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Configuration models as an urn 
problem
Giona Casiraghi* & Vahan Nanumyan

A fundamental issue of network data science is the ability to discern observed features that can be 
expected at random from those beyond such expectations. Configuration models play a crucial role 
there, allowing us to compare observations against degree-corrected null-models. Nonetheless, 
existing formulations have limited large-scale data analysis applications either because they require 
expensive Monte-Carlo simulations or lack the required flexibility to model real-world systems. With 
the generalized hypergeometric ensemble, we address both problems. To achieve this, we map the 
configuration model to an urn problem, where edges are represented as balls in an appropriately 
constructed urn. Doing so, we obtain the generalized hypergeometric ensemble of random graphs: 
a random graph model reproducing and extending the properties of standard configuration models, 
with the critical advantage of a closed-form probability distribution.

Essential features of complex systems are inferred by studying the deviations of empirical observations from 
suitable stochastic models. Network models, in particular, have become the state of the art for complex systems 
analysis, where systems’ constituents are represented as vertices, and their interactions are viewed as edges and 
modelled by means of edge probabilities in a random graph. Such models are built to preserve certain properties 
of the observed network. How well the model describes other properties of the network distinguishes between 
randomly expected patterns and “interesting” ones.

The simplest of random graph models, known as the G(n, p), generates edges between a given number of 
vertices with a fixed probability p ∈ (0, 1]1. In this model, the properties of vertices, such as their degrees, are 
homogeneously distributed, i.e., they have all the same expected value. However, most empirical graphs show 
heterogeneous, heavy tailed degree  distributions2–5. Hence, random graph models able to incorporate specified 
degree sequences are of primal importance.

The most common family of models that fix degree sequences is known as the configuration model of random 
graphs. The comparison of an empirical graph with the corresponding configuration model allows quantifying 
which properties of the original graph can be ascribed to the degree sequence. The properties not explained by 
the degree sequence highlight the unique structure of the studied empirical graph. In particular, configuration 
models are invaluable for the macroscopic and the mesoscopic analysis of graphs. Its most notable applications, 
among others, are graph partitioning through modularity  maximisation6,7 and quantifying degree  correlations8.

The concept of a configuration model originates in the early works of Béla Bollobàs, who introduced the term 
‘configuration’ to refer to the arrangement of edges in a  model9. Since then, different configuration models pre-
serving degrees have been proposed. In its standard formulation, the configuration model refers to the uniform 
sampling of a graph from the space of all graphs with a given degree  sequence10. Such formulation thus fixes 
exactly the degree sequence and the number of edges in the model. Later, Molloy and  Reed11,12 popularized the 
model, leading to the common reference in literature of Molloy-Reed configuration model.

Although being the most common version of the configuration model, that of Molloy and Reed is not the 
only possible  one13. In particular, different types of configuration models arise if one allows for the existence of 
multi-edges or not, and of self-loops or not. Similarly, it is possible to distinguish between vertex-labeled con-
figuration models and stub-labeled configuration models, as thoroughly discussed  by13. Vertex-labeled graphs are 
those graphs for which there is a bijection between graph and adjacency matrix. This means that, in the case of 
a multi-edge graph, swapping the end-points of two multi-edges between the same pair of vertices leads back to 
the same graph. Stub-labeled graphs, on the other hand, are graphs for which swapping the end-points of two 
multi-edges between the same pair of vertices does not lead back to the same graph. For this reason, multiple 
distinct stub-labeled graphs may correspond to the same adjacency matrix. In this article, we focus only on 
vertex-labeled graphs, i.e., graphs that are completely identified by their adjacency matrix.

The standard configuration model has a crucial drawback: it can only be realized through a Monte-Carlo 
process, in the form of a repeated rewiring procedure. Each vertex is assigned a number of half-edges, or stubs, 
corresponding to their degree. A random realisation of the model is obtained by wiring pairs of stubs together 
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uniformly at random. While implementing this procedure is relatively simple, uniformly sampling uncorrelated 
random realisation can be  challenging13. This problem is exacerbated in the case of larger graphs and graphs with 
highly heterogeneous degree distributions. In particular, the mixing times, i.e., how many rewirings are needed 
before a sample from the algorithm is negligibly correlated with the starting graph, are poorly understood in 
the case of arbitrary degree distributions.

This limitation is a consequence of the hard constraints defining these models. Specifically, it stems from 
the choice of fixing exactly both the degree sequence of the model and the total number of edges, characteris-
tics common in most variants of the standard configuration model. The only suitable approach to realize such 
models is that of Markov Chain Monte Carlo sampling (MCMC)13. The most popular algorithms rely on double 
edge swaps, also known as degree-preserving  rewirings14,15, checkerboard  swaps16–18,  tetrads19, and alternating 
 rectangles20, which randomize a given graph by simultaneously rewiring a pair of edges. This procedure had been 
already introduced  in21 in 1891, and had been rediscovered many times later  on22–24.

A solution to the lack of tractability and the poor scalability of MCMC based configuration models is relax-
ing the hard constraints characterising these models such that MCMC is not needed anymore. For this reason, 
there exist variants of the standard configuration model that relax the hard constraints of preserving exactly 
degree sequence and number of edges. Such models are often referred to as soft-configuration models. The soft-
constrained graph model most closely related to the standard configuration model is the so-called Chung–Lu 
model4, 25. This model assumes that each edge (i, j) is drawn independently with probability pij proportional to 
k
out
i k

in
j /m , where kouti  is the out-degree of vertex i. The Chung–Lu model can be seen as generalising the concept 

of the G(n, p)  model1, such that not only the expected number of edges of the original graph is preserved, but 
also its degree distribution. In these terms, the standard configuration model instead can be seen as the degree-
preserving counterpart of the G(n, m)  model10, which generates all graphs with n vertices and m edges uniformly.

The Chung–Lu model is generally simpler to work with than the standard configuration model. However, it 
has the disadvantage of specifying not the actual values, but only the expected number of edges, and the expected 
degree sequence. This, among other things, means that it cannot specify the exact degree  distribution10. Because 
of the essential role played by degree distributions, this issue has negatively affected the adoption of this model, 
in spite of its other advantages. Nevertheless, such an approach has found important applications, e.g., in the 
degree-corrected stochastic block  model26. Note that the original Chung–Lu model was proposed for simple 
 graphs25. However, because in this article we consider only multi-graphs, we will compare against its extension 
to multi-graphs introduced  by27.

There exist further soft-configuration models formulations that fall into the family of exponential random 
graph  models10,13,28. However, we will not discuss these here because they rely on MCMC as  well29, and the mix-
ing times of these chains are known to be very  poor30,31.

In this article, we propose an analytically tractable model for random graphs with given expected degree 
sequences and a fixed number of edges. The model positions itself in between the standard configuration model, 
which fixes exactly the degree sequences, and the Chung–Lu model that preserves the number of edges in expec-
tation and assumes that all edges are independent of each other. Thanks to this, it closely matches the properties 
of the standard configuration model, with the advantages given by an analytical formulation. The formulation 
of our model relies on mapping the process of drawing edges to a multivariate urn problem. Urn models are 
particularly useful to formalise complex sampling strategies, and have been already used to develop network 
null models in a few notable  cases32,33. Thanks to the urn representation, our proposed model has, compared to 
other configuration models, the incomparable advantage of possibly incorporating patterns that go beyond degree 
sequences. In its simplest case, our model corresponds to a configuration model for directed or undirected multi-
edge graphs, that fixes the values of vertex degrees in expectation instead of their exact values. In its general form, 
the model incorporates a parameter for each pair of vertices, which we call edge propensities. These parameters 
control the relative likelihood of drawing an individual edge between the respective pair of vertices, as opposed 
to any other pair. This is achieved by biasing the combinatorial edge drawing process. Any graph patterns can be 
modelled within this formulations, as long as they can be reduced to dyadic relations between pairs of vertices.

In the next section, we (1) provide formal definitions of the generalized hypergeometric ensemble of ran-
dom graphs for the directed and undirected cases, and (2) investigate the properties of our model and how they 
compare against existing configuration models.

Results
Let us consider a multi-graph G = (V ,E) , where V  is a set of n vertices, and E ⊆ V × V  is a multi-set of m 
(directed or undirected) multi-edges. Specifically, a multi-edge e in the multi-set E is a tuple (i, j), where i and j 
are vertices in V. As there may be more than one multi-edge incident to the same pair of vertices i, j, we can refer 
to the multiplicity of the pair i, j as the number of multi-edges incident to it. We indicate with A the adjacency 
matrix of the graph where entries Aij ∈ N0 capture the number of multi-edges (i, j) ∈ E that are incident to the 
pair i, j. In the case of undirected graphs, the adjacency matrix is symmetric, i.e., A = A

T , and the elements on 
its diagonal equal twice the multiplicity of the corresponding self-loops. Because we only deal with multi-graphs, 
in the rest of the article we will refer to multi-graphs simply as graphs, and to multi-edges simply as edges.

Hypergeometric configuration model. The concept underlying our random graph model is the same as 
that of the standard configuration model, which is to randomly shuffle the edges of a graph G while preserving 
vertex degrees. The standard configuration model generates edges one after another by sampling a vertex with an 
available out-stub (outwards half-edge) and a vertex with an available in-stub (inwards half-edge) until all stubs 
are consumed. Figure 1 illustrates one step of this process. The resulting random graphs all have exactly the same 
degree sequence as the original graph G . If all pairs of available in- and out-stubs are equiprobable to be picked, 
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so are the corresponding individual edges. Therefore, the probability of observing an edge between a given pair 
of vertices positively relates to the number of possible stub-pairings of the two vertices, which in turn is defined 
by the corresponding degrees of these. This probability depends only on the degrees of the two vertices and on 
the total number of edges in the graph.

The need to consequently sample two vertices at each step makes it cumbersome to formulate analytically 
the procedure described above. To overcome this challenge, we take an edge-centric approach of sampling m 
edges from a certain larger multi-set, which we define below in Definition 1. As a consequence of this change of 
perspective, the model will preserve the expected degree sequences instead of the exact ones, resulting in a soft-
configuration model. To this end, we introduce the definition of the hypergeometric (soft-) configuration model.

For each pair of vertices i, j ∈ V  , we define the number �ij of stub combinations that exist between vertices i 
and j , which can be conveniently represented in matrix form:

Definition 1 (Combinatorial matrix) We define combinatorial matrix � ∈ N
n × N

n for graph G as the matrix 
whose elements �ij are defined as

where kout(G ) and kin(G ) are the out-degree and in-degree sequences of the graph G.

Hypergeometric configuration model for directed graphs. Definition 2 (Directed hypergeometric configuration 
model) Let k̂in, k̂out ∈ N

n be in- and out-degree sequences and V̂  a set of n vertices. The hypergeometric con-
figuration model (HypE) X generated by (V̂ , k̂in, k̂out) is the n2-dimensional random vector X defined on the 
probability space (S, P) with sample space

with some probability measure P , such that individual edges are equiprobable and the expected degree sequences 
of a realisation of X are fixed:

This set-up allows to map the model to an urn problem and thus to arrive at a closed-form probability distribution 
function for it. Before doing so, we introduce the concept of induced random model.

Definition 3 (Graph-induced random model) We say that the graph G (V ,E) induces the random model X , if 
the quantities (V̂ , k̂in, k̂out) generating X are computed from G . i.e., V̂ = V  , k̂in = k

in(G ) , and k̂out = k
out(G ).

Under this assumption, we can formulate the following theorem for the distribution of the hypergeometric 
configuration model X . To keep the notation simple, we will not distinguish between the n× n adjacency matrix 
A and the vector of length n2 obtained by stacking it by row or column. Similarly, we do the same for all other 
related n× n matrices.

Theorem 1 (Distribution of the hypergeometric configuration model) Let  G (V ,E) be a directed graph with  
n = |V | vertices and  m = |E| edges. Let  kin(G ) ∈ N

n and  kout(G ) ∈ N
n be the vectors representing its in-degree 

(1)�ij = k
out
i (G )kinj (G ) for i, j ∈ V,

(2)S =
{

G (V ,E)
∣

∣ |E| = m
}

, m =
∑

i∈V

k̂
in
i =

∑

i∈V

k̂
out
i ,

(3)EP

[

k
in(X)

]

= k̂
in, EP

[

k
out(X)

]

= k̂
out.

Figure 1.  The configuration model represented (upper left) as a conventional edge rewiring process and 
(right) as an urn problem. In the former case, once the out-stub (A, ·) has been sampled for rewiring, then one 
in-stub is sampled uniformly at random from those available, to draw a new multi-edge. If we represent each 
possible combination of an out-stub and an in-stub as a ball, we arrive at the urn problem without replacement. 
For the shown vertices, the odds of observing a multi-edge (A,B) are three times higher than of observing a 
multi-edge between (A,D) and 1.5 times higher than of observing a multi-edge between (A,C) in both model 
representations.
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and out-degree sequences. Let X be the hypergeometric configuration model induced by  G defined as in Definition 2. 
If the probability measure  P depends only on the degree sequences in  G and the total number of edges  m = |E| and 
all edges are equiprobable, then  X follows the multivariate hypergeometric distribution as in Eq. (4).

 Let  A ∈ N
n
0 × N

n
0 be an adjacency matrix and  � ∈ N

n × N
n be the combinatorial matrix induced by  G . Then 

the hypergeometric configuration model  X is distributed as follows:

where M =
∑

i,j∈V �ij is the total number of stub combinations between all vertices.

Proof We want to sample m edges connecting any of the in- and out-stub pairs such that all such edges are 
equiprobable. The total number of stubs combinations between any two vertices i, j is given by �ij = k

out
i k

in
j  (cf. 

Lemma 4 in the “SI” for a proof). We can hence define the random graph model as follows. We sample m edges 
without replacement from the multi-set of size 

∑

i,j∈V �ij that combines all the possible stub pairs combinations 
�ij between all pairs i, j ∈ V  . We sample without replacement because we need to mimic the process of wiring 
stubs. Once a stub pair has been used, it cannot be sampled again. We can view this model as an urn problem 
where the edges to be sampled are represented by balls in an urn. By representing the edges connecting each 
different pair of vertices (i, j) as balls of a unique colour, we obtain an urn with a total of M =

∑

i,j∈V �ij balls of 
n2 = |V × V | different colours. With this, the sampling of a graph according to our model, corresponds to draw-
ing exactly m balls from this urn. Each adjacency matrix A with 

∑

i,j∈V Aij = m corresponds to one particular 
realisation drawn from this model. The probability of drawing exactly A = {Aij}i,j∈V edges between each pair of 
vertices is given by the multivariate hypergeometric distribution.   �

From Theorem 1 we derive the following results, whose proofs follow directly from properties of the hyper-
geometric distribution.

Corollary 1 For each pair of vertices  i, j ∈ V  , the probability that  X has exactly  Aij edges between  i and  j is given 
by the marginal distributions of the multivariate hypergeometric distribution, i.e.

Note that Corollary 1 does not imply that the different Xij are independent, as 
∏

Pr(Xij = Aij) �= Pr(X = G ).

Corollary 2 The expected in- and out-degree sequences of realisations of the directed hypergeometric configuration 
model  X correspond to the respective degree sequences of the graph  G inducing  X.

Proof For each pair of vertices i, j we can calculate the expected number of edges E
[

Xij

]

 as

Moreover, summing the rows and columns of matrix E
[

Xij

]

 and assuming directed graphs with self-loops we 
can calculate the expected in- or out-degrees of all vertices as

Equation (7) confirms that the expected in- and out-degree sequence of realisations drawn from X corresponds 
to the degree sequence of the given graph G .   �

Hypergeometric configuration model for undirected graphs. So far, we have discussed the hypergeometric con-
figuration model for directed graphs. Specifying the undirected case, on the other hand, requires some more 
efforts. The reason for this is that, under the assumptions described in the previous section, the undirected 
version of the hypergeometric configuration model is the degenerate case of its directed counterpart, where the 
direction of the edges is ignored. In particular, this implies that the random vector corresponding to the undi-

(4)Pr(X = G ) =

∏

i,j∈V

(

�ij

Aij

)

(

M

m

) ,

(5)Pr(Xij = Aij) =

(

�ij

Aij

)(

M −�ij

m− Aij

)

(

M

m

) .

(6)E
[

Xij

]

= m
�ij

M

(7)

E

[

kinj (X)
]

=
∑

i∈V

E
[

Xij

]

= m

∑

i∈V k̂outi k̂inj

M
= k̂inj ,

E
[

kouti (X)
]

=
∑

j∈V

E
[

Xij

]

= m

∑

j∈V k̂outi k̂inj

M
= k̂outi .
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rected model has half the dimensions of the directed one, because any undirected edge between two vertices i 
and j can either be generated as a directed edge (i, j) or as a directed edge (j, i) . We provide a formal proof of this 
in Theorem 6, in the “SI”.

Definition 4 (Undirected hypergeometric configuration model) Let k̂ ∈ N
n be a degree sequence and V̂  a set of n 

vertices. The hypergeometric configuration model X generated by (V̂ , k̂) is the (n2 + n)/2-dimensional random 
vector X defined on the probability space (S, P) , for the sample space

with some probability measure P , such that individual edges are equiprobable and the expected degree sequence 
of a realisation of X is fixed:

At first sight, it would appear that the undirected hypergeometric configuration model can simply be obtained 
by restricting the directed model to n(n+ 1)/2 components corresponding to the upper-triangle and the diago-
nal of the adjacency matrix. That is, we would sample m edges among pairs i ≤ j ∈ V  from the multi-set of stub 
combinations �ij as defined in Eq. (1). However, the resulting model does not satisfy Definition 4, because its 
expected degree sequence does not equal the degree sequence that induced it. To show this, we follow the same 
reasoning adopted in the proof of Corollary 2. The expected degree E[ki(X)] of a vertex i is equivalent to

This approach is wrong because the total number of undirected stub combinations is larger than in the 
directed case. The reason for this is the symmetry in the process of wiring two stubs. Let k̂i be the degree of 
vertex i and k̂j the degree of vertex j . To form a edge (i, j) , each one of the k̂i stubs of i can be connected to all k̂j 
stubs of j , and vice versa, each of the k̂j stubs of j can be connected to all k̂i stubs of i . Hence, the total number 
of combinations of stubs between vertices i and j equals to k̂ik̂j + k̂jk̂i = 2k̂ik̂j.

We can now formulate the equivalent of Theorem 1 for the undirected case. The distribution underlying the 
undirected hypergeometric configuration model can then be computed analogously to Theorem 1.

Theorem 2 (Distribution of undirected hypergeometric configuration model) Let  G (V ,E) be an undirected 
graph with  n = |V | vertices and  m = |E| edges. Let  k ∈ N

n be the vector representing its degree sequence. Let  X 
be the undirected hypergeometric configuration model induced by  G defined as in Definition 4. If the probability 
distribution underlying  X depends only on the degree sequence of  G and the total number of edges  m , and all edges 
are equiprobable, then  X follows the multivariate hypergeometric distribution given in Eq.  (10).

 Let  A ∈ N
n
0 × N

n
0 be the symmetric adjacency matrix corresponding to an undirected graph, and  �ij = kikj be 

the combinatorial matrix induced by  G . Then the undirected hypergeometric configuration model  X is distributed 
as follows:

where M =
∑

i<j∈V 2�ij +
∑

l∈V �ll =
∑

i,j∈V �ij is the total number of undirected stub combinations between 
all pair of vertices.

Proof The proof follows the same reasoning of the proof of Theorem 1, accounting for the fact that the total 
number of stubs combinations is now given by

  �

The undirected version of Corollarys 1 and 2 are obtained by choosing the suitable probability distribution, 
given by Eq. (10). For completeness, we report them in the “SI”.

Comparison with other configuration models. In the sections above, we have provided a parsimo-
nious formulation of a soft-configuration model. Specifically, we have done so in terms of an hypergeometric 
ensemble. The ensemble provides a random graph model formulation for directed and undirected graphs alike, 
in which (1) the expected in- and out-degree sequences are fixed, and (2) edges between these vertices with fixed 
expected degrees are formed uniformly at random. More precisely, the probability for a particular pair of vertices 

(8)S =
{

G (V ,E)
∣

∣ |E| = m
}

, 2m =
∑

i∈V

k̂i ,

(9)EP[k(X)] = k̂.

E[ki(X)] =
∑

j∈V

E
[

Xij

]

= m

∑

i∈V k̂ik̂j
∑

i≤j∈V k̂ik̂j
�= k̂i .

(10)Pr(X = G ) =

∏

i<j∈V

(

2�ij

Aij

)

∏

l∈V

(

�ll

All/2

)

(

M

m

) ,

(11)
{

2�ij if i  = j,
�ii if i = j.
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to be connected by an edge is only influenced by combinatorial effects, and thus only depends on the degrees of 
the vertices and the total number of edges.

We can now discuss the differences of this hypergeometric ensemble with the standard hard-constrained 
model and Chung–Lu configuration model variants. In particular, we compare here (1) the sample spaces of the 
three models, and (2) the distributions characterising the models. In the following, we take the standard model 
as the reference point.

Sample spaces of the configuration models. For a given degree sequence k , the standard configuration model 
samples uniformly at random from the space Sk of all graphs with given degree sequence k . It can be easily speci-
fied for both directed or undirected graphs. The Chung–Lu model is instead defined on the space S of all graphs. 
Differently, the hypergeometric ensemble is defined on the space Sm consisting of all graphs with a given number 
of edges m =

∑

k . Because Sk ⊆ Sm ⊆ S , the hypergeometric ensemble is closer to the standard configuration 
model than the Chung–Lu model. The sample space of the Chung–Lu model is much larger than that of the 
hypergeometric ensemble and, furthermore, this increases the variance of the distribution of degrees, as we 
outline in the next paragraph.

Distributions of the three models. In the common formulation followed  by10,13, the standard configuration 
model assumes all graphs with a given degree sequence to be equiprobable. Differently from this, both the 
hypergeometric ensemble and Chung–Lu model define a non-uniform probability distribution over a larger set 
of graphs. However, there is a major difference between the two latter models. While the hypergeometric ensem-
ble—similarly to the standard configuration model—does not assume the independence of edge probabilities, 
in the Chung–Lu model edges are independent. This results in a large variance for both the distribution of the 
number of edges in the graph and the distribution of the degree of a vertex. In the multi-graph version of the 
Chung–Lu model, the probability of observing a directed graph G follows the Poisson  distribution27

This means that the probability distribution of the out-degree kouti  follows a Poisson distribution too, with 
parameter

The same holds for in-degrees. This result follows from basic probability theory as the degree is simply the 
sum of n independent Poisson random  variables10. Similarly, the total number of edges m in the graph follows a 
Poisson distribution with parameter � = m . Because the variance of a Poisson distribution with parameter � is 
� , we see that the variance of the number of edges in model grows linearly with the size of the graph.

In the case of the hypergeometric ensemble, the probability to observe a directed graph G is given by the 
hypergeometric distribution in Eq. (4). Hence, the distribution of the out-degree kouti  follows a hypergeometric 
distribution as well, as noted in the following corollary to Theorem 1.

Corollary 3 (Distribution of degrees) Let G be a graph and kouti  the out-degree of vertex i. Under the hypergeometric 
ensemble, the probability that kouti = k follows the hypergeometric distribution

This result follows from the properties of the hypergeometric distribution, in particular from the fact that 
generating an out-degree k for vertex i corresponds to sampling exactly k out-stubs for vertex i from the pool 
of all out-stubs available 

∑

j �ij =
∑

j k
out
i k

in
j = m · kouti  . From the previous corollary, we recover the value for 

the variance of the distribution of the degree of a vertex which is equal to kouti (m− k
out
i )(m+ 1)−1 . Because 

this variance is always smaller than kouti  , the hypergeometric ensemble (HypE) more closely reproduces the 
standard configuration model (CM) compared to the Chung–Lu model (CL). Table 1 summarizes the differences 
between the three models.

(12)Pr(XCL = G ) :=
∏

ij

(Aij!)
−1

(

k
out
i k

in
j

m

)Aij

e−
k
out
i k

in
j

m .

(13)� :=
∑

j

k
out
i k

in
j

m
= k

out
i .

(14)Pr(k) :=

(

m · kouti

k

)(

M −m · kouti

m− k

)

(

M

m

) .

Table 1.  Properties of the three configuration models CM, HypE, and CL, arranged by increasing variance in 
the corresponding distributions.

Model CM HypE CL

Distribution Uniform Hypergeometric Poisson

Variance of m – – m

Variance of degrees – k
out
i

(m−k
out
i

)

(m+1)
k
out
i
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Numerical comparison. To further highlight the properties of the hypergeometric ensemble and to show how 
it relates with the other two configuration models, we perform a simple numerical investigation. First, we choose 
a degree sequence as a starting point. For this task, we use an empirical degree sequence, obtained from the top 
285 vertices of the Gentoo collaboration network, ordered by degree, (cf.34). The network shows a heavy-tailed 
degree distribution, with a total of 1366 edges. Having fixed the degree sequence, we generate 50,000 realisations 
from each model and report the distribution of basic graph properties. In Fig. 1 provided in the “SI”, we also plot 
the simulated distributions obtained for the number of edges m, the mean squared error (MSE) of the degree 
sequences against the true one, the degree centralisation, and the degree assortativity.

A qualitative comparison shows that, in general, the hypergeometric ensemble fares considerably more closely 
to the standard configuration model than the Chung–Lu model. This is a consequence of the properties high-
lighted in the previous paragraph. Such qualitative evaluation can be confirmed quantitatively by comparing 
the distributions of the different properties. The realisations from the hypergeometric ensembles have in fact (1) 
a significantly smaller MSE ( p < 1e − 16 obtained from a one-sided Welch two sample t-test), i.e., the degree 
sequences of the generated graphs deviates less from the original degree sequence, and (2) a significantly smaller 
variance in the degree centralisation (p-value p < 1e − 16 obtained from a one-sided bootstrap-t test). All three 
models provide similar degree assortativity distributions (p-value p > 0.1 obtained from two-sided Kolmogo-
rov–Smirnov tests). In the “SI”, we provide the details about the statistical comparisons of the different models.

Generalized hypergeometric ensemble of graphs. Configuration models sample edges uniformly at 
random. However, such uniform sampling of edges is generally not enough to describe empirical systems. In 
empirical graphs, edge probabilities do not only depend on the degree of vertices but also on other charac-
teristics. Examples of such characteristics are vertex labels that lead to observable group structures, distances 
between vertices, similarities, etc. Below we discuss how such influences on the sampling probabilities of edges 
can be encoded in a random graph model by means of a dyadic property we call edge propensity.

First, we introduce the concept of edge propensity. Given two dyads (i, j) and (k, l) ∈ V × V  where �ij = �kl , 
according to the hypergeometric configuration model the probabilities of sampling one edge between (i, j) and 
(k, l) are equal, leading to an odds-ratio of 1 between the two pairs of vertices. Instead, we generalize the model 
in a way that fixing arbitrary odds-ratios is possible. That is, we specify edge propensities such that the ratio 
between them is the odds-ratio between the two corresponding vertex pairs of sampling a edge, all else being 
equal. We use edge propensities to bias the sampling probability of each edge, as illustrated in Fig. 2. This way, 
the probability of the number of edges between a pair of vertices depends on both the degrees of the vertices 
and their edge propensity.

We encode edge propensities in a matrix � defined as follows.

Definition 5 (Propensity matrix) Let � = (�ij)i,j∈V ∈ R
|V |×|V | be a n× n matrix where n is the number of 

vertices. Let (i, j) and (k, l) ∈ V × V  . Let ωij,kl the odds-ratio of sampling one edge between (i, j) instead of (k, l) . 
The entries �ij and �kl of the propensity matrix � are then defined such that �ij/�kl = ωij,kl . This implies that 
the propensity matrix � is defined up to a constant, as multiplying � with any constant preserves the specified 
odds-ratios.

Now, we define the generalized hypergeometric ensemble (gHyPE), a random graph model that combines 
degree-related combinatorial effects, i.e., the configuration model, and the newly introduced edge propensities. 
We do so by using propensities to bias the sampling process described above. In the urn model analogy, such 
biased sampling implies that the probability of drawing a certain number of balls of a given colour (i.e., edges 
between the corresponding pair of vertices) depends both on their number and their size, as illustrated in Fig. 2. 
The probability distribution resulting from such a biased sampling process is given by the multivariate  Wallenius’ 
non-central hypergeometric distribution35,36.

Figure 2.  The effect of edge propensities on the configuration model. Differently from the standard 
configuration model, here the stubs are not sampled uniformly at random (cf. Fig. 1). Given an out-stub, each 
in-stub is characterized by a propensity �ij of being chosen. As a result, the probability of wiring the out-stub 
(A, ·) to the vertex D is larger than that of B due to a very large edge propensity �AD , even though vertex B has 
three times more in-stubs than vertex D.
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Theorem 3 (Distribution of gHypEG) Let  G (V ,E) be a directed graph with  n = |V | vertices and  m = |E| edges. 
Under the assumptions introduced above, the generalized hypergeometric ensemble of graphs (gHypEG)  X induced 
by  G and a given propensity matrix  � follows the multivariate Wallenius’ non-central hypergeometric distribution 
given in Eq. (15).

Let  A ∈ N
n × N

n be the adjacency matrix associated with  G and  � ∈ N
n × N

n be its combinatorial matrix defined 
in Eq. (1). Then the gHypEG defined by � and � , G is distributed as follows:

with

The distribution describing the biased sampling from an urn is a generalisation of the multivariate hypergeo-
metric distribution. Even though the probability distribution described by Eq. (15) is computed via numerical 
 approximations36, it is possible to sample network realisations from  it37. The R package BiasedUrn provides 
C++ implementations of such methods.

The proof of Theorem 3 follows from the fact that, when the sampling is performed without replacement 
with given relative odds, this sampling process corresponds to the multivariate Wallenius’ non-central hyper-
geometric distribution. Details of this derivation can be found  in35 for the univariate case, and  in38,39 for the 
multivariate case.

A thorough review of non-central hypergeometric distributions has been done  in37.
The next two corollaries directly follow from properties of Wallenius’ non-central hypergeometric distribution.

Corollary 4 For each pair of vertices  i, j ∈ V  , the probability to draw exactly  Aij edges between i and j is given by 
the marginal distributions of the multivariate Wallenius’ non-central hypergeometric distribution, i.e.,

where

Corollary 5 The entries of the expected adjacency matrix E
[

Xij

]

 can be obtained by solving the following system 
of equations:

with the constraint 
∑

i,j∈V E
[

Xij

]

= m.

The undirected formulation of the gHypEG follows the same reasoning of Theorem 2, with the addition of a 
symmetric propensity matrix. That is, the distribution of the undirected generalized hypergeometric ensemble 
is hence given by a Wallenius’ distribution similar to Eq. (15), but corresponding to the upper triangular part of 
the matrices (i.e., for i ≤ j ) in accordance with Eq. (11).

Estimation of the propensity matrix. In this final section, we show how to define the propensity matrix 
� such that the expected graph E[X] from the model X defined by � coincides with an arbitrary graph G . By 
doing so, we create a random model centered around the inducing graph. The result is described in the following 
corollary, which follows from the properties of ’Wallenius’ non-central hypergeometric distribution.

Corollary 6 Let  G (V ,E) be a graph with  n = |V | vertices and  A its adjacency matrix. Let  � be a  n× n propensity 
matrix, characterized by elements  �ij with  i, j ∈ V  . Then,  G coincides with the expectation  E[X] of the gHypEG  
X induced by  G and  � if and only if the following relation holds.

ıWhere � is the combinatorial matrix associated with  X and  �ij its elements.

(15)Pr(X = A) =





�

i,j∈V

�

�ij

Aij

�





� 1

0

�

i,j∈V

�

1− z
�ij
S�

�Aij

dz

(16)S� =
∑

i,j∈V

�ij(�ij − Aij).

(17)Pr(Xij = Aij) =

�

�ij

Aij

��

M −�ij

m− Aij

�

·

� 1

0





�

1− z
�ij
S�

�Aij
�

1− z
�̄ij
S�

�m−Aij


dz

(18)�̄ij =

∑

(l,m)∈(V×V)\(i,j) �lm�lm

(M −�ij)
.

(19)
(

1−
E[X11]

�11

)
1

�11
=

(

1−
E[X12]

�12

)
1

�12
= . . .

(20)∀c ∈ R
− �ij =

1

c
log

(

1− Aij/�ij

)

∀i, j ∈ V ,
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Proof Equation (20) follows directly from Corollary 4. In particular, when solving Eq. (19) for � with the 
assumption E[X] = A we obtain the following system of |V |2 equations (in the case of a directed graph with 
self-loops) for |V |2 + 1 variables.

The solution of this system is Eq. (20).   �

A wide range of statistical patterns that go beyond degree effects can be encoded in the graph model by 
specifying the matrix � of edge propensities. The encoding and fitting techniques of such arbitrary propensity 
matrices are beyond the scope of this article, and will not be discussed here.

Finally, we highlight that the hypergeometric configuration model is a special case of the generalized hyper-
geometric ensemble. The hypergeometric configuration model described in Theorem 1 can be recovered from 
the generalized model by setting all entries in the propensity matrix to the same value. By doing so, the odds-
ratio between the propensities for any pair of vertices is 1, and the edge sampling process is not biased. Thus, 
the probability distribution of the model reduces to a function of the degree sequences and the number of edges 
sampled. Theorem 7, in the “SI”, provides a formal proof for this result.

Discussion
We have proposed a novel framework for the study of random multi-graphs in terms of an urn problem. By 
doing so, we have arrived at an analytically tractable formulation of the widely used configuration model of ran-
dom graphs. It preserves degree sequences in expectation and the number of edges exactly. Our model relies on 
representing edges as balls in an urn containing the appropriate number of them, as explained in Definition 1. 
Sampling without replacement from such an urn generates random realizations from the model. Thanks to this 
parallel, we can identify the underlying probability distribution as the multivariate hypergeometric distribution. 
As we show, this formulation accurately reproduces the properties of standard configuration models, with the 
added benefit of a closed-form formulation.

We have further expanded such a configuration model to the generalized hypergeometric ensemble, a new 
class of models that can incorporate arbitrary dyadic biases into the probabilities of sampling edges. These biases, 
which we call edge propensities, control the relative likelihood of drawing an individual edge between the respec-
tive pair of vertices instead of any other pair. The proposed formulation allows incorporating into the model 
arbitrary graph patterns that can be reduced to dyadic relations. Again, in Theorem 3 we exploit the parallel 
to an urn problem to formalize the probability distribution underlying the generalized model: the multivariate 
Wallenius’ non-central hypergeometric distribution.

In40, we provide an open-source software implementation of the generalized hypergeometric ensemble within 
the R library ghypernet. The library is freely available for download on CRAN at https:// cloud.r- proje ct. org/ 
packa ge= ghype rnet. The full library documentation can be found at https:// ghyper. net.
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