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ETH Zürich, Weinbergstrasse 56/58, Zürich CH-8092, Switzerland
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Abstract

Controllability, a basic property of various networked systems, has gained profound theoretical

applications in complex social, technological, biological, and brain networks. Yet, little attention

has been given to the control trajectory (route), along which a controllable system can be controlled

from any initial to any final state, hampering the implementation of practical control. Here we

systematically uncover the fundamental relations between control trajectory and several other key

factors, such as the control distance between initial and final states (δ), number of driver nodes,

and the control time. The length (L) and maximum distance to the initial state (R) are employed

to quantify the locality and globality of control trajectories. We analyze how the scaling behavior

of the averaged L and R changes with increasing δ for different initial states. After showing the

scaling behavior for each trajectory, we also provide the distributions of L andR. Further attention

is given to the control time tf and its influence on L and R. Our results provide comprehensive

insights in understanding control trajectories for complex networks, and pave the way to achieve

practical control in various real systems.
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I. INTRODUCTION

As a powerful framework, complex networks have been widely employed to understand

various complex systems, where nodes indicate system’s components and links capture inter-

actions between them [1–6]. Controllability—a basic property detecting whether a system

can be controlled from external inputs [7–20], helps to uncover the principles of, for exam-

ple, the interactions of neural circuits of cognitive function in brain networks [17], or even

predicting neuron function in the nematode Caenorhabditis elegans [19]. Indeed, a system

is said to be controllable, if it can be driven from arbitrary initial state to arbitrary final

state within finite time under appropriate control inputs [15, 21, 22]. However, the reported

principles of control cannot tell how systems behave under control inputs, namely, no infor-

mation can be obtained on the evolution of a system’s state in order to reach the desired

state by just testing the system’s controllability. Although some results emerge on control

cost (energy) [5, 20, 23–26], the practical control trajectory (route) from the initial to final

state along which the system must traverse all transient states, is far from understood, which

strongly inhibits the practical applications.

Here we systematically explore control trajectories for controlling complex networks, re-

vealing the fundamental relations between practical trajectories and control distance, num-

ber of driver nodes, and the control time. Our findings clarify the fundamental behavior of

practical control trajectories when we control complex networks, impulsing the real appli-

cations of the network control theory.

II. DYNAMICS ON COMPLEX NETWORKS

The dynamics of a complex network with external inputs can be described mathematically

as

Ẋ (t) = f(t,X (t),U(t),P), (1)

where Xi(t) is the state of node i at time t, like the level of neural activity of brain

region i in a brain network [17, 19, 20], or the concentration of metabolite i in a

metabolic network [27]. The vector X (t) collects the state of all the N nodes, i.e.,

X (t) = (X1(t),X2(t), · · · ,XN(t))T ∈ RN , represents the system state at time t. f(∗) =

(f1(∗), f2(∗), · · · , fN(∗))T denotes interaction dynamics among nodes. U(t) ∈ Rp captures
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the input signals acting directly on p (≤ N) nodes (namely, driver nodes [7]). P is the set

of the system’s parameters, which reflects the exact intensity that nodes interact with each

other.

Due to the lack of empirical information about the exact nonlinearity of f(∗) and the

related set of precise parameters P , equation (1) is normally linearized to pursue analytical

insights [7, 19, 20, 28, 29]. By assuming that the fixed point of the network is X ∗ without

additional inputs, i.e., f(t,X ∗,U∗) = 0, we linearize (1) by employing x(t) = X (t)−X ∗ and

u(t) = U(t)− U∗, arriving at the following dynamics

ẋ(t) = Ax(t) + Bu(t), (2)

in the time interval [t0, tf ] (see Fig. 1a). A = ∂f(∗)
∂X

∣∣∣
X ∗,U∗

corresponds to the adjacency

matrix of the network (see Fig. 1b and c), whose entry aij represents, for example, the

number of white matter streamlines linking from regions j to i in the brain network [20, 29].

B = ∂f(∗)
∂U

∣∣∣
X ∗,U∗

gives the constant mapping between inputs and driver nodes of the network

(see Fig. 1a).

III. VARIABLES TO QUANTIFY THE CONTROL TRAJECTORY

To quantify the control trajectory when we control complex networks, we adopt two

variables. One is the length

L =

∫ tf

t0

‖ẋ(t)‖dt =

∫ tf

t0

√
ẋT(t)ẋ(t)dt (3)

telling how long the control trajectory wanders in the controllable space. Indeed, the length

of control trajectory is widely used to quantify the locality of control trajectories for complex

networks [16, 30], and it is also applied to analyze brain networks [29]. It is discovered that

L can be extremely large when the control distance δ = ‖xf − x0‖ approaches 0 [16, 30].

This implies that the optimal trajectory is probably nonlocal where in some dimensions

the state components of the trajectory pass through highly extreme values (see Fig. 1d).

Nevertheless, when L is large, it does not necessarily mean that the optimal trajectory is

nonlocal. Indeed, when the trajectory circuits around the initial state before arriving at

the final one, L can still be large but the system state does not wander far from the initial
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state (see Fig. 1d). It means that the optimal trajectory cannot be solely reflected by the

magnitude of L. Here we propose the radius of the control trajectory

R = max
t0≤t≤tf

‖x(t)− x0‖ = max
t0≤t≤tf

√√√√ N∑
i=1

(xi(t)− xi(t0))2 (4)

to quantify the maximum distance that the control trajectory deviates from the initial state

among all of the system’s intermediate states. Here R can serve as a signal to dictate the

existence of extreme values of state components. Indeed, if there are some extremely large

values of xi(t), then R will be large as well, and if the control trajectory is direct from the

initial to the final state, then we have R ≈ δ.

IV. THE OPTIMAL CONTROL TRAJECTORY

For the dynamics given in equation (2), we obtain that, starting from x0 at time t0, the

control trajectory at the time t (< tf ) is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ, (5)

with the external input u(τ). To drive the network to reach the final state xf at time tf ,

however, we can choose an enormous number of different inputs (Fig. 1d), which in turn

generate different control trajectories with different control costs. Indeed, the input control

cost is defined as E =
∫ tf
t0

u(t)Tu(t)dt [31], which reaches its minimum with the optimal

control input

u(t) = BTeA
T(tf−t)W−1[t0, tf ]d

where d = xf − eA(tf−t0)x0 is the difference between the desired final state xf and

the natural final state that the system evolves without external inputs, and W =∫ tf
t0

eA(tf−τ)BBTeA
T(tf−τ)dτ. Here, for given initial and final states, we focus on the opti-

mal control trajectory determined by the optimal control inputs, along which the control

cost is minimum.
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V. HOW INITIAL STATES AND CONTROL DISTANCES AFFECT THE AVER-

AGED LENGTH (RADIUS) OF CONTROL TRAJECTORIES

When the network is steered from x0 to xf in practice, it is of great interest how the

direct control distance δ = ‖xf − x0‖ affects the way from x0 to xf . The length of the

optimal control trajectory is

L =

∫ tf

t0

√
‖x0‖2f(x̄0, x̄0) + 2‖x0‖‖xf‖f(x̄0, x̄f ) + ‖xf‖2f(x̄f , x̄f )dt, (6)

where x̄0 and x̄f is the unit vector along the direction of x0 and xf separately, and the

function f(∗) is given in the Ref. [32]. The final state xf = x0 + δx̄ when x̄ is the unit

vector along the direction of xf −x0. This suggests that the behavior of control trajectories

is determined by the relation between the initial state and the control distance. Here we

first focus on the overall behavior of the averaged length (L) of control trajectories under

the same direct control distance as a function of δ.

When x0 = 0 (‖xf‖ = δ), we know that L(0, lxf ) = lL(0,xf ). That means, when a

network is controlled from the origin, the averaged length of the control trajectory increases

linearly with the control distance, i.e., L ∼ δ (see Fig. 2a).

When x0 6= 0, from xf = x0+δx̄, we find that: (i) With the increase of δ (say, bigger than

the critical value δ∗), the effect of x0 can be neglected, leading to L(x0, lxf ) ≈ lL(0,xf ),

which follows the laws of the scenario for x0 = 0. That is to say, when the control distance

is relatively long compared to the norm of the initial state, it will dominate the scaling

behavior of the averaged length of control trajectories (see Fig. 2a); (ii) When the control

distance is relatively short (δ < δ∗) with a nonzero initial state, we find that the averaged

L can be approximated by the constant

L∗ = ‖x0‖
∫ tf

t0

√
f(x̄0, x̄0) + 2f(x̄0, x̄f ) + f(x̄f , x̄f )dt, (7)

This means that the averaged length of the control trajectory is dominated by ‖x0‖ as a

constant when the control distance is short (see Fig. 2a).

Equation (7) also tells us that the averaged constant increases linearly with the norm of

the initial state, i.e., L∗ ∼ ‖x0‖ since L∗(lx0,xf ) = lL∗(x0,xf ) (see Fig. 2c).

As to the critical value of δ at which the behavior of the averaged L will alter, we know
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that when x0 = 0, L = k1δ, and when x0 6= 0, the corresponding constant is k2‖x0‖, both

k1 and k2 are constants. Thus, at the critical control distance δ∗, we have k1δ
∗ = k2‖x0‖,

meaning that the scaling behavior of δ∗ follows δ∗ ∼ ‖x0‖. This is also validated with

numerical calculations (see Fig. 2b).

Taken together, we find an universal linear scaling behavior of both the averaged length

and averaged radius of the optimal control trajectory, namely, L (R) ∼ δ, δ∗ ∼ ‖x0‖, and

L∗ (R∗) ∼ ‖x0‖.

VI. SCALING BEHAVIOR OF EACH CONTROL TRAJECTORY AND ITS DIS-

TRIBUTION

The averaged values of L and R provide statistical insights of control trajectories at the

same control distance. In the phase space, however, for two opposite final states (xf1 and xf3

in Fig. 3a), when their control distances to a given initial state (x0 in Fig. 3) are equal, they

can correspond to totally different control objectives. Indeed, for neural activity (xi(tf )) of

the brain region i, the two final states xi(tf ) = 1 and 0 have the same distance to the initial

state xi(tf ) = 0.5, but 1 and 0 capture totally opposite states. Thus, simply averaging over

L or R for trajectories with the same δ may probably miss out the potential fundamental

laws behind the practical control routes. To better understand this, we first focus on each

separate trajectory and then explore the statistical characteristics of all trajectories.

Interestingly, we find that for nonzero initial state, L has the inverse scaling behavior

for the opposite final states with the same small δ. For example, when x0 = x̃0 6= 0

(Fig. 3a), we randomly select a final state (xf = x̃f1) with direct distance δ to x̃0. We find

that the corresponding length of control trajectory first decreases with L = −aδ + b and

then increases linearly with L = aδ − b (solid upward-pointing triangle in Fig. 3b). As to

the opposite direction (xf = x̃f3), we have L = aδ + b (solid downward-pointing triangle in

Fig. 3b). When we average L over the final states with x̃f1 and x̃f3, we find that L first stays

constant and then shares the same scaling law as for x0 = 0 (grey solid square in Fig. 3b),

which is in line with the results reported in Fig. 2. Thus the averaged L over different

control trajectories with same control distance neutralizes the inverse scaling behavior for

opposite final sates.

For x0 = 0 (Fig. 3a) and xf = xf2, we have L = aδ (green solid circle in Fig. 3b), and
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L ∼ δ holds for any specific final state [32]. In addition, as to any pair of opposite final

states, the lengths of control trajectories are equal [32]. Furthermore, for all the control

trajectories at the same control distance (Fig. 3c), the cumulative distribution function of

L is

P (L ≤ x) =
2

π
arcsin

x

2r
, (8)

where 2r is the maximum value of L. The above function can predict the numerical results

very well (Fig. 3d).

When x0 6= 0, the constant nonzero initial state determines the uniform distribution of

L for small δ, while for large δ, L has the same distribution given by the above equation for

both zero and nonzero initial states. All the above results are applicable for the radius of

control trajectories (R), and other more results are given in the Ref. [32].

VII. HOW CONTROL TIME AFFECTS THE SCALING BEHAVIOR OF L AND

R

Under a given control distance, the control time (tf − t0) that control signals can harness

to drive the system to the final state is quite important. It affects not only the velocity of

system state change but also the corresponding minimal control energy. Here we seek to

address how the control time affects the scaling behavior of L and R. According to equation

(3), we have

L =

∫ tf

0

√
xT
fW

−1[0, tf ]eA(tf−t) (W[0, t]A + I) (AW[0, t] + I) eA
T(tf−t)W−1[0, tf ]xfdt. (9)

To theoretically analyze the relation between L and the control time tf , we divide it into

three situations according to the number of driver nodes, i.e., one driver node, p (1 < p < N)

driver nodes, and N driver nodes [32]. Note that, without loss of generality, here we set

x0 = 0 and t0 = 0. We numerically show the results as follows.

For one driver node and short control time tf , we find that L (R) decreases with the

power-law function of tf when the system is asymptotically stable (the maximum eigenvalue

λ1 of A is smaller than 0) or unstable (λ1 > 0) (Fig. 4a and 4c). With the increase of tf
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for an asymptotically stable system, L (R) will first keep as a constant and then decrease

again with the same power-law function, and eventually keep as the constant α for big tf

(Fig. 4a). We find that α ≈ δ and L ≈ R if tf is big, meaning that the control trajectory

goes straight from the initial to the final state when the control time is long enough.

Interestingly, when the system is unstable, L (R) keeps δ with the increase of tf (Fig. 4c),

while in this case we know that the minimum control energy is Emin ∼ e−2λ1tf [23, 33]. That

is to say, for unstable systems, when more control time is given, the corresponding opti-

mal trajectory stays constant despite that the minimum energy needed to reach final state

decreases exponentially. For the critical scenario where λ1 = 0, we find that L (R) equals

δ irrespective of how much control time is given (Fig. 4b). This means that, although the

control time is short, an increasing control time can reduce the control energy dramatically

[23, 33]. But neither the length nor the radius of the control trajectory can be secured.

By adding more driver nodes, both L and R decrease, and the exponent of the scaling

behavior of L and R will decrease as well (Fig. 4d-f). When we control all nodes directly,

i.e., when the number of driver nodes is equal to the system size, both the length and radius

of control trajectories keep constant for different scenarios of stability of the system and

control time (Fig. 4g-i).

VIII. CONCLUSION AND DISCUSSIONS

We statistically analyze the averaged length and the averaged radius of control trajec-

tories with the same control distance. We also provide the scaling behavior of these two

quantities. We demonstrate that aggregating the length (radius) of trajectories over many

evenly selected final states neutralizes the embedded scaling behavior for each single trajec-

tory. For example, as x0 = 0, the linear scaling behavior of L (R) for every pair of opposite

final states has the contrary sign for short control distance. Averaging this will make L

(R) a constant. Thus the statistical results are not enough to fully understand the control

trajectories. Apart from uncovering the relations of the scaling for different final states

equidistant to x0, we also analytically provide the distribution of L and R. In addition, L

and R can be employed to classify different kinds of optimal control trajectory in terms of

the locality and globality in various empirical systems.

Another key factor to implement control under practical circumstances is the control
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time (tf ), i.e. the time needed to reach the final state. We find that for short tf , L (R) is

a power law function of tf , meaning that, in this case L (R) can be dramatically reduced if

slightly more time is given. When tf is big, L (R) cannot be affected too much either by

increasing the number of driver nodes or by changing the stability of the system. This has

consequences e.g. for cognitive control, where the brain can quickly achieve some complex

cognitive functions by altering the dynamics of neural systems with energetic inputs [34–36].

Our findings suggest that the L (R) of the optimal control trajectories in the phase space

of neural activity can be largely conserved when more time is given to the brain to perform

the cognitive control.

To pursue the analytical insights of optimal control trajectories, we linearize the general

nonlinear system. Indeed, linearization has become the norm in analyzing diverse networked

systems [5, 7, 19, 20, 28, 29] due to several reasons. One is that the empirical nonlinearity

and the related parameters are hard to quantify and to estimate. Another one is governed by

a lemma that if the linearized system of a nonlinear dynamics is controllable along a specific

trajectory, the nonlinear system is also controllable along the same trajectory [37]. The

basic theoretical laws and insights of the practical control trajectory from initial to final

state uncovered here facilitate the implementation of actual control in various empirical

systems. And it is worth further investigating for generalized scenarios of general nonlinear

dynamics [38] of static networks or temporal networks [16, 33, 39, 40].
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[10] M. Pósfai and P. Hövel, New J. Phys. 16, 123055 (2014).

[11] Y. Pan and X. Li, PLoS ONE 9, e94998 (2014).

[12] Y.-Y. Liu and A.-L. Barabási, Rev. Mod. Phys. 88, 035006 (2016).

[13] S. P. Cornelius, W. L. Kath, and A. E. Motter, Nature Commun. 4, 1942 (2013).

[14] G. Chen, Int. J. Control. Autom. 12, 221 (2014).

[15] G. Chen, Int. J. Autom. Comput. 14, 1 (2017).

[16] A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabási, Science 358, 1042 (2017).

[17] S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu, A. E. Kahn, J. D. Medaglia,

J. M. Vettel, M. B. Miller, S. T. Grafton, et al., Nature Commun. 6, 8414 (2015).

[18] S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S.

Bassett, PLoS Comput. Biol. 12, 1 (2016).
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FIG. 1: Networks and the related dynamics. In (a), we show a network with 3 nodes for clarity.

We employ xi(t) to represent the state of node i at time t, and hence x(t) represents the state of

the whole network. The corresponding adjacency matrix is given aside the network. The matrix

B gives the mapping between inputs u(t) and the driver nodes, which receive inputs directly as

shown in red and green nodes. The dynamics described in equation (2) is presented in (b), where it

shows how the state of each node evolves under the control inputs given in a. In the system’s state

space of x(t) plotted in (c), we denote the initial and final states of the network in (a) as x0 and xf .

With appropriate control inputs u(t), we can drive the system’s state from x0 to xf . For different

u(t), there are different trajectories, among which we show 3 different ones, and the corresponding

control cost E1, E2, and E3 are given aside. Among all the possible control trajectories starting

from x0 to xf , here we focus the optimal one along which the control cost is minimal. (d), Two

typical variables to quantify the optimal control trajectory, one is the length (L) showing how long

the trajectory wanders totally until reaching the final state, and another is the radius (R) telling

the longest distance the trajectory reaches from the initial state. δ is the direct control distance

between the initial and final state.
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FIG. 2: Scaling behavior of the averaged length and radius of control trajectories under dif-

ferent control distances. (a), For each value of control distance δ, different locations of x0

(10−1, 0, and 103) are chosen to calculate the length L and radius R of the optimal control

trajectories along which the control energy is minimum. We choose 100 final states xf randomly

on the sphere centered on x0 with the distance δ = ‖xf − x0‖, over which the averaged L and R
are obtained. The scaling behavior of L for ‖x0‖ = 0 is L ∼ δ. For ‖x0‖ 6= 0, the scaling behavior

of L depends on the competition between the magnitude of ‖x0‖ and δ, where L first keeps as a

constant L∗ determined by the nonzero initial state x0 when δ < δ∗, and then is dominated by δ

when δ > δ∗. (b), We further find that for the critical value of the control distance δ∗, at which

the scaling behavior of L and R alters, linearly increases with the magnitude of the initial state

‖x0‖. (c), As to the constants L∗ and R∗, they increase with ‖x0‖ as well with the scaling behavior

L∗ ∼ ‖x0‖. All of the above results have been approximated by analytical derivations [32]. δ∗ is

calculated as the minimal δ which makes the distance between L,R for x0 6= 0 and L,R for x0 = 0

smaller than 10−2. Here N = 7 with the average degree 4, and the number of driver nodes is 1.

We choose 40 points along the control trajectory to numerically approximate L and R. For other

values of the related parameters, please see Figs. S1 and S2.
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FIG. 3: Scaling behavior and distribution of the length of control trajectories. (a), Schematic

presentation of the locations of initial and final states. For a two dimensional system, we show two

control scenarios with initial state at the origin (x0 = 0) and away from the origin (x0 = x̃0 6= 0).

(b), Scaling behavior of three control trajectories as a function of the direct control distance δ.

The green solid circles correspond to x0 = 0 and xf = xf2 shown in (a), and the corresponding

line generated from linear fitting, which shows L = aδ with R2 = 1. For x0 = x̃0, the solid

upward-pointing triangles represent |Lc for xf = x̃f1, where the linear fitting gives L = −aδ + b

when δ < 10−3, and L = aδ − b for the rest. As to the opposite direction (xf = x̃f3), results are

presented in solid downward-pointing triangles, where we have L = aδ+b. The averaged L over the

cases for x̃f1 and x̃f1 is shown in grey solid square, which first keeps as a constant and then shares

the same scaling law with that for x0 = 0. Here a = 647.10, b = 0.64, and the lines are generated

from linear fitting of the corresponding dots with R2 > 0.999. Results for other control directions

are given in Fig. S4. (c), Length of 100 control trajectories for short control distance (δ = 10−5)

when x0 = 0. Following each control direction xfi selected uniformly (i = 1, 2, · · · , 100), we plot

the straight line with the length of the corresponding L. (d), The accumulated distribution of

L shown in (c), where the solid line represents the analytical prediction from Eq. (8). Here the

control time tf = 10−2, and the system is given in Eq. (S12) [32]. Other parameters are the same

as those in Fig. 2. The results for other parameters, and the similar quantitative behavior of R
are presented in Figs. S4 and S5. Robust results for higher systems are given in Figs. S6 to S8.
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FIG. 4: Scaling behavior of the length and radius of control trajectories under different control

time. For different numbers of driver nodes, the scaling behavior of L and R is determined by

the largest eigenvalue (λ1) of the adjacency matrix A. (a), With one driver node (Nd = 1), when

A is negative definite (λ1 < 0), we find that the scaling behavior of L and R decreases t−4f for

short control time tf . With the increase of tf L and R will first keep as a constant then decrease

again as a power-law function of the middle level tf (from 101 to 102). And eventually L and R
keep as a constant for large control time. (b), When A is negative semi-definite (λ1 = 0), both

L and R keep as a constant. (c), When A is not negative definite (λ1 > 0), L and R will first

decrease with t−4f for small tf and then keep as a constant as tf is large. The increase of the driver

nodes diminishes both L and R, while maintaining the type of the scaling ((d) to (f)). Indeed,

as Nd/N = 60%, we find that the scaling behavior of L and R is t−1f for short time when λ1 6= 0

(insets of panels d and f). When we control all the nodes directly (Nd = N), L and R keep as a

constant, where control time cannot diminish the control trajectories ((g) to (i)). All of the above

results have been approximated by analytical derivations [32]. Here N = 5 with the average degree

3.5, x0 = 0 and δ = 10−3. Other parameters are the same as those in Fig. 2. For other values of

the related parameters, please see Fig. S9.
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