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Framework for cascade size calculations on random networks
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We present a framework to calculate the cascade size evolution for a large class of cascade models on
random network ensembles in the limit of infinite network size. Our method is exact and applies to network
ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models,
for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process
approximations to the iterative update of suitable probability distributions. Such distributions are key to capture
cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load
is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover
many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not
tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not
only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

DOI: 10.1103/PhysRevE.97.042312

I. INTRODUCTION

Many models in statistical physics describe the dynamics
of interacting particles that are characterized by a binary state,
e.g. {0,1}, healthy or failed, etc. Examples include the zero-
temperature random-field Ising model [1], percolation models
[2], such as the k-core percolation model on random graphs [3],
or threshold models [4–6]. The Bak-Tang-Wiesenfeld sandpile
model [7] has even become a paradigm for the study of self-
organized criticality.

The dynamics of these models can also be interpreted as a
cascade process where the change in the state of one particle
subsequently impacts the state of the neighbors. Such cascade
models find applications in different fields, for instance, in
systemic risk analyses of financial or economic systems [8–10],
information propagation in form of voter models or models for
meme popularity [11], or simple epidemic spreading processes
[12].

We can represent these systems of interacting particles as a
network (or graph) G = (V,E) consisting of nodes V and links
E. Each particle is represented by a node (or vertex), its interac-
tions by links (or edges). Each node i ∈ V is characterized by a
binary (or in general discrete) state si ∈ {0,1} that indicates, for
instance, whether i is failed, infected, activated, has a positive
spin, or adopted a certain opinion (si = 1). A switch of this state
influences its network neighbors, i.e., the nodes it is connected
with. This can trigger further state switches and thus lead to a
cascade of successive state changes.

Many models of cascade phenomena study how the net-
work topology and specific node attributes contribute to an
amplification of the dynamics such that large cascades result.
Usually, the cascade size is measured by the fraction ρ of
nodes in one state averaged over random graph ensembles
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with given degree distribution. In most of the mentioned
examples, ρ can be iteratively calculated in the (thermody-
namic) limit of infinitely large network size with the help
of a branching process approximation, also known as local
tree or heterogeneous mean-field approximation [6,13,14]. In
comparison with Monte Carlo simulations, these calculations
usually save computational time and effort, while they further
deepen the theoretical understanding of the key factors driving
a cascade. Commonly, they rely on updating compositions of
generating functions which correspond to discrete probability
distributions, for instance, the degree distribution of a network.

However, in models where nodes interact via a heteroge-
neous load redistribution mechanism, this approach breaks
down, especially when continuous quantities of load can be
distributed that depend on the history of the cascade. This is
the case, for instance, in fiber bundle models [15], which have
become one of the most prevalent models to describe fracture in
materials [16]. Also neural network models [17] and multilayer
perceptrons or deep-learning architectures [18] involve similar
load distribution mechanisms, usually on directed networks.
To enable their analysis in the thermodynamic limit of infinite
network size, we present an alternative view on branching
process approximations and shift the perspective towards the it-
erative update of suitable probability distributions. Within this
analytic framework, we can correctly compute the whole time
evolution of the average cascade size for a large class of cascade
processes. We demonstrate this with the example of a fiber
bundle model [5,19], which could, to the best of our knowledge,
not be tackled analytically before. Furthermore, we show how
our framework simplifies the known local tree approximations
in case of threshold models on weighted networks [6,20] and
extend them to allow for degree-degree correlations.

While our approach works well for models with local load
distributions, we cannot tackle models that require global
information, for instance, load distribution along shortest paths
[21], or introduce network clustering [22]. Yet, our approach
is not limited to binary state dynamics. It also applies to the
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FIG. 1. Illustration of cascade model set-up. All nodes in the
network carry a certain amount of load λ, which is visualized by a blue
liquid in a glass. Additionally, they are equipped with a threshold θ ,
which is represented by a green disk. Both variables can vary between
the nodes and determine a node’s state s.

calculation of average node states that correspond to general
discrete or continuous variables. However, in the following
we stick to binary state models, as they have motivated our
derivations.

II. CASCADE MODELS

The highlight of our derivations is the analytical description
of the dynamics for a class of fiber bundle models. Therefore, to
introduce general cascade processes, we adopt the terminology
and interpretation of the fiber bundle model. Each node i ∈ V

in a networkG = (V,E) with node setV consisting ofN = |V |
nodes, is associated with a fiber in a bundle to which a force
is applied. A functional node i breaks or fails if it cannot
withstand the force it is exposed to. Its binary state si ∈ {0,1}
indicates whether it is functional, si = 0, or failed, si = 1. The
force applied to a node i is represented by a load λi ∈ R.
The amount that i cannot withstand anymore is given by the
threshold θi ∈ R. Figure 1 illustrates such an initial cascade
set-up. Usually, θi stays constant, while the load λi(t) can
change in the course of a cascade that evolves in discrete
time steps 0, . . . ,T . When a node’s load exceeds its threshold,
λi(t) � θi , i fails. So, we have si(t) = H [λi(t) − θi], where
H (·) denotes the Heaviside function.

The failure of a node impacts its network neighbors that are
defined by the link set E of the network. For instance, in a fiber
bundle, the neighboring functional fibers have to take over the
load that was carried by their failed neighbors. So, when i fails
at time t and it is connected with the still functional node j

by a link (i,j ) ∈ E, i distributes a load lij (t) to j . The internal
node dynamics are also visualized in Fig. 2. With the notation
that lij (t+) = lij (t) for all later times t+ > t , we can express
the load of a node j as

λj (t + 1) =
N∑

i=1

lij (t)si(t) + λj (0),

where lij (t) = 0 if there is no link (i,j ) ∈ E. Thus, the failure
of a node can cause subsequent failures and trigger a cascade,
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FIG. 2. Illustration of internal node dynamics. (a) A node, here
colored in plain blue, is functional (s = 0) when λ < θ , while (b) it
fails (s = 1) when λ � θ . It then distributes load, which is illustrated
by red barrels with a dot, to its functional network neighbors. A failed
node is colored in black with a red ring, a functional one in blue.

which ends when no thresholds are exceeded anymore. In each
time step, more than one node can fail, yet, at least one node
needs to fail to keep the cascade ongoing. So, the dynamics
end after maximally T = N steps.

For simplicity, we focus on deterministic dynamics where
nodes can fail only once without the option to recover.
However, since our approach accurately describes the average
cascade dynamics in time, recoveries and other form of inter-
ventions or changes in time can easily be integrated. Similarly,
they can be extended by randomizations of failure dynamics.

Our main cascade size measure on the macro level is the
fraction of failed nodes,

ρN (t) = 1

N

N∑
i=1

si(t).

When we omit the time dependence, we usually refer to the
final cascade size ρN (T ).

A. Fiber bundle model

As our main example, we study a simplified form of the
fiber bundle model that has been introduced by Ref. [19] and
further studied by Refs. [5,23] on regular networks. A node i

that fails at time t shares its full load λi(t) equally among its
still functional network neighbors. Consequently, we have

lij (t) = Aij [1 − sj (t)]
λi(t)

ki − ni(t)
, (1)
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where the adjacency matrix A has elements Aij = 1 if (i,j ) ∈
E and Aij = 0 otherwise. ki = ∑

j Aij denotes the degree of
node i and ni(t) = ∑

j Aij sj is the number of its failed network
neighbors at time t .

This cascade process is Markovian given the full knowledge
of all the nodes’ loads λi(t) and thresholds θi at a time t . The
previous history is irrelevant for the determination of ρ(t + 1).
However, the distributed loads lij (t) are time dependent and
capture the history of the cascade evolution. The process is
sensitive to the order of node failures. This makes it so difficult
to solve the dynamics of the cascade size ρN (t) exactly. The
key solution is to keep track of the heterogeneous distribution
of lij (t) before or at time t .

B. Constant load models

In contrast to the fiber bundle model discussed above, the
load lij (t) = wij distributed from a failed to a functional node
is constant over time and known a priori. This makes these
models insensitive to the precise order of failures and simplifies
the local tree approximation of the corresponding cascade size.
For instance, the description given by Ref. [14] of Watts model
[4] has been inspired by the heterogeneous mean-field approxi-
mation of Ising models [1] and extended to configuration model
type random graphs with degree-degree correlations [24,25]
or multiplex topologies [10,26]. Several epidemic spreading
models have been analyzed [12] in a similar context. In this
paper, we show how our framework can further simplify the
analytic description of such cascade dynamics. It works for
the general case of weighted networks [6] and is extended to
random graphs with degree-degree correlations.

C. General dynamics

We can generalize our approach also to cases where the
failure of a node is no longer determined by a fixed threshold
and can even relax the assumption that a node’s state si is
binary. This means to treat cases where sj (t) ∈ R follows
discrete dynamics of the form

sj (t + 1)

= G
[

N∑
i=1

AijF(si(t),sj (t),ki,kj ,θi,θj , . . . ,wij ,ρN (t))

]
.

(2)

We only require that G and F are measurable functions. F
replaces the failure condition and can depend on the states of
the failing as well as load receiving nodes, their degrees, other
node attributes θi,θj or link attributes wij that are allowed to be
random (but independent of each other), and even the cascade
size ρN (t) of the previous time step.

The arguments that we develop in the following section
apply to this case. However, to simplify the derivation, we
focus on the cascade models already introduced. Section III
explains the concept in detail. A summary of the approach for
the specific models is then provided in Secs. III E and III D.

III. LOCAL TREE APPROXIMATION

The cascade processes introduced in Sec. II evolve on a
finite and fixed network G. Yet, we assume that such a network

is drawn at random from an ensemble of networks with a
given degree distribution p(k) and degree-degree correlations
p(k,d). This random graph ensemble is known as extension
of the configuration model [27,28], where a neighbor of a
node with given degree k has degree d with probability p(k,d)
[29,30]. The original uncorrelated configuration model is a
special case for the choice p(k,d) = p(d)d/z, where z denotes
the average degree z = ∑

k p(k)k in the network. Since the
network ensemble is maximally random (i.e., it maximizes the
entropy of distributions over networks) given the constraints
p(k) and p(k,d), it is often assumed as null model for observed
phenomena. It allows us to test the average influence of the
degree distribution p(k) and assortativity defined by p(k,d)
on processes running on top of such networks. In the thermo-
dynamic limit of infinite network size N → ∞, the clustering
coefficient vanishes and the network topology becomes locally
treelike, if the second moment of the degree distribution p(k)
is finite. This property is essential to calculate the cascade
size as average over the random graphs, as the failures of
neighbors can be treated as independent. This independence is
sometimes also called heterogeneous mean-field assumption.
It does not mean that nodes fail independently of each other.
It just acknowledges that in one network realization a node
in the network can be connected to an already failed node,
while in another it might be connected to a functional one. The
probability of being connected to one neighbor is independent
from the probability to be connected to another neighbor.

All networks in the ensemble are undirected. Load can be
distributed in both directions of a link-depending on which
node fails earlier. However, we can introduce a direction
by assigning weights wij and wij to a link that define a
proportions or amounts of load that are distributed along a
specific direction. Some weights can also be set to wij = 0
to obtain directed networks. Link weights are drawn initially
independently at random from a distribution pW (kj ,kj )(w) that
can depend on the degrees of both involved nodes as introduced
in Ref. [6].

In addition to the network structure, we assume that the
nodes’ thresholds are drawn initially independently at random
from a distribution that is allowed to depend on the degree
k of a node. We denote the cumulative distribution function
of a node with degree k by F�(k)(θ ). Accordingly, also the
initial load that a node carries can be drawn randomly from a
distribution p�(k,0) (λ0).

In summary, we study an ensemble of random graphs
with fixed degree distribution p(k), degree-degree correlations
p(k,d), possible random link weights following pW (kj ,kj )(w),
random thresholds following F�(k)(θ ) and sometimes random
initial loads. The ensemble is quenched in the sense that all
quantities are fixed at the beginning of a cascade and do not
evolve over time. Our goal is to calculate the cascade size
evolution ρ(t) as an average with respect to this ensemble in
the thermodynamic limit of infinitely large networks.

A. Average cascade size as node failure probability

The fraction of failed nodes in an infinitely large network
coincides with the probability that a node picked uniformly at
random from all nodes in the network is failed. We call such

042312-3



REBEKKA BURKHOLZ AND FRANK SCHWEITZER PHYSICAL REVIEW E 97, 042312 (2018)

l
fn

0

l
fn

1

2

n

l
fn

0l
fn

1

2

(a)

(b)

FIG. 3. Illustration of a locally treelike network structure. Dashed
lines lead to other network nodes, which are allowed to be connected.
(a) A focal node that is picked uniformly at random from all nodes
in the network is depicted by a green square. Realizations of its load
� = λ and threshold � = θ are depicted in the green glass. Two failed
neighbors have distributed the load lfn

1 and lfn
2 to the focal node. (b) A

focal neighbor is picked uniformly at random from the neighbors of
the focal node and is colored in sandy gray. Correspondingly to (a),
realizations of the load �n and threshold �n are shown before the
failure of the neighbor.

a randomly picked node a focal node, which is visualized in
green in Fig. 3(a).

After taking the limit N → ∞, the average cascade size can
be written as

ρ(t) = lim
N→∞

E

[
1

N

N∑
i=1

s
(N)
i (t)

]

=: P[S(t) = 1] = P[� � �(t)], (3)

where S(t) denotes the state of a focal node. Its failure
probability corresponds to the probability that its threshold
� exceeds its load �(t). Since these variables are random, we
denote them by capital letters, while their realization is written
in lowercase.

When the thresholds � and loads �(t) are quite hetero-
geneous, i.e., when they are broadly distributed, mean-field

approximations that only consider their average cannot lead
to accurate results. Here, we present an iterative procedure to
calculate their exact distributions.

To acknowledge that nodes with different degrees can
have different failure probabilities, we apply the law of total
probability [31] and receive

ρ(t) =
c∑

k=1

p(k)P[S(t) = 1|K = k]

=
c∑

k=1

p(k)P[�(k) � �(k,t)|K = k], (4)

where P[S(t) = 1 | K = k] denotes the conditional failure
probability of a node given that its degree is K = k. We write
�(k,t) and �(k) to indicate that the distributions of �(t) and
� can depend on the degree k of a node. The distribution of
�(k) is defined by the initial input F�(k). So, the goal remains
to calculate the distribution of the load �(k,t) that a node with
degree k carries at time t .

The key in our derivation is the insight that �(k,t) can be
decomposed into a sum of independent random variables

�(k,t) = �(k,0) +
k∑

j=1

Ln
j (k,t − 1)

= �(k,0) +
Nf (k,t−1)∑

j=1

Lfn
j (k,t − 1), (5)

where Ln
j (k,t − 1) corresponds to the load that a neighbor has

distributed to the focal node before or at time t − 1. In case
that a neighbor is not failed, we simply have Ln

j (k,t − 1) = 0.
Ln

j (k,t − 1) are independent because of the locally treelike
network structure and they are equally distributed according
to pLn(k,t−1)(l). So, their sum is distributed as the k-manifold
convolution p∗k

Ln(k,t−1)(l), which can be numerically efficiently
computed by a Fast Fourier Transformation [32,33]. Thus,
we have reduced the problem to finding the distribution of
Ln

j (k,t − 1).
For the case of constant load models, this view is very

convenient, as the update of the probability distribution of
Ln

j (k,t − 1) is straight forward.
Yet, when we have to keep track of the number Nf (k,t − 1)

of failed neighbors of a node with degree k (and their time
of failure), we employ an alternative view on �(k,t − 1). The
received load can be expressed as sum over loads Lfn

j (k,t − 1)
distributed by Nf (k,t − 1) actually failed neighbors. There,
Lfn

j (k,t − 1) = Ln
j (k,t − 1); Sn

j = 1 is not a normalized ran-
dom variable. pLfn

j (k,t−1)(l) still corresponds to the probability
that the neighbor j is failed and distributes the load l to a node
with degree k. It carries the total probability mass,

π (k,t − 1) = P[�(k) � �n(k,t − 1)]

=
∫

pLfn
j (k,t−1)(l)F�(k)(l) dl, (6)

which corresponds to the probability that a neighbor of a node
with degree k fails before or at time t , i.e., the probability that
the neighbor’s load �n(k,t − 1) exceeds its threshold �(k). is
independent of the number of neighbors Nf (k,t − 1) that have
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failed before or at time t − 1. We only have to respect that the
focal neighbor’s degree D is distributed by pD(d) = p(k,d)
instead of p(k). Furthermore, for the evaluation of the failure
condition of a focal node in Eq. (4), we are only interested in the
case that the neighbor has failed before the focal node so that it
can cause its failure. Consequently, only the remaining D − 1
neighbors of the focal neighbor can have led to the failure of
the focal neighbor. So, we have

π (k,t − 1)

=
∑

d

p(k,d)P

⎡
⎣�(d) � �(d,0) +

d−1∑
j=1

Ln
j (d,t − 2)

⎤
⎦. (7)

Clearly, also the number of failed neighbors Nf (k,t − 1)
depends on π (k,t − 1). Because of the locally treelike network
structure, neighbors fail independently so that Nf (k,t − 1) is
binomially distributed Nf (k,t − 1) ∼ B[k,π (k,t − 1)].

In summary, Eq. (4) can be written as

ρ(t) =
∑

k

p(k)
k∑

f =0

(
k

f

)
[1 − π (k,t − 1)]k−f

×
∫

p�0 ∗ p
∗f

Lfn(k,t−1)[l]F�(k)(l) dl, (8)

where p�0 ∗ p
∗f

Lfn(k,t−1) is the density of �(k,0) +∑f

j=1 Lfn
j (k,t − 1), F�(k) the cumulative distribution function

of a node’s threshold, and π (k,t − 1) the failure probability
of a neighbor of a node with degree k.

B. The load distributed by a failed neighbor

When the loadLfn
j (k,t − 1) that a failed neighbor distributed

before or at time t − 1 changes in time, we have to successively
update it by the load �Lfn

j (k,t) that a neighbor failing exactly
at time t distributes:

pLfn(k,t)(l) = pLfn(k,t−1)(l) + p�Lfn(k,t)(l). (9)

For l > 0, we also have pLn(k,t)(l) = pLn(k,t−1)(l) +
p�Lfn(k,t)(l). Fiber bundle models, for instance, are challenging,
because the load �Ln

j (k,t) that a failing neighbor distributes
at time t depends on the load that this neighbor carries and its
number of functional (surviving) neighbors Ns at the time of
its failure: �Lfn(k,t) = f [�n(t),Ns(t − 1)].

To determine p�Lfn(k,t+1)(l), we thus have to look at the
situation at the time of failure of the focal neighbor, which is
illustrated in Fig. 4. Let’s assume the focal neighbor has degree
D = d. Before its failure at time t + 1, No of its neighbors have
already failed before or at time t − 1 without causing the failure
of the focal neighbor; see also Fig. 3(b). The focal neighbor
carries the load

�n(d,t) = �n(d,0) + �o = �n(d,0) +
No∑
j=1

Lfn
j (d,t − 1),

which fulfills the constraint �n(d,t) < �n(d), as shown in
Fig. 4(a). In the next time step t , Nn additional neighbors fail so
that the focal neighbor receives the load

∑Nn

i=1 �Lfn
j (d,t). This

additional load causes now the failure of the focal neighbor, as
visualized in Fig. 4(a). Furthermore, Na of the neighbors might

0
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fn
(t+1)

l
fn
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l
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FIG. 4. Illustration of the focal neighbor at failure. (a) The plain
blue load comes from neighbors that have failed before or at time t − 1
and did not cause the failure of the focal neighbor. The additional
dotted red load distributed by actually failing neighbors lead to the
failure of the focal neighbor. (b) The focal neighbor distributes the
load �lfn(t + 1) to the focal node in the next time step.

fail at exactly the same time as the focal neighbor so that Ns +
1 = D − No − Nn − Na surviving nodes receive load by the
failing focal neighbor. The precise amount of load lij (t) that is
distributed by a failing neighbor i to a focal neighbor j is model
dependent. Let’s assume that it is defined by a function f [l,n]
that can depend on the l that the failing neighbor carries at
failure and the number n of load receiving nodes or neighbors.
For instance, for the fiber bundle model, f is simply f (l,n) =
l/n. Thus, the failing focal neighbor distributes the load

�Lfn(k,t + 1) = f

⎡
⎣�n(D,0) +

No∑
j=1

Lfn
j (D,t − 1),

×
Nn∑
i=1

�Lfn
i (D,t),Ns + 1

]
(10)

to the focal node, where the variables respect the
constraint �n(D,t)<�n(D)��n(D,t + 1). The variables
(No,Nn,Na,Ns) ∼ M[d−1,po(d,t),pn(d,t),pa(d,t),ps(d,t)]
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follow a multinomial distribution for D = d. So, a
single neighbor fails before or at time t − 1 with
probability po(d,t) = π (d,t − 1), at time t with pn(d,t) =
π (d,t) − π (d,t − 1), at the same time t + 1 as the focal
neighbor (with degree d) with pa(d,t) = π (d,t + 1) − π (d,t),
or survives t + 1 with ps(d,t) = 1 − π (d,t + 1).

Explicitly, this translates into the following update formula:

p�Lfn(k,t+1)(l)

=
∑

d

p(k,d)
∑

n∈Id−1

(d − 1)!

no!nn!na!ns!
ps(d,t)ns pa(d,t)na

×
∫ ∞

x=0
pL(d,0) ∗ p

∗no

Lfn(d,t−1)[f
−1(l,ns + 1) − x]p∗nn

�Lfn(d,t)

× [x]{F�(d)[f
−1(l,ns + 1)]

−F�(d)[f
−1(l,ns + 1) − x]} dx, (11)

for l > 0, where Id−1 = {n = (no,nn,na,ns) ∈ {0, . . . ,d −
1}4|no + nn + na + ns = d − 1} denotes the set of neighbor
indexes with total sum d − 1, while f −1(l,n) is the load that a
node carries at failure after the failure of n neighbors (including
the initial load) and that results in the distribution of the load
l to a neighbor. While ns neighbors survive (additionally
to the focal neighbor) and na fail at the same time, the
failing neighbor carries the total load f −1(l,ns + 1) = z + x,
where z includes the initial load and the load distributed
by no neighbors before or at time t − 1. This did not
cause the failure of the focal neighbor yet, which implies
θ > z. In the present time step, nn new neighbors fail and
distribute x to the neighbor, which causes now its failure;
i.e., θ � z + x. The present failure of the focal neighbor thus
requires �(d) ∈ ]f −1(l,ns + 1) − x,f −1(l,ns + 1)]. This
event occurs with probability {F�(d)[f −1(l,ns + 1)] − F�(d)

[f −1(l,ns + 1) − x]}. Note that we have
∑

l p
∗no

Lfn(d,t−1)

[l] = po(d,t)no and
∑

l p
∗nn

�Lfn(d,t)[l] = pn(d,t)nn . Therefore,

if the response {F�(d)[f −1(l,ns + 1)] − F�(d)[f −1(l,ns +
1) − x]} = 1, it follows that the focal neighbor fails certainly:∑

l p�Lfn(k,t+1)(l) = 1.
Equation (11) determines the iterative update of the cascade

size ρ(t) according to Eq. (8).
To give an overview, we summarize the algorithmic

approach in more efficient form and state all necessary
assumptions.

C. Summary: Local tree approximation

The time evolution of the cascade size ρ(t) on (configuration
model type) random graph ensembles with degree distribution
p(k) (with finite second moment), degree-degree correlations
p(k,d), initial (discrete or discretized) load distribution
p�(k,0), load distribution function f [l,n], and threshold cdf
F�(k) (which can depend on the degree k of a node) starts
initially from

ρ(0) =
∑

k

p(k)
∑

l

p�(k,0)(l)F�(k)(l),

π (k,0) =
∑

d

p(k,d)p�(d,0)(l)F�(d)(l)

Rn(k,f,0,l) = p�(k,0)(l)F�(k)(l) for all f

p�Lfn(k,1)(l) =
∑

d

p(k,d)
d−1∑
ns=0

d−1−ns∑
na=0

(
d − 1

ns

)

× [1 − π (k,0)]ns π (k,0)d−1−ns

× Rn[d,0,0,f −1(l,ns + 1)]

× pLfn(k,1)[l] = p�Lfn(k,1)(l) (12)

and proceeds iteratively for t = 1, . . . ,T as

Ro(k,f,t,l) =
f∑

no=0

(
f

no

)
Rn(k,no,t − 1,·) ∗ p

∗(f −no)
�Lfn(k,t)[l]

Rn(k,f,t,l) = p�(k,0) ∗ p
∗f

Lfn(k,t)[l]F�(k)(l)

cRn(k,f,t) =
∑

l

Rn(k,f,t,l)

ρ(t + 1) =
∑

k

p(k)
k∑

f =0

b(k,f,t)cRn(k,f,t)

π (k,t + 1) =
∑

d

p(k,d)
d−1∑
f =0

b(d − 1,f,t)cRn(d,f,t)

pa(k,t) = π (k,t + 1) − π (k,t),

ps(k,t) = 1 − π (k,t + 1)

b(k,f,t + 1) =
(

k

f

)
[1 − π (k,t + 1)]k−f

p�Lfn(k,t+1)(l) =
∑

d

p(k,d)
d−1∑
ns=0

∑
n∈Id−1

× (d − 1)!

n!na!ns!
ps(k,t)ns pa(k,t)na

× {Rn[d,n,t,f −1(l,ns + 1)]

− Ro[d,n,t,f −1(l,ns + 1)]}
pLfn(k,t+1)[l] = pLfn(k,t)[l] + p�Lfn(k,t+1)(l), (13)

for all degrees k and failed neighbors f = 0, . . . ,k. The index
n = no + nn in the update of p�Lfn(k,t+1)(l) runs through all
possible numbers of failed neighbors.

Despite the fact that the involved load distributions are
discrete, we approximate the distributions on an equidistant
grid in our numerical calculations. We assume that the function
f −1(l,ns + 1) takes care of assigning the probability mass
to the appropriate grid bin. The discretization allows us to
compute the convolutions of load distributions by fast Fourier
transformation. The previous integrals simplify thus to actual
sums over discrete values of distributed load.

Next, we specify the approach for two examples, i.e., the
introduced fiber bundle and constant load models.

D. Fiber bundle model

The fiber bundle model requires the knowledge of the load
�n(k,t) carried by a focal neighbor of a node with degree k,
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as this is distributed among its D − No − Nn − Na functional
network neighbors at the time of load distribution. Precisely,
Eq. (10) specifies as

�Lfn(k,t + 1) =
⎡
⎣�n(D,0) +

No∑
j=1

Lfn
j (D,t − 1)

+
Nn∑
i=1

�Lfn
i (D,t)

]
/[D − No(k,t − 1)

− Nn(k,t) − Na(k,t + 1)],

with �n(k,t) < �n(D) � �n(k,t + 1). Therefore, we have
f (l,n) = l/n, and thus f −1(l,ns + 1) = l(ns + 1) in Eqs. (12)
and (13).

In our numerical experiments, for simplicity, we further fo-
cus on degree uncorrelated networks, i.e., p(k,d) = p(d)d/z,
where z = ∑

d dp(d) denotes the average degree. In conse-
quence, the load Lfn(k,t + 1) and the failure probabilities
π (k,t) become independent of the degree k.

E. Constant load models on weighted network ensembles

Constant load models are simpler to handle, as the load
distributed by a neighbor with given degree d to a node

with degree k does not depend on the cascade history. In
consequence, the function f (l,n) is independent of the current
load l that the failing neighbor carries and of the number of
functional load receiving neighbors n. The update of the load
distribution pLfn(k,t+1)[l] simplifies thus considerably and does
not require us to remember the failure time of a neighbor.
Instead, f (l,n) is defined a priori by the link weights following
the probability distribution pW (d,k)(w). The perspective of
updating probability distributions still allows us to formulate
the local tree approximations by Refs. [6,20] more efficiently
and to extend the approach to also capture degree-degree
correlations. Our starting point is Eq. (5).

Initially, all nodes with thresholds � � 0 fail with proba-
bility ρ(0) = ∑

k p(k)F�(k)(0) and neighbors with probability
π (k,0) = ∑

d p(k,d)F�(d)(0) and distribute the load,

pLn(k,t)(0) = [1 − π (k,0)] +
∑

d

p(k,d)F�(d)(0)pW (d,k)(0),

pLn(k,t)(l) =
∑

d

p(k,d)F�(d)(0)pW (d,k)(l) for l �= 0. (14)

Then, each further time step t + 1 follows from t by updating
the load Ln(k,t) that is distributed by a neighbor to a node with
degree k. The full dynamics are captured by

P(Sn(t) = 1|D = d) =P

⎡
⎣�(d) �

d−1∑
j=1

Ln
j (d,t − 1)

⎤
⎦ =

∫
p

∗(d−1)
Ln(d,t−1)(l)F�(d)(l) dl,

π (k,t) =
∑

d

p(k,d)P(Sn = 1|D = d),

pLn(k,t)(0) = [1 − π (k,t)] +
∑

d

p(k,d)P[Sn(t) = 1|D = d]pW (d,k)(0),

pLn(k,t)(l) =
∑

d

p(k,d)P[Sn(t) = 1|D = d]pW (d,k)(l) for l �= 0,

ρ(t + 1) =
∑

k

p(k)
∫

p∗k
Ln(k,t)(l)F�(k)(l) dl. (15)

We compute explicitly the failure probability
P[Sn(t) = 1|D = d] of a focal neighbor with degree d

and the failure probability π (k,t) of a focal neighbor that is
connected to a node with degree k. Then, a neighbor does
not distribute any load [Ln(k,t) = 0] if it is either not failed
[with probability 1 − π (k,t)] or is failed but the link weight
is zero [W (d,k) = 0]. It has degree d with probability d and
is additionally failed with probability P[Sn(t) = 1|D = d]. In
this case, it distributes the load l with probability pW (d,k)(l).
This fully determines the load distribution, which allows to
calculate the cascade size according to Eqs. (4) and (5).

IV. COMPARISON OF NUMERICAL LOCAL TREE
APPROXIMATIONS WITH SIMULATION RESULTS

As a proof of concept, we compare the results of numerical
local tree approximations (LTA) with Monte Carlo simulations
on uncorrelated Poisson random graphs with degree distri-

bution p(k) = e−zzk/k! and p(k,d) = p(d)d/z. In principle,
our derivations are exact for any degree distribution with
finite second moment, for instance, power laws with finite
cutoff degree. However, in practice, for large maximum degree
kmax > 80, our algorithm also requires kmax-fold convolutions
that become numerically unstable for small probability mass
updates [π (t + 1) − π (t)]. In such cases, we have to rely on
approximate algorithms for the failure probabilities of high
degree nodes that go beyond this manuscript.

For uncorrelated networks, the numerical iteration simpli-
fies, as the failure probability of a neighbor π (k,t) and the
distributed load �Lfn(k,t) become independent of the degree
k of the load receiving node. In this set-up, our LTA requires
negligible computational resources and converges in the range
of a few minutes (usually less than a minute), while simulations
often require several hours.

Our simulations calculate the average cascade size over 500
independent realizations of networks consisting of N = 105
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FIG. 5. Comparison of numerical local tree approximations
(LTA) and simulations for the fiber bundle model and Poisson random
graphs with average degree z = 3, where lines represent the LTA
and symbols in the same color correspond to simulation results. The
thresholds � are normally distributed with mean λ0 + μ and standard
deviation σ [� ∼ N (λ0 + μ,σ 2)]. The initial load for all nodes is
λ0 = 0.5. (a) We show the cascade size evolution. Black circles belong
to (μ,σ ) = (0.3,0.2), dark blue plus signs + to (μ,σ ) = (0.5,0.5).
Light blue triangles depict (μ,σ ) = (0.3,0.7), while red and the
symbol x belong to (μ,σ ) = (0.7,0.3). (b) Final cascade size after
T = 300 fixed point iterations. Black circles belong to σ = 0.2 and
light blue triangles to σ = 0.3. Dark blue plus signs + depict σ = 0.5,
while red and the symbol x belong to σ = 0.7.

nodes. As in Refs. [5,23], we assume that all nodes are equipped
with the same initial deterministic load λ0 and that the thresh-
olds follow a normal distribution independent of the degree of a
node, i.e., � ∼ N (μ + λ0,σ

2). Correlations between degrees
and thresholds are further analysed in Ref. [34].

Two constant load models have been analyzed by Ref. [6]
in the described set-up. As the results of the described LTA
coincide with the approach presented there, we only focus on
fiber bundle models here. Figure 5 shows perfect agreement
between our simulations and our LTA. The full cascade size
evolution is captured as indicated by Fig. 5(a). The convergence
speed to the final state and the general shape of the cascade
evolution can differ substantially for different threshold pa-
rameters. Interestingly, most failures happen only after a few
time steps. Figure 5(b) compares the final cascade sizes for
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FIG. 6. Final fraction of failed nodes ρ for the fiber bundle
model after 50 fixed point iterations for Poisson random graphs (with
average degree z) obtained by an LTA. ρ is color coded. The darker
the color, the bigger is the cascade size. Each node receives the
initial load λ0. The thresholds �i are independently distributed. (a,
b) Normally distributed thresholds with mean μ + λ0 and standard
deviation σ [� ∼ N (μ + λ0,σ

2)]. (a) λ0 = 0.3, (b) λ0 = 0.5. (c)
Uniform threshold distribution � ∼ U [0,1].

several threshold parameters. Also the sharp regime shifts are
accurately computed by our numerical calculations.

For completeness, we provide several phase diagrams for
the final cascade size to give an overview of the typical
influence of the model parameters. Figures 6(a) and 6(b) show
normally distributed thresholds for two different values of the
initial load λ0. This extra degree of freedom, λ0, in the model
clearly influences the size of the region of big cascade sizes,
but does not lead to a qualitative change of its form. As for
fully connected networks [5], we observe a sharp regime shift
for decreasing average threshold μ + λ0 and mediocre values
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of the standard deviation σ . Interestingly, for increasing σ the
final (average) cascade size declines again for medium values
of μ. We have also tested uniformly distributed thresholds, as
they are often considered in fiber bundle models in the literature
[15]. Figure 6(c) explores the role of the initial load λ0 and the
average degree z for uniformly distributed thresholds. For big
enough initial load λ0, almost the whole system breaks down,
while ρ is negligibly small for for small enoughλ0. The average
degree z influences the outcome only in a small region of λ0.

In addition to the cascade size evolution, the LTA provides
further interesting information about the time of failure of
nodes conditional on their degree. This allows us to analyze,
for instance, which nodes are the main spreaders of failures
and when they fail in the course of a cascade. Interventions to
reduce or enhance the cascade size can use this information
to target specific nodes. In fiber bundle models, the goal is
usually to prevent further failures. This can, for instance, be
either achieved by saving nodes whose failure would cause
many subsequent failures or by forcing them to fail early before
they can accumulate a high amount of load to spread to their
neighbors in case of a later failure.

Both, the failure probability of a node exactly at time t

conditional on its degree k and the probability that a node
fails at time t and has degree k give insights about possible
intervention strategies. The conditional failure probability can
be interpreted as the fraction of nodes with degree k that fail
exactly at time t with respect to all nodes with degree k in the
infinitely large network:

P[S(t) = 1|K = k] − P[S(t − 1) = 1|K = k]

= P

⎡
⎣�(k) �

k∑
j=1

Ln
j (k,t − 1)

⎤
⎦

− P

⎡
⎣�(k) �

k∑
j=1

Ln
j (k,t − 2)

⎤
⎦. (16)

The probability that a node fails at time t and has degree k is

P[S(t) = 1; K = k] − P[S(t − 1) = 1; K = k]

= p(k){P[S(t) = 1|K = k] − P[S(t − 1) = 1|K = k]},
(17)

which can also be interpreted as fraction of nodes with degree
k and failure time t with respect to all nodes in the network.

Both probabilities are illustrated in Fig. 7 for the studied
fiber bundle model and specific parameters. Early on, the
failure probability grows faster for nodes with a higher degree
[Fig. 7(b)]. Initially, all nodes fail with the same probability, but
already at t = 1, when the load distribution starts, high degree
nodes are stronger impacted by a cascade. Clearly, nodes with
a higher degree have a higher failure risk, since more neighbors
can possible fail and distribute load to them. Yet, they tend to
fail early and (almost) completely. At later times, especially
nodes with a smaller degree tend to fail. Since these make up
for the majority of nodes in the network, their failure would
need to be prevented in particular.
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FIG. 7. Time evolution of failures for Poisson random graphs
(with average degree z = 3) obtained by an LTA for the fiber bundle
model with initial load λ0 = 0.5. The thresholds are independently
normally distributed with mean μ = 0.3 + λ0 and standard deviation
σ = 0.7. The color indicates the time of failure of the respective
fraction of failed nodes. (a) Probability that a node has degree k and
is failed at the time indicated by the color (and position of the bar).
Upper bars correspond to later failure times. (b) Probability that a
node drawn uniformly at random from all nodes with degree k fails
at the time indicated by the color (and position of the bar). The light
blue color (top bar) corresponds to nodes that remain functional till
the end of a cascade.

V. CONCLUSIONS

Our main contribution in this paper is a methodological
one. We have presented a local tree approximation for specific
fiber bundle models [5,19,23] on random graph ensembles
with prescribed degree distribution and degree-degree corre-
lations. Additionally, we have extended general constant load
cascade models on weighted network ensembles [6] to capture
degree-degree correlations. Our derivations are exact in the
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thermodynamic limit of infinite network size but approximate
also large finite systems well.

Furthermore, we highlight that we can capture the full
cascade size dynamics and not only the final cascade outcome.
This is of great importance when interventions or other influ-
encing factors shall be studied over time. Or early warning
signals might be found in the growth behavior or history of the
average cascade. However, it is worth noting that the dynamics
in our examples span only a few time steps.

The analytic time resolution additionally allows to analyze
the failure probability of nodes at specific times with respect
to their degree. The role that hubs or leaves play in the
amplification of cascades can be studied to inspire further
strategies to prevent or enhance the growth of cascades.

In this work, we have mainly provided a proof of concept
that our derivations are exact. For the presented fiber bundle
and constant load models, our framework directly enables the
further study of degree-degree correlations, other degree and
threshold distributions, correlations between such a threshold
and degree distribution and other forms of intervention.

In fact, our framework applies to a much broader category of
cascade models. In comparison with known branching process
approximations, we have introduced a perspective shift to-
wards the iterative update of suitable probability distributions.
These distributions belong to random variables that describe
the impact of nodes on their neighborhood that have failed
at any point in the past and respect the Markovian nature
of the studied random processes. Several models that involve
accumulation processes become analytically tractable this way.
Our work bears potential to inspire the analytic investigation
of even further classes of processes on networks.
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