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Abstract—In social networks, edges often form closed triangles
or triads. Standard approaches to measuring triadic closure,
however, fail for multi-edge networks, because they do not con-
sider that triads can be formed by edges of different multiplicity.
We propose a novel measure of triadic closure for multi-edge
networks based on a shared partner statistic and demonstrate
that this measure can detect meaningful closure in synthetic and
empirical multi-edge networks, where conventional approaches
fail. This work is a cornerstone in driving inferential network
analyses from the analysis of binary networks towards the
analyses of multi-edge and weighted networks, which offer a
more realistic representation of social interactions and relations.

Index Terms—multi-edge networks, triadic closure, network
inference, social networks, statistical learning

I. INTRODUCTION

Triadic closure denotes the remarkable tendency observed in
social networks to form triangles, or triads, between three
individuals a, b and c (see Fig. 1) [1]. That means if an edge
connects a and c, and b and c, there is a higher probability an
edge also connects a and b [2].

The presence of closed triads can be quantified on the
topological level by calculating the clustering coefficient.
However, usually we want to examine whether triadic closure
is an actual mechanism driving network formation, or whether
observed triads are simply a consequence of other relational
mechanisms. Similarly, it is essential to know to what extent
other network properties of interest, e.g., communities or core-
periphery structures, are already determined by triadic closure.
For these reasons, triadic closure acts as a control variable in
inferential network models. Achieving this, though, requires
triadic closure to be included correctly in inferential models.

The concept of triadic closure is well-defined mainly for
binary networks. In such networks, measuring triadic closure is
done by counting triads. Most real networks, however, reflect
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Fig. 1. Triadic closure: (a) undirected triangle, (b) transitive triplet, (c) edge-
wise shared partners

repeated interactions between individuals, quantified by multi-
edges, i.e., each interaction is represented by a separate edge,
and multiple edges are incident to the same pair of nodes. For
these networks, an operationalization by counting triads faces
two problems. First, it neglects crucial information because
the number of triads does not appropriately reflect the fact
that nodes can repeatedly interact a different number of times.
Second, because of these repeated interactions, multi-edge
networks often have a high density. Such high density results
in a maximum triad count for the network, overrating the fact
that some of the nodes only have interacted once. The first
investigation of this issue has been performed by [3], where the
clustering coefficient has been extended to weighted networks.
In this paper, we go beyond previous studies introducing a
way of incorporating triadic closure in inferential models for
repeated interaction networks.

II. METHODS

A. Weighted Shared Partner Statistics for Multi-Edge Net-
works

Empirical studies operationalize triadic closure in different
ways. In undirected binary networks, triadic closure can be
measured by the percentage of triangles in the network. In
directed networks, different constellations of incoming and
outgoing edges give rise to different interpretations of triadic
relationships. The most commonly used closed triad in directed
networks is the transitive triplet, which indicates that if one
node a has two friends b and c, then either b ties to c or c ties
to b (see Figure 1b).

Inferential network models are employed to statistically
test whether a social network exhibits significant tendencies
for triadic closure. Conventional inferential network models,
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Fig. 2. Left: Example multi-edge network. Right Top: Shared partner statistic.
Right Bottom: Weighted shared partner statistic.

though, build on binary representations of social networks.
Triadic closure can then be operationalized through the con-
cept of shared partner statistics (see Figure 1c). This is an
edge-based measure that calculates for each edge between
nodes a and b how many shared partners they have in
common [4]. Empirical evidence, in fact, shows that having
mutual friends has a cumulative effect on friendship formation
and preservation [5], [6], and the statistic, therefore, cap-
tures clustering tendencies in social networks more accurately.
This conventional approach through shared partner statistics,
though, poses a problem for multi-edge networks. The shared
partner statistic has to be adapted to incorporate edge-counts
in order to detect meaningful triadic closure in multi-edge
networks.

Repeated interactions are often considered an indicator of
the strength of the relation linking two nodes. [7] postulates
that “the more frequently persons interact with one another,
the stronger their sentiments of friendship for one another
are apt to be” (p. 133). Hence, if repeated interactions are
meaningful and indicate edge strength, this strength should
be adequately reflected in the measurement of triadic closure.
We propose to measure triadic closure in multi-edge networks
by employing an edge-based approach. For each dyad (a, b)
in network N , we calculate whether a two-path with dyads
(a, i) and (b, i) exists; i.e., we calculate whether nodes a and
b have shared partners i. It is important to note that regardless
of whether or not nodes a and b have interacted (repeatedly),
we calculate whether this dyad (a, b) could potentially close
a triad. In the ERGM-family, this approach is summarized
in so-called change statistics [8], [9]. The resultant matrix
holds the values of this endogenous network statistic for each
dyad. This way, it captures complex patterns between nodes
in a network, without including the state of the focal dyad
(a, b). This independence of the dyad state (a, b) allows testing
whether the values of the pattern correlate with the number of
edges in the multi-edge network.

Since the edge-counts v(a, i), v(b, i) give the number of
edges for each two-path (a, i)-(b, i), we incorporate them into
the shared partner statistic. Failing to do so would treat trian-
gles with equal numbers of edge-counts and triangles with very
different numbers of edge-counts the same, which precisely
should be avoided. Furthermore, by incorporating edge counts,
the variance of the shared partner statistics becomes broader,
which allows for more accurate parameter estimates of the
effect of triadic closure on the network structure.

Figure 2 shows a simple multi-edge network with four
nodes. The tables on the right side report its binary (top), and
weighted shared partner statistics (bottom). For each dyad in
the network, the number of shared partners is counted and
noted in the top matrix. Instead of counting shared partners,
the weighted statistic weights each shared partner by the
minimum edge count in the two-path (a, i)-(b, i). Because the
sample network is nearly complete (only dyad (c, d) is absent),
the unweighted shared partner statistic shows little variance
compared to the weighted statistic that accounts for edge-
counts. When regressing both shared partner statistics against
the edge counts of the multi-edge network, the unweighted
statistic explains 1% of the variance, the weighted statistic
4%1, indicating that more information is stored in the weighted
shared partner statistic.

In the next section, we use two different inference models
for multi-edge networks (ERGM-count and gHypEG) to assess
the degree to which social networks are structured by triadic
closure.

B. ERGM

Exponential random graph models (ERGMs) are generative
models to estimate the effects of endogenous and exogenous
covariates on network formation [10]. The endogenous co-
variates typically include features of the network, such as
degree distributions or triadic closure effects, and exogenous
covariates are used to estimate homophily effects or effects of
nodal attributes on the activity or popularity of nodes. [11]
expanded the ERGM to fit count data by allowing counts
to populate dyads (i, j). The model can be expressed as the
probability of observing the given network N over all possible
permutations N of the network:

P (N,θθθ) =
lll(N) exp{θθθThhh(N)}∑

N∗∈N lll(N) exp{θθθThhh(N∗)}
, (1)

where lll(N) sets the shape of the dyad distributions, for
instance modeling a poisson distribution.

Estimation of parameter values θ in ERGM is carried
out with Markov Chain Monte Carlo Maximum Likelihood
Estimation (MCMC MLE). We use the ergm.count pack-
age [12] for R to estimate count ERGMs.

C. GHypEG

Generalized hypergeometric ensembles of random graphs
(gHypEG) are network models specifically developed to deal
with multi-edge networks [13]. Like ERGMs, they can be
used to estimate the effects of endogenous and exogenous
covariates on network formation [14]. The model is defined as
the probability of observing the given network N by sampling
its edges from an urn containing all possible combinations of
edges. By specifying the number of possible combinations of
edges between each pair of nodes Ξij = kout

i ·kin
j as a function

1Estimates obtained as the R2 of the linear regressions network ∼ un-
weighted statistic and network ∼ weighted statistic, respectively.
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TABLE I
MODELS’ FIT ON SYNTHETIC NETWORKS

ERGM gHypEG
network (a) (b) (c) (a) (b) (c)
closure 0.001 0.03(∗) 0.025(∗) .30 1.13(∗) 1.76(∗)

nonzero -0.07 -1.67(∗) -1.67(∗) – – –
sum 0.53(∗) 0.13 0.13 – – –

(∗) indicates p-value < 0.001

of their in and out degrees kout/in
i , the probability for a directed

network is given as follows:

P (N,θθθ) =
∏
ij

(
Ξij

Aij

)∫ 1

0

∏
ij

(1− z
Ωij
SΩΩΩ )Aijdz, (2)

where SΩΩΩ =
∑

ij Ωij(Ξij − Aij). In Eq.2, AAA is the
adjacency matrix of the observed network N . Ωij =
exp{θθθT log[hhhij(N)]} is the relative propensity of two nodes
i, j to be connected in terms of the estimated parameters θθθ and
the vector of statistics hhhij(N) that contains exogenous and en-
dogenous dyadic covariates [14]. Importantly, the parameters
θθθ estimate the “degree-corrected” effect of the covariates as a
propensity to connect two nodes beyond what prescribed by
degrees.

The estimation of parameter values θ in a gHypEG is
carried out with numerical Maximum Likelihood Estimation
(MLE) [14], thus forgoing computationally intense simulations
and allowing the analysis of large networks. We use the
ghypernets package [15] to estimate the gHypEGs.

III. RESULTS

A. Validation with Synthetic Data

We first validate our approach to quantify triadic closure in
multi-edge networks by simulating three different scenarios.
Network (a) is a small network (34 nodes) made up of 1, 000
randomly sampled edges. Network (b) has the same number of
nodes, but the 1, 000 edges are assigned to a set of randomly
selected triangles (ntri = 26). Both networks represent two
extremes and do not reflect the structure of real-world social
networks. Instead, they report instances of networks, where
triadic closure is the driving factor (b) and where triadic
closure is present but meaningless (a). Network (c) represents a
combination of (a) and (b) (34 nodes, 2000 edges). It captures
a maximally dense network where half of the edges only form
triangles. We use this network to test if the weighted change
statistic can capture meaningful triadic closure effects in dense
multi-edge networks.

Table I reports the coefficient estimates θ (cf. Eq.1, 2)
for triadic closure for both inferential models, applied on
the three networks. The larger the coefficient, the stronger
the estimated effect of triadic closure. For the ERGM, two
additional model terms are reported. The sum-term represents
an intercept term for edge counts. It controls for the expected
number of interactions (i.e., edge counts) in the multi-edge
network, which is fixed in the gHypEG. The nonzero-term
reports a negative coefficient, indicating that there is some
zero-inflation in the data.

Fig. 3. ZKC network. Nodes
are colored by factions.

TABLE II
RESULTS FOR THE ZKC NETWORK

ERGM gHypEG
nonzero −3.281(∗) –
sum −1.166(∗) –
degree dist. 0.028(∗) –
closure −0.016 −0.160
faction 1.123(∗) 1.090(∗)

AIC −869.4 674.7
Null AIC 0 869.1

(∗) indicates p-value < 0.001

For network (a), both models show a near-zero, non-
significant effect of triadic closure in the random network. The
analysis of network (b), instead, confirms that the weighted
shared partner statistic significantly correlates with the dyadic
counts of the multi-edge network. Finally, both models report
a positive and highly significant effect of triadic closure for
network (c), as expected. The results in Table I are stable
across 1,000 random generations of the synthetic networks.
The gHypEG reports an average coefficient of -0.09 (min =
−1.55, max = 0.73, sd = .34), 1.16 (min = .88, max = 1.55,
sd = .09), and 1.81 (min = 0.94, max = 2.44, sd = 0.20)
for the three cases, respectively.

For network (c), in particular, the unweighted shared partner
statistic cannot capture triadic closure effects (neither the
gHypEG, nor the ERGM): the gHypEG reports a near-zero
and non-significant coefficient β = 0.08, SE = 0.20, p-
value = 0.694). Conventional approaches fail here because
the network is too dense to distinguish meaningful triadic
closure. By neglecting edge counts, triadic closure cannot
be adequately estimated or controlled for in complete, or
near complete, networks. The weighted shared partner statistic
is thus necessary to estimate whether triadic closure is a
meaningful driving force for the network structure.

B. Case Studies

a) Zachary’s Karate Club Network: In our first case
study, we examine whether the interactions between the 34
nodes in Zachary’s Karate Club [16] (ZKC) show signs of
triadic closure. [16] recorded different social contexts in which
the 34 nodes interacted, for instance, attending a university
bar, or participating in the same tournament. Out of these
different interactions, a network was constructed, counting for
each dyad (i, j) how often two nodes i and j were part of the
same social context.

In addition to triadic closure, we control for the known
separation into two distinct ‘factions’ (colors in Figure 3).
Furthermore, we control for degree distributions to examine
whether triadic closure is a simple artifact of the degree dis-
tribution. In ZKC (repeated) social interactions have a precise
meaning. I.e., instead of accounting for direct interactions, they
quantify the co-occurrence of two members in the same social
contexts. Therefore, we assume that triadic closure does not
play a substantial role in this network. It is relatively unlikely,
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Fig. 4. Contact network of
students colored by classes.

TABLE III
RESULTS FOR HIGH SCHOOL NETWORK

ERGM gHypEG
nonzero −4.033(∗) –
sum 0.239(∗) –
degree dist. 0.00002(∗) –
closure 0.008(∗) 0.819(∗)

class 0.162(∗) 0.879(∗)

AIC −47,511.5 593,853.5
Null AIC 0 1,346,750

(∗) indicates p-value < 0.001

that if member a attends an academic class with b, and b visits
a weekend karate lesson with c, a and c interact in a third
context (e.g., at a bar). Such a closed triad is only plausible
if co-occurrence in the same social contexts also means direct
social interactions among all members present.

The results of the two inferential network models are
reported in Table II. Both models report a negative, non-
significant coefficient of triadic closure. That means, holding
node degrees and faction membership constant, triadic closure
does not add to the explanation of the network structure. On
the other hand, both models report a positive and significant
effect of faction homophily. Nodes are more likely to share the
same social contexts with nodes from the same faction. For
the count ERGM, three additional model terms are reported.
Together with the sum-term and the nonzero-term explained
above, we control for degree distributions to ensure that
degree-based effects do not mask the triadic closure effect.
The gHypEG already reports degree-corrected parameters.

b) Friendship Network in a French High School: In
our second case study, we examine a multi-edge friendship
network, reported by [17]. The network consists of 327 nodes,
each indicating a student from the same French high school,
and 188,508 undirected ties, measured using contact sensors.
For each dyad, we know whether or not they attended classes
together. Classroom homophily, moreover, is an inherent factor
in friendship networks as they provide increased opportunities
to meet. Figure 4 depicts the network, where nodes are colored
according to school classes. We included the information about
school classes in the inference models for a more severe test
of triadic closure in this network, as triadic closure has been
theorized to be the product of increased opportunity to inter-
act [1]. Attending classes together increases the opportunity for
students to interact and become friends. Hence, by controlling
for this potential exogenous influencing factor, we can test
whether triadic closure drives friendship formation patterns
beyond class-based interactions.

Table III reports the results of the two inferential network
models2. Both models show a positive and significant effect
of triadic closure beyond degree-based clustering, confirming

2Note that the fit for the ERGM did not converge in reasonable time, due to
the size of the dataset. Results after 40 iterations of MCMCMLE are reported.

triadic closure to be one of the essential driving factors of
friendship formation in social networks.

IV. DISCUSSION

In this paper, we have presented a new operationalization of
triadic closure for social networks that considers information
on repeated interactions among nodes.

We can detect meaningful closure in multi-edge networks
where standard operationalizations of triadic closure fail. Us-
ing synthetic data, we show that even in dense networks,
meaningful triadic closure can be detected and controlled for.

Our operationalization allows to test or to control for one
of the most critical relational mechanisms in social networks.
It an be applied to inferential network models of multi-edge
networks, such as the Exponential Random Graph Model
(ERGM) for valued networks or the generalized hypergeo-
metric ensembles of random graphs (gHypEG). Thus, with
this article we facilitate inferential network analyses to move
away from the study of binary networks, towards the analyses
of multi-edge and weighted networks, which offer a more
realistic representation of social interactions and relations.
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