are useful in particular when we 
face star structures or, similarly, pronounced hubs (i.e., nodes with large degree), as these contribute to multiple 
distribution modes. The modes roughly correspond to events where no hub activates, one hub activates (so that 
many of its neighbors follow), two activate, etc., while longer paths have a smoothing effect on the distribution.

The independent cascade model shows single modes only, since we analyze parameters here where it is very 
likely that the center becomes active but does not substantially increase the activation probability of its neighbors. 
A priori, the precise shape of the cascade size distribution for complicated network structures is not clear and calls 
for a detailed analysis with the provided tools.

Discussion
We have introduced two algorithms that compute the final cascade size distribution for a large class of cascade 
models: (a) the subtree distribution propagation (SDP) is exact on trees, while (b) the tree distribution approx-
imation (TDA) provides an approximation variant that applies to every network, yet, performs well for locally 
tree-like network structures.

Their derivation is based on two basic ingredients: artificial random variables that consider the right order 
of activations and an order-conditioning operation where the network above a node’s parents are cut off. The 
latter creates an independence of subtree cascade size distributions, which enables their efficient combination. 
For limited resolution of the cascade size distribution, thus an approximate version of the algorithm, the SDP 
part of the algorithms is linear in the number of nodes O(N) and can be distributed along the tree structure of 
the input. Each node needs to be visited only once. In consequence, the introduced algorithms are quite efficient 
and scalable.

As we argue, cascade size distribution information is critical for good decision making, when the distributions 
are broad and, in particular, when they have multiple modes, which signify probable events. Therefore, there is 
a need to generalize our approach beyond locally tree-like network structures, i.e., to networks with higher loop 
density. This generality will trade off with efficiency and scalability, similarly as the junction tree algorithm relates 
to belief propagation. The approach presented here lends itself as well for a transfer to junction trees.

On a meta level, we have presented a way to combine cascade size distributions of subnetworks and do not 
rely on the assumption that these subnetworks are trees themselves. Their distribution can either be computed 
analytically or approximated by Monte Carlo simulations. In every case, we can efficiently combine the related 
distributions if the subnetworks are connected in a tree-like fashion (as in junction trees).

https://doi.org/10.1038/s41598-019-42873-9
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Furthermore, the principle of our approach can be transferred to more general graphical models to obtain 
macro level information as, for instance, the distribution of the sum of involved random variables.

Materials and Methods
Cascade models. We analyze two models in more detail, termed threshold model (TM) and independent 
cascade model (ICM). Both models have been used to describe similar phenomena, as information propagation, 
opinion formation, social influence, but also financial contagion or the spread of epidemics. While the cascade 
mechanisms are similar for both, an important distinction is that in the threshold model the probability to acti-
vate a neighbor depends on the other activations of neighbors18.

Figure 3. Cascade size distribution on exemplary networks. The left column shows the network, the right 
column the corresponding cascade size distributions. Symbols represent Monte Carlo simulations (with 106 
realizations): orange circles for the threshold model and cyan squares for the independent cascade model. Lines 
correspond to the respective message passing algorithm: a solid red line for the threshold model and a blue 
dotted line for the independent cascade model.
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Threshold model. The threshold model originates in a model of collective action19, which has been transferred to 
networks by6. Each node i is equipped with a threshold θi that has been drawn initially independently at random 
from a distribution with cumulative distribution function Fi. Nodes with a negative threshold become active ini-
tially. Otherwise, a node activates whenever the fraction of active neighbors exceeds its threshold, i.e., θi ≤ a/di. In 
consequence, previous activations of neighbors influence the probability whether a further activation of a neigh-
bor causes the activation of the focal node i. This implies a response function of the form:

= =
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+ = − =
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Independent cascade model. The independent cascade model can be interpreted as simple epidemic spreading 
model that resembles the widely studied SIR (Susceptible-Infected-Recovered) model20. It is also equivalent to 
bond percolation in terms of the final outcome4. The activation of a node corresponds to its infection. Even 
though we do not explicitly allow for node recovery, for large networks, it can be implicitly incorporated in the 
choice of the infection probability p, i.e., the probability that a newly infected (active) node spreads a disease to 
a network neighbor. All neighbors of a newly infected node are infected independently. Also initially, nodes are 
activated independently with probability p. Thus, a node with degree di has the response function:

= − + = − = − −+ +R a p p R d p R a p( ) (1 ) , ( 1) (1 ) , ( ) 1 (1 )i
a

i i
d

i
c a1 1i

for 0 < a ≤ di. A node becomes activated exactly with a active neighbors (if it is not active initially, which is the 
case with probability 1 − p) and one out of the a neighbors causes the activation with probability p, while the 
remaining a − 1 did not cause the activation.

Average cascade properties have been extensively studied for both models with the help of heterogeneous 
mean field approximations (for TM7–10,24, for ICM4) and belief propagation (for TM16, for more complicated 
variants than ICM25,26).

Numerical experiments. We run experiments for three networks that are visualized in Fig. 3. A tree and 
the configuration model network are created artificially, while the last one is a real world example based on data.

The tree consists of N = 181 nodes with two main hubs of degrees 69 and 50, while the configuration model 
network is a bit larger with N = 543 nodes and average degree davg = 2.25, but smaller maximal degree dmax = 25. 
The latter has degree distribution p(d) ∝ d−2.5, which is structurally similar to many real world networks27,28. 
Log-normally distributed degrees would have been sensible choice28 as well, yet, the difference in degree distribu-
tions does not affect the cascade size distribution information critically. While the configuration model constructs 
locally tree-like networks, the size N = 543 is chosen on purpose relatively small so that the network has still a 
number of short loops as visible in Fig. 3(c). This makes our approximation task harder and serves as stress test 
for our approach.

The largest considered network is the largest weakly connected component of a publicly available network, 
which is defined by corporate ownership relationships23. It consists of |V| = 4475 nodes with mean degree z = 2.08 
and maximal degree dmax = 552 and is clearly locally tree-like.

We compare the final cascade size distribution given by our algorithms with the results of Monte Carlo simu-
lations always for the two introduced cascade models with the same parameter setting. In the threshold model, we 
assume independently normally distributed thresholds with a given mean μ = 0.5 and standard deviation σ = 0.5 
so that Fi(θ) = Φ((x − μ)/σ) for all i ∈ V, where Φ denotes the standard normal cumulative distribution function. 
The parameter p in the independent cascade model is always set to p = 0.2. This parameter choice is non-critical 
and thus, no phase transitions occur in close neighborhood of the parameters.

For Monte Carlo simulations, we always report the empirical distribution of 106 independent realizations. We 
calculate the final cascade size distribution for the tree by SDP and for the other two locally tree-like networks by 
TDA at full resolution, i.e., ρ ∈ {0, 1/N, 2/N, …, 1}.

Subtree distribution propagation. The goal is to compute the final cascade size distribution 
= =ρp t N T t( / ) ( )r  for a given tree G = Tr with root r and cascade model with response functions Ri by a mes-

sage passing algorithm. As explained in the main text, nodes n send messages pIn
, pAn

 to their parent p, where In 
refers to an inactive (sp = 0) and An to an active parent (sp = 1). We define

= || =

= = || = + − || == = → = ∨ =


I T s s

A T r r T s r T s r

( , ) 0,

( , ) ( 0 (1 ) 1, ),
n n n p

n n n n n s p n n s s s p n{ 1} { 1 1 0}n p n n

where rn ∈ {0, 1} denotes an artificial state that indicates whether n triggers the activation of the parent p. Note that 
these are technically not random variables, as their distributions are not normalized. How their distributions are 
computed is stated later in Theorem 1. First, we explain their definition intuitively. To understand why In and An 
carry the right information, we shift the focus from n to its children and show how the messages corresponding 
to them enable us to compute the distribution of = + ∑ =

−T s Tn n i
d

c1
1n

i
.

Let’s first discuss the easier case when n stays inactive (sn = 0). The subtree distributions of || =T s 0c ni
 are inde-

pendent. Thus, we can convolute the distributions of = || =I T s s( , ) 0c c c ni i i
 to obtain the distribution of 
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|| =T a s( , ) 0n n n  with = ∑ =
−a sn i

d
c1

1n
i
. In this case, we know the probability that sn does not become active (given its 

parent p):  = || = − +s a s R a s( 0 , ) 1 ( )n n p n
c

n p .
The case sn = 1 is more involved, since we have to consider only the children that trigger the activation of n, i.e., 

that become active before n. We therefore introduce an artificial binary node state rn, which is illustrated by Fig. 2. 
rn = 1 indicates that node n activates before its parent p and contributes to its activation, while rn = 0 subsumes all 
other cases leading to sp = 1, i.e., n does not activate before its parent, has an active parent, and might become 
active or not after the activation of its parent. We join rn with an adapted subtree cascade size Tn to = A T r( , )n n n  
so that ∑ = − || ==

− A T a s( 1, ) 1i
d

c n n n1
1n

i
 with now = ∑ =

−a rn i
d

c1
1n

i
. Tn depends on rn and sn and is defined as 

= || = + − || == = → = ∨ =
T r T s r T s1 0 (1 ) 1 1n n n s p n n s s s p{ 1} { 1 1 0}n p n n

. Thus, if rn = 1, n is active (sn = 1) and Tn is not 
influenced by its parent, i.e., sp = 0 is given. If rn = 0, the parent is assumed to be active sp = 1 and the node itself 
can either be inactive sn = 0 or, if it activates (sn = 1), p contributes to its activation so that n did not become active 
before p. Technically, An is not a random variable, since it is not normalized. Yet, its convolution still counts the 
right cases, which are input to the subtree cascade size distribution for active node n given its parent: 
 = ||T s s( , 1 )n n p .

In summary, the SDP starts in the bottom of a tree and computes messages pIn
, pAn

 in each node, sends them 
to the parent p until the final cascade size distribution can be computed in the root. We make this reasoning 
explicit with the following theorem.

Theorem 1 Let G = (V, E) be a tree and R R,i i
c for i ∈ V response functions defining a cascade model. The final cas-

cade size distribution = =ρp t N T t( / ) ( )r  is given by the result of a message passing algorithm ending in the root r, 
where at each node n ∈ V, the following computations are performed based on p p,A Ici ci

 received from their children:

Case dn = 1 (leaves):
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A node with degree dn > 1 receives as input the distributions pAci
, pIci

 corresponding to its children. We define ⁎pAn
 

and ⁎pIn
 as their 2-dimensional convolutions:
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Note that we have = =⁎ ⁎p t a p t a( , ) ( , ) 0A In n
 for t < a.

Case dn > 1, n ≠ r:
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At root r:
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The proof of this theorem is given in the Supplementary Information along with a pseudocode of SDP.

Algorithmic complexity of SDP. A detailed discussion of the algorithmic complexity of SDP is provided in the 
Supplementary Information. In summary, computing the messages pIn

 and pAn
 in a node n requires 

O(dn(|Tn| + |Tn|log(|Tn|))) computations, where |Tn| denotes the number of nodes in the subtree rooted in n. 
Thus, in total ∑ | | + | | | |=O d T T T( ( log( )))n

N
n n n n1  computations are needed to obtain the final cascade size 

distribution.
We have two options to reduce the run time: (a) limit the accuracy of the cascade size distribution so that |Tn| 

can be substituted by a constant C. For instance, pρ can be defined only on an equidistant grid of [0, 1]. In this 
case, we are left with ∑ ==O d O N( ) ( )n

N
n1  computations.

(b) We can parallelize the matrix times vector multiplications, the Fast Fourier Transformations, and distrib-
ute the computations of messages for distinct nodes that are in different subtrees. A combination of (a) and (b) 
usually leads to an algorithm with smaller run time than O(N), i.e., O(h), where h refers to the height of a tree. In 
the worst case (for instance a long line), this can still require O(N) computations.

Note that the choice of root is relevant for the run time of the algorithm. Minimizing the maximum path 
length from the root to any other node in the tree is beneficial in case that enough computing units are available 
for distribution of the work load. In addition, it can be advantageous to place nodes with high degree close to 
the root so that subtrees are kept small in the beginning. Convolutions related to those subtrees operate on small 
cascade sizes and thus require less computational effort.

Tree Distribution approximation. TDA employs SDP to approximate the final cascade size distribution 
on a general network G = (V, E). First, we compute a minimum spanning tree M of G and run SDP on M with 
updated response functions Ri. The algorithms consists of four main steps that are detailed next.

 (1) We first compute the activation probability pi of each node i ∈ V by belief propagation on G. We therefore 
need to know how many neighbors activate before the node i. Each neighbor j activates with probability 

= = || =p s s( 1 0)ij i j  before i and, according to our BP assumption, all neighbors activate independently. 
They fulfill the self-consistent equations:

p s s R s p p( 1 0) (1 ) ,ij i j i
c

n
n

n
ni
s

ni
s

s {0,1} nb(i)\j nb(i)\j

1

di

n n

nb(i)\j
1

∑ ∑ ∏= = || = =











−

∈ ∈ ∈

−

−

where nb(i) denotes the set of neighbors of i and snb(i)\j a vector consisting of states sn of i’s neighbors n 
except j. If G is a tree, the independence assumption is correct and we only need to visit each node twice 
to calculate the correct probabilities pij. Starting in the bottom of a tree, for each node n, we can compute 
pnp based on n’s children, while its parent p has no influence on n. Next, we start in the root of the tree and 
proceed to compute ppn until we reach the bottom. However, this is not enough if G is not a tree. Then, 
loopy BP interprets the equation above as system of fixed point equations (for pij) that we solve iteratively. A 
reasonable initialization is pij = Ri(0).
For TDA, we always iterate 50 times through the whole network, which is enough to reach convergence in 
our cases. The product over neighbors is computed efficiently with the help of Fast Fourier Transforma-
tions. Based on pij, the activation probability of a node reads as

 ∑ ∑ ∏= = =










− .
∈ ∈ ∈

−p s R s p p( 1) (1 )i i i
c

n
n

n
ni
s

ni
s

s {0,1} nb(i) nb(i)

1

di

n n

nb(i)

 (2) We compute a minimum spanning tree M = (VM, EM) of the original network G. We report results for a 
randomly chosen minimum spanning tree. However, weighting edges can give preference to which edges 
should be removed or kept, for instance, edges connecting nodes with larger degrees etc. Let us denote by 
dnb(i) = {j ∈ V|(i, j) ∈ E, (i, j) ∉ EM} the set of neighbors of a node i in G that i is not connected to anymore 
in M, and let mi = |dnb(i)| be the number of such lost neighbors.

 (3) Then, we update the response functions Ri of each node i by the probability that i activates after a of its 
neighbors in M activated. In addition, we assume that each of i’s deleted neighbors n has activated initially 
with probability pni. We therefore consider the activation of the deleted neighbors as independent of 
the rest of the cascade. Accordingly, Ri(a) is defined as average with respect to initial failures of deleted 
neighbors:

∑ ∑ ∏=





+





− .
∈ ∈ ∈

−~R a R a s p p( ) (1 )i i
n

n
n

ni
s

ni
s

s {0,1} dnb(i) dnb(i)

1

mi

n n

dnb(i)

 (4) Finally, the cascade size distribution is computed by SDP with inputs M and Ri.
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