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Explicit size distributions of failure 
cascades redefine systemic risk on 
finite networks
Rebekka Burkholz1, Hans J. Herrmann2,3 & Frank Schweitzer   4

How big is the risk that a few initial failures of nodes in a network amplify to large cascades that span a 
substantial share of all nodes? Predicting the final cascade size is critical to ensure the functioning of a 
system as a whole. Yet, this task is hampered by uncertain and missing information. In infinitely large 
networks, the average cascade size can often be estimated by approaches building on local tree and 
mean field approximations. Yet, as we demonstrate, in finite networks, this average does not need to be 
a likely outcome. Instead, we find broad and even bimodal cascade size distributions. This phenomenon 
persists for system sizes up to 107 and different cascade models, i.e. it is relevant for most real systems. 
To show this, we derive explicit closed-form solutions for the full probability distribution of the final 
cascade size. We focus on two topological limit cases, the complete network representing a dense 
network with a very narrow degree distribution, and the star network representing a sparse network 
with a inhomogeneous degree distribution. Those topologies are of great interest, as they either 
minimize or maximize the average cascade size and are common motifs in many real world networks.

Systemic risk is defined as the risk that a large fraction, ρ → 1, of a system fails. This can happen because extreme 
events shock the system1 or because the failures of a few system elements cause new failures. This propagation 
results in failure cascades that can eventually reach the size of the system2. In the aftermath of the financial crisis 
in 2008/2009, systemic risks induced by such cascades received attention especially in the context of financial 
contagion of bank defaults3–5. Also the increasing complexity of economic value chains6 raised awareness for sim-
ilar effects7, in particular concerning critical resources8 and food9. Many of these works are inspired by stability 
analyses of ecological food webs10–12. But also generic models from physics and related areas have been utilized 
to study failure cascades. Examples include Ising models13, models of fiber bundles that break under stress14,15, 
models of epidemic spreading16,17, voter models18, percolation19–22 and models of overload failures in power grids 
or other infrastructure23. Many of these cascade models have in common that they can be mapped to a generic 
threshold model for propagating failures on a graph G, or a complex network, where nodes represent the system 
elements and links between nodes their interactions.

Network model
Formally G = (V, E) is a constant undirected network consisting of N = |V| nodes, which are elements of the node 
set V. The link set E contains tuples of the form (i, j), each representing a pairwise connection between nodes i 
and j. Network topologies vary between Erdös-Rényi random networks, where the number of links per node can 
be described by an average degree, and scale-free networks, where the number of links vastly differs between core 
nodes, or hubs with very many links, and peripheral nodes with very few links. In this paper, we discuss limit 
cases of these two topologies, i.e. the complete network, where each node has the same number of links, N − 1, 
and the star network, where the center node has N − 1 links, but the peripheral nodes have only one link to the 
center. Both are recurring motifs of real world networks and an approximation of prevailing core periphery struc-
tures. In particular, financial and economic networks often have densely connected core nodes with peripheral 
nodes loosely connected to them24,25. Most importantly, for many models, one of the two, the complete network 
or the star, minimizes while the other maximizes average systemic risk26,27, when systemic risk is measured by the 
cascade size, i.e. the fraction of failed nodes in the network.
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Cascade processes
A failure of a node i at time t is indicated by its binary state variable si (t) = 1. Otherwise, it is healthy or func-
tional, si (t) = 0, and can switch to failed in each of the discrete time steps t = 0, …, T. For simplicity, we exclude 
the possibility to recover, i.e. node states can only change from 0 to 1 but not vice versa. Each node state si (t) is 
characterized by two node variables, a threshold θi and the load λI (t). θi summarizes the “robustness” of a node, 
its ability to withstand shocks. It is assumed to stay fixed over time. Individual thresholds are initially drawn 
independently at random from an arbitrary cumulative distribution function (cdf) F (θ), often also called the 
response function. A node i fails at time t + 1, if its load exceeds its threshold, i.e. si (t + 1) = Θ[λI (t) − θi], where 
Θ[x] is the Heaviside function with Θ[x] = 1 if x ≥ 0 and Θ[x] = 0 otherwise. The load λI (t) can change because 
of interaction with neighboring nodes involving a load distribution process. This basically describes how a failure 
can propagate along a link if two nodes interact, because a load increase can result in λi (t) ≥ θi. Initially, all nodes 
with θi ≤ λ0 fail, where λI (0) = λ0 denotes the initial load of a node.

This allows us to define the size of a cascade at time t as the fraction of failed nodes in the network: 
ρ = ∑ =t N s t( ) 1/ ( )i

N
i1 . A cascade maximally lasts T = N − 1 time steps because at least one node needs to fail at 

each time step to keep the process going. The final size of the cascade, ρ = ρ (T), i.e. the final fraction of failed 
nodes, is a common measure for systemic risk. While the cascade dynamics itself is deterministic, ρ is a random 
variable, as it depends on the thresholds that are drawn initially independently at random according to the distri-
bution F (θ). This randomness can model uncertainty (e.g.g incomplete data or information) or changing expo-
sures of nodes, for instance, due to fluctuating markets or aging system components in an engineering setting. 
Based on combinatorial arguments, in the materials and methods section and the SI, we derive a closed-form 
solution for the probability distribution of ρ on complete graphs, p (ρΔ), and stars, ρ⁎p( ), of finite arbitrary size N.

Three paradigmatic load distribution mechanisms
We discuss three exemplary load distribution mechanisms well established in different fields. We refer to the first 
one28 as exposure diversification (ED). It means that a node is exposed equally to the risk that any of its neighbors 
fail. The more neighbors, the better for hedging against such exposures (in low systemic risk regimes)29. A node 
carries simply the fraction of its failed neighbors as load. Thus, in complete networks each functional node carries 
the load λ [k] = k/(N − 1) when k nodes have failed.

The ED mechanism has not only attracted theoretical interest30–34, it is also used to explain opinion forma-
tion35 and financial contagion3,36,37, where random thresholds correspond to fluctuating exposures between banks 
and changing capital buffers. The randomness can also be interpreted as model uncertainty in such complex 
systems38.

The second mechanism, denoted as damage diversification (DD)29,39, assumes that a failing node distributes its 
total load 1 equally among its network neighbors. Consequently, DD coincides with ED for complete networks.

The third mechanism defines the prominent fiber bundle model14,40 in material science. A force, applied to a 
bundle of fibers, is modeled by a load λ0 carried by each node in a network, while a node’s threshold determines 
the strength of a fiber. When a fiber i breaks, it distributes its full load λi(t) equally to its still functional network 
neighbors, which become connected afterwards. On complete networks, this mechanism is also known as global 
load sharing rule and translates into λ [k] = λ0 + kλ0/(N − k) that each functional node carries when k nodes 
have failed. For the special and simplifying case of uniformly distributed thresholds, a formula for the cascade 
size distribution is known already41. With our new derivations, now arbitrary threshold distributions and thus 
different fiber materials can be studied. For the star network, we focus on a local load sharing variant where no 
new edges are created42,43

Results
The only random ingredient that we study is the cumulative threshold distribution F(θ). Our derivations apply to 
an arbitrary choice. Yet to be consistent and to allow for comparisons, we discuss only μ λ σ∼ +F ( , )0

2 , i.e. a 
normal distribution with mean μ + λ0 and standard deviation σ. For ED and DD, λ0 does not influence the 
results, so we set the initial load to λ0 = 0. For the fiber bundle model, we assume λ0 = 1, i.e. a value large enough 
that we can observe both cascades that span the whole network (ρ = 1), and cascades that stop early. We are espe-
cially interested in parameter regions (μ, σ) that lead to medium average cascade sizes. This implies that such 
cascades would not encompass the whole system in case of an infinitely large network. We then investigate, for 
such “safe” parameter regions, the size of cascades for finite networks.

As a reference case, Fig. 1(a) shows the phase diagram for ρΔ for infinitely large systems, assuming a com-
plete network and the ED/DD mechanism29,39. ρΔ is taken as a measure of systemic risk. If the mean value of the 
threshold distribution, μ, is large, the system is less prone to large failure cascades. Taking a small, but fixed value 
of μ, we recall two important observations, (i) the sharp phase transition between completely safe systems (white, 
average cascade size zero) and completely failed systems at a critical value of (μ, σ), (ii) the gradual decrease of 
systemic risk in areas with high σ. This means, the heterogeneity in thresholds plays a crucial role in amplifying, 
or preventing, systemic risks. Therefore, we first study the impact of increasing heterogeneity σ on failure cascades 
in finite networks. Figure 1(b) shows the broad distribution of the final cascade size, spanning values between 0 
and 1. Only for large values of σ we find distributions that match our expectations derived from the behavior 
of infinite systems, i.e. they are unimodal and symmetric. As σ decreases, however, the distributions become 
asymmetric and broader and even bi-modal. Only very close to a phase transition, broader distributions in finite 
systems are expected by theoretical physicists and, usually, explicit formulas for such distributions are unknown. 
But even for parameters further away from the phase transition in Fig. 1(a), the average cascade size is meaning-
less to characterize the system. Instead, we can expect either small cascades or, as a new observation, very big ones 
that are likely to destroy the whole system and are relevant for systemic risk estimations. Counter-intuitively, the 
smaller the threshold heterogeneity, the the less predictive the system behavior becomes.
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This strong bi-modality is a new observation that only applies to finite systems and is not captured by risk 
approximations for infinite systems. To further investigate how this behavior depends on the system size N, we 
simulate, for parameters (μ, σ) = (0.5, 0.4), the distribution of final cascade sizes. Monte Carlo simulations are 
necessary because, for systems up to N = 108, the products of large binomial terms and small probabilities that 
appear in our exact derivations become unfeasible to solve numerically. Figure 2 shows the results. We see that 
the bi-modality persists even for networks of size N = 107. So, the question whether networks of that size can be 
reasonably described by approximations for infinite networks, is clearly answered by “no”. On the other hand, real 
economic networks which are prone to failure cascades are often of the order 104–106, for example ownership 
networks or collaboration networks of firms6. Hence, it is of importance to correctly reflect finite-size effects in 
risk estimations of such systems.

Figure 3 shows the corresponding cascade size distributions for the star-shaped networks. Here, we have to 
distinguish the ED and the DD mechanisms of load distribution, which coincide only for complete networks. 
Figure 3(a) shows the results for the ED mechanism. Again, we observe bi-modality in the distribution of cascade 
sizes that vanishes only for large threshold heterogeneity σ. The bi-modality has a clear interpretation with respect 
to the central node. In smaller cascades, the center does not fail, which explains the peak at low values of ρ⁎. But if 
the center fails, it triggers a significant number of further failures of leaf nodes that explains the right peak in the 
distribution. This bi-modality is so fundamental that it does not even vanish in the limit N → ∞, as we show in 
the materials and methods section.

The results for the DD mechanism presented in Fig. 3(b) show that, in contrast to the ED mechanism, the 
distributions of the final cascade size are unimodal, even for smaller σ. Again, this can be explained with the role 
of the central node. Although the center fails with high probability, with the DD mechanism, its failure distributes 
only a small amount of load equally to the (large number) of leaf nodes. Hence, this does not cause substantial 
additional failures. As in infinitely large systems29, in the presence of hubs, failure cascades involving the DD 

Figure 1.  ED/DD mechanism on complete network and normally distributed thresholds, i.e  μ σ∼F ( , )2 , 
with mean μ and standard deviation σ. (a) (Average) final fraction of failed nodes ρΔ (color coded) on infinitely 
large network. The darker the color, the higher is ρΔ. (b) Distribution of ρΔ on finite network of size N = 50 with 
respect to different σ. μ = 0.5 is fixed.

Figure 2.  (a) Final cascade size distribution for complete networks of several sizes N obtained via 104 
independent simulations of the ED mechanism, i.e. draws from P(ρΔ). The thresholds are independently 
normally distributed with mean μ = 0.5 and standard deviation σ = 0.4 ( ∼ . .F (0 5, 0 4 )2 ). (b) Position of the 
two local maxima of the distributions in (a) with respect to the network size N.
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mechanism expose the system to a smaller failure risk than cascades involving the ED mechanism - at the expense 
that hubs usually fail.

Eventually, we also discuss the third load distribution mechanism used in the fiber bundle model. Because of 
the additional load λ0, more load is distributed after a cascade started. As a result, in complete networks large cas-
cades amplify to a full system break-down shown in the very right peak at ρΔ = 1 in Fig. 4(a). This is an extreme 
case of the bi-modal distribution, where also small cascades can occur with high probability. As Fig. 4(b) shows, 
in star-like networks the range of probable cascade sizes is usually bigger. Dependent on the (μ, σ) values of the 
threshold distribution, bi-modal cascade-size distributions can still occur. The peaks of the cascade-size distri-
bution can be explained again by the survival or the failure of the central node. In comparison with complete 
networks, these peaks are often close together. Further, the lower connectivity of the star-like networks reduces 
the risk of large cascades.

Discussion
Our driving question was whether systemic risk in finite systems can be reasonably estimated from approxi-
mations valid for infinite systems. We have to negate this question for two reasons. First, taking the final size of 
failure cascades as a risk measure, we could demonstrate, for the first time, that the distribution of this quantity 
changes fundamentally in finite systems. While a unimodal and narrow distribution, typical for infinite systems, 
would allow to use the average cascade size as a reasonable measure, we could show that for finite systems we 
often have a very broad and even bi-modal distribution. Hence, an estimated average does not quantify the real 
risk. Instead, small cascades but also extreme larger failure cascades become more likely. Even though a complete 
system break-down is unlikely as we show (which may be expected for infinite, but not for finite systems), large 
cascades in finite systems are much more frequent than expected so far. Secondly, we could also estimate the range 
of sizes for which such finite size effects play a role. We found that they are important for system sizes up to 107, 
i.e. these systems are quite large, even though finite. This demonstrates that corrections are needed not just for 

Figure 3.  Probability distribution of the final fraction of failed nodes ρ⁎ on a star network with N = 50 nodes for 
the (a) ED mechanism and (b) DD mechanism. The thresholds are normally distributed with mean μ = 0.5 and 
standard deviation σ (i.e. σ∼ .F (0 5, )2 .

Figure 4.  Fiber bundle model with initial load λ0 = 1. Probability distribution of the final fraction of failed 
nodes with respect to normally distributed thresholds, i.e.  μ λ σ∼ +F ( , )0

2 , on (a) complete network of size 
N = 30 and (b) star of size N = 50.
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small systems of a few to a few hundred nodes. Instead, they are already necessary for all real-world systems, up 
to a hundred million nodes.

In addition to these insights, we were able to derive novel explicit closed-form solutions to calculate the full 
distribution of the final cascade size, for two exemplary topologies. Our results are unique, as we derive exact 
solutions that apply to networks of arbitrary finite size N, a wide range of load distribution mechanisms, and 
arbitrary threshold distribution to characterize the robustness of the nodes.

In light of the combinatorial complexity of the problem, such results are rare and crucially depend on the high 
symmetry of the considered networks. Complete networks and stars are of particular interest, as they appear to be 
systemic risk minimizing or maximizing when only the average cascade size is considered26,27. Intuitively, this is 
reasonable, as the complete graph represents the limit case of perfect risk diversification, where the risk is shared 
between all system components. The star network can be less prone to the amplification of failures in the course 
of a cascade, in particular when its central node is very robust. For that reason, central counter parties are often 
favored to reduce systemic risk. Yet, we have to reconsider our assessment of robust finite network topologies 
and take the probability of large system break-downs into account, as these are relevant for risk averse decision 
makers.

Many further real world networks, especially economic networks, show a core-periphery structure24,25 with 
densely connected core nodes and peripheral nodes loosely connected to the core. Thus, their topology can be 
understood as a superposition of the sample topologies discussed here, the complete network and the star net-
work. Sparse topologies, with the star network as a paragon, occur frequently in real world networks44 and play an 
important role in the spreading of failures45. Even other topologies, like Mandala46 networks which are specifically 
designed to reduce average systemic risk with respect to percolation and related risk measures, consist of com-
plete cliques that are highly interlinked and are thus prone to uncertainty about the final cascade size.

These systems usually have sizes that require to consider the full cascade size distribution for the estimation of 
systemic risk, as we propose with our solutions.

Beyond their elegance, such closed-form formulas have the advantage that they enable explicit optimization 
strategies for control of the involved parameters. For instance, we can derive derivatives with respect to those 
parameters that inform gradient based optimization methods. This allows to design robust systems, by controlling 
e.g. the broadness or the convergence of the cascade size distribution. It can be also applied in restoration strate-
gies for failed systems47.

Yet, we cannot expect to derive such analytic results for arbitrary network topologies. In this case, we have to 
rely on Monte Carlo simulations to estimate the broadness and shape of the cascade size distribution. We hope to 
inspire systemic risk analysts to base their insights and decisions on risk measures that can capture such broad-
ness and multi-modality.

Methods
Derivation of cascade size distributions.  In finite networks, the final cascade size ρ takes discrete values 
in the set {0, 1/N, 2/N, …, 1}. To determine the distributions P(ρΔ) and ρ⁎P( ), we can calculate the probabilities for 
each event  ρ =Δ k N( / ) and  ρ =⁎ k N( / ), where k denotes the number of failed nodes at the end of the cascading 
process.

Complete networks.  For complete networks, we can decompose the probability of k final failures into the prod-
uct of the probability that N−k out of N nodes do not fail and the probability pk that exactly k nodes fail

ρ λ




=


 = − .Δ

−( )P k
N

N
k

F k p(1 ( [ ]))
(1)

N k
k

Recall that λ [k] denotes the load that a node with k failed neighbors carries so that F(λ [k]) is the proba-
bility that this load exceeds the node’s threshold. With the help of the inclusion-exclusion principle48, pk can be 
expressed as

∑ λ= − .
=

−
+ + −( )p k

l
F l p( 1) ( [ ])

(2)k
l

k
k l k l

l
0

1
1

The details of this derivation and proofs are provided in the supplementary information. Apparently, our 
derivations apply to an even larger class of models than threshold models. The failure probability of a node, here 
F(λ[k]), can be any function of the number of its failed neighbors.

Star networks.  The central node with degree d = N − 1 has a prominent role, as it is the only node that can 
distribute accumulated load received by other nodes. We allow it to have a different threshold cdf Fc and load 
function λc than the remaining N − 1 leaf nodes, which have degree 1, threshold cdf F and carry loads of the form 
λr. A leaf node can fail initially with probability F (λr [0]) (with 0 neighboring failures) or, if the center has failed 
before, it can carry the load λr [j, l], which depends on two additional variables that are determined by the history 
of the center: j and l. j denotes the number of failed leaf nodes that have distributed load to the center, before 
the center has failed. l indicates the number of nodes among which the accumulated load of the center is shared 
(when the center fails). We simply add the probabilities for all possible cases and obtain:
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The first summand considers the case when the center does not fail, while the second term adds the probability 
for the case when the center fails initially. Then, each of the other k − 1 failures of leaves can either occur initially 
or because of a load distribution by the center. The size of this load might depend on the number of nodes l that 
fail initially together with the center, since these nodes cannot receive load after the failure of the center. The index 
j in the third term finally takes the events into account when j leaves have failed before the center.

Remarkably, this distribution converges for N → ∞ to a discrete distribution with non-zero probability at 
three events, if λc [k] and λr [j, l] only depend on fractions of nodes (λc [k] = λc [k/N], λr [j, l] = λr [j/N, l/N]). In 
an infinitely large star, exactly F (λ0) of the leaves fail initially. With probability Fc (λ0), the center node fails as well 
initially so that ρ λ λ= −⁎ F F( [0, 1 ( )])r 0  of the nodes fail in total. With probability Fc (λc [F (λ0)]) − Fc (λ0), the 
center fails after the initial failures, which leads to ρ λ λ λ= −⁎ F F F( [ ( ), 1 ( )])r 0 0 . Or with probability 1 − Fc (λc [F 
(λ0)]), the center does not fail and we have ρ λ=⁎ F( )0 . In case of the ED model, two cases collapse to one because 
λr [0, 1 − F (λ0)] = λr [F (λ0), 1 − F (λ0)] = 1. Thus, the observed bi-modality of the distributions in Fig. 3(a) 
persists for increasing network size N.

Exemplary load distribution mechanisms.  We have discussed three basic load distribution mechanisms 
corresponding to the exposure diversification (ED) model, the damage diversification (DD) model and a fiber 
bundle model. In the following, we specify how these models define the loads used in the derivations above.

ED load redistribution.  In the complete graph, each load carries the load λ [k] = k/(N − 1). For the star network, 
λc [k] = k/(N − 1) holds for the center node and λr [0] = 0, λr [j, l] = 1 for the leaf nodes.

DD load redistribution.  In the complete graph, each load carries the load λ [k] = k/(N − 1). On the star network, 
DD corresponds to the choice λc [k] = k, λr [0] = 0, λr [j, l] = 1/(N − 1).

Fiber bundle model load redistribution.  On complete networks, the total load λ0k has been redistributed so that 
each functional node carries λ [k] = λ0 + kλ0/(N − k). For stars, we have λc [k] = (k + 1)λ0, λr [0] = λ0, λr [j, l] 
= (j + 1)λ0/l.

For finite networks of arbitrary size N, we have obtained explicit closed forms of the full probability distribu-
tion of final cascade sizes for two prominent topologies. This is a major achievement that allows us to calculate 
the systemic risk in a highly efficient manner. More detailed information can be found in the supplementary 
information.
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