
When is a Network a Network? Multi-Order Graphical Model
Selection in Pathways and Temporal Networks

Ingo Scholtes
ETH Zürich

Chair of Systems Design
Weinbergstrasse 56/58

CH-8092, Zürich, Switzerland
ischoltes@ethz.ch

ABSTRACT
We introduce a framework for the modeling of sequential data cap-
turing pathways of varying lengths observed in a network. Such
data are important, e.g., when studying click streams in the Web,
travel patterns in transportation systems, information cascades in
social networks, biological pathways, or time-stamped social inte-
ractions. While it is common to apply graph analytics and network
analysis to such data, recent works have shown that temporal cor-
relations can invalidate the results of such methods. This raises a
fundamental question: When is a network abstraction of sequential
data justified? Addressing this open question, we propose a frame-
work that combines Markov chains of multiple, higher orders into
a multi-layer graphical model that captures temporal correlations
in pathways at multiple length scales simultaneously. We develop a
model selection technique to infer the optimal number of layers of
such a model and show that it outperforms baseline Markov order
detection techniques. An application to eight real-world data sets
on pathways and temporal networks shows that it allows to infer
graphical models that capture both topological and temporal cha-
racteristics of such data. Our work highlights fallacies of network
abstractions and provides a principled answer to the open question
when they are justified. Generalizing network representations to
multi-order graphical models, it opens perspectives for new data
mining and knowledge discovery algorithms.

1 INTRODUCTION
The modeling and analysis of sequential data is an important task
in data mining and knowledge discovery, with applications in text
mining, click stream analysis, bioinformatics and social network
analysis. An interesting class of data relevant in these contexts are
those that provide us with collections of observed pathways, i.e.
multiple (typically short) sequences of vertices traversed by paths
in an underlying graph or network. Examples include traces of
information propagating in (online) social networks, click streams
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of users in hyperlinked documents, biochemical cascades in bio-
logical signaling networks, or contact sequences emerging from
time-stamped data on social interactions.

The graph topology underlying these systems has enticed re-
searchers and practitioners to apply graph analytics and network
analysis, e.g., tomake statements about node centralities, cluster and
community structures, or subgraph and motif patterns. While these
methods undoubtedly have merits, recent works have voiced con-
cerns about their overly naive application to complex data [2, 43].
In particular, network-analytic methods make the fundamental as-
sumption that paths are transitive, i.e. that the existence of paths
from a to b and from b to c implies a transitive path from a via b to
c . As shown recently, non-trivial temporal correlations in pathways
and temporal networks can invalidate this assumption [15, 20]. As a
result, network-based modeling and mining techniques yield wrong
results, e.g., about cluster structures, the ranking of nodes, or dy-
namical processes such as information propagation. Addressing
this issue, recent works have thus argued for higher-order network
models that capture both temporal and topological characteristics
of sequential data [21, 22, 26, 27, 38, 41].

Contributions Going beyond these prior works, we advance
the state-of-the-art in sequential data mining as follows: (1) We
introduce a multi-order graphical modeling framework tailored to
data capturing multiple variable-length pathways in networks. Our
approach combines multiple higher-order Markov models into a
multi-layer model consisting of De Bruijn graphs with multiple
dimensions. Different from previous approaches, this allows us to
capture temporal correlations with multiple correlation lengths
simultaneously. (2) We introduce a model selection technique that
accounts for the structure of pathway data and for topological con-
straints imposed by the underlying graph that were neglected in
prior works. Using synthetic and real-world data, we show that this
approach dramatically improves the modeling of pathways and tem-
poral networks, opening new perspectives for the analysis of click
streams, biological pathways and time-stamped social networks.
(3) Using PageRank as a case study, we show that correlations in
sequential data can invalidate the application of graph-analytic
methods. We finally demonstrate that our framework allows to
generalize such methods to higher-order models that capture both
topological and temporal patterns in a simple, static representation.

Our work not only challenges naive applications of network-
analytic methods to sequential data. It also provides a principled
method to (i) decide when a network abstraction of such data is
justified, and (ii) infer optimal higher-order graphical models that
can be used to generalize network analysis techniques.
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2 RELATEDWORK
The analysis of sequential data has important applications in areas
like natural language processing, data compression, behavioral
modeling or bioinformatics [6, 13, 42]. Considering the focus of
this paper, here we limit our review of the relevant literature to
works addressing the modeling of (i) sequential data on pathways
in graphs, or (ii) time-stamped data on temporal or dynamic graphs.

Click streams or user trails in the Web are one example for
pathway data, with important applications in user modeling and in-
formation retrieval. A number of recent works have studied Markov
chain models of human click paths [4, 14, 23, 29, 35, 37]. Chierichetti
et al. [4] study whether the Markovian assumption underlying mo-
dels that only take into account the topology of the underlying Web
graph is justified. They find that accounting for non-Markovian
characteristics, which are due to correlations in the ordering of
traversed pages, improves the prediction performance of a variable-
orderMarkov chainmodel. Similarly,West and Leskovec [35] model
navigation paths of users playing the Wikispeedia game, finding
that incorporating correlations not captured by the topology of
the Wikipedia article graph improves the performance of a target
prediction algorithm. Taking a model selection approach, Singer
et al. [29] argue that higher-order Markov models are not justified
for click stream data at the page level, while they are warranted for
coarse-grained data at a topic or category level.

Apart from click streams, the influence of order correlations
has also been studied in other types of pathway data such as, e.g.,
human travel patterns [19, 21, 22, 27], knowledge flow in scientific
communication [21], or cargo traces in logistics networks [38]. Like
for click streams, it was found that correlations in real data on
networked systems do not justify the Markovian assumption im-
plicitly made by typical graph-based modeling techniques. Similar
results have been obtained for high-frequency data on dynamic or
temporal graphs, i.e. relational data that capture the detailed timing
and ordering of relations. Thanks to improved data collection and
sensing technology, such data are of growing importance in various
settings. Important applications include, e.g., cluster detection in
temporal graphs capturing economic transactions or social inte-
ractions [16, 22], ranking nodes in dynamic social networks [26, 40],
or identifying frequent interaction patterns in communication net-
works [39]. Despite their importance, the analysis of such data is
still a considerable challenge. In particular, it has been shown that
temporal correlations in the sequence of time-stamped interacti-
ons shape connectivity, cluster structures, node centralities, and
dynamical processes in temporal networks [12, 15, 20, 22]. This
questions applications of data mining techniques based on time-
aggregated or time-slice abstractions, which neglect the ordering
of interactions.

In summary, these works show that autocorrelations in pathways
and temporal networks hinder topology-basedmodeling techniques,
with important consequences for sequential pattern mining and
graph analytics. Higher-order network modeling techniques, which
build on higher- or variable-order Markov models, have been pro-
posed to address this problem [19, 21, 22, 26, 27, 38]. While there is
agreement about the need for such techniques, principled methods
to decide (i) when the use of network-based methods is invalid
and (ii) which higher-order model should be used for a given data

set were investigated only recently [19, 29]. Moreover, existing
works have mostly focused on modeling techniques that account
for temporal correlations at a single fixed length, while real-world
sequential data are likely to exhibit multiple correlation lengths
simultaneously. Finally, using state-of-the-art Markov chain in-
ference techniques, previous works did not account for special
characteristics of data on multiple, independent paths with varying
lengths that are observed in a known graph topology. Proposing a
model selection technique tailored to such sequential data, this pa-
per addresses this research gap. Interpreting time-stamped data on
temporal networks as one possible source of pathway data that can
be modeled with our framework, we further highlight interesting
and previously unknown relations between problems addressed in
sequence modeling, pattern mining and (dynamic) graph analysis.

3 PRELIMINARIES
We first introduce the problem addressed in our work and pro-
vide some preliminaries on (higher-order) Markov chain models of
pathway data. Assume we are given a multi-set S = {p1, . . . ,pN }
with N independent observations of sequences pi , representing
paths of varying lengths li ≥ 0 in a graph G = (V ,E) with ver-
tices V and (directed) edges E ⊆ V × V . Each of these paths
pi = (v0 → v1 → . . . → vli ) is an ordered tuple of li + 1 ver-
tices such that (vi ,vi+1) ∈ E for all i ∈ [0, li − 1]. The length li of
path pi is the number of edges that it traverses, i.e. a (trivial) path
p = (v0) consisting of a single vertex has length zero. Depending on
the context, S could capture click paths of users in the Web, chains
of molecular interactions in a cell or itineraries of passengers in
a transportation network. We further assume that the underlying
graph G captures topological constraints such as, e.g., hyperlinks
between Web documents influencing click paths, molecular structu-
res limiting possible reactions, or possible routes in a transportation
network.

Interpreting vertices as categories, we can view paths as categori-
cal sequences and we can consider a probabilistic model that provi-
des a probability P(S) to observe a given multi-set S . Higher-order
Markov chains are a powerful class of probabilistic models, with
applications in data analysis, inference and prediction tasks [1, 31].
Considering paths as multiple sequences of random variables, we
can define a discrete time Markov chain of order k over a discrete
state space V that assigns probabilities to each consecutive vertex.
For this, we assume that the Markov property holds, i.e. for each vi

P(vi |v0 → . . .→ vi−1) = P(vi |vi−k → . . .→ vi−1) (1)
where k is the “memory” of the model. I.e., the i-th vertex on a path
depends (only) on the k previously traversed vertices.

We call P (k ) := P(vi |vi−k → . . . → vi−1) the transition proba-
bility of a k-th order Markov chain. It probabilistically generates
sequences by means of repeated transitions between vertices, each
extending a sequence by a single vertex depending on the k previ-
ous vertices. For k = 0 we obtain transition probabilities P (0)(vi ),
i.e., each step vi is independent of previous steps. Importantly, the
independence assumption of such a zero-order model does not al-
low us to selectively generate paths constrained to a given graph,
since any sequence of vertices with non-zero probabilities can be
generated, independent of whether it corresponds to a path in the
underlying graph or not. For k = 1, the model keeps a memory of
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one step, i.e., the probability P (1)(vi |vi−1) to “move” to vertex vi
depends on the “current” vertexvi−1. The dyadic dependencies cap-
tured in such a first-order model allow us to assign zero probabilities
P (1)(vi |vi−1) = 0 to those transitions for which no corresponding
edge exists, i.e. (vi−1,vi ) < E. Hence, first-order models are the
simplest models able to generate paths constrained to a graph. For
k > 1, a k-th order model can additionally capture higher-order
dependencies, i.e. correlations in the sequence of vertices that go
beyond topological constraints imposed by the underlying graph.

An important (and non-trivial) question in the study of catego-
rical sequence data is which order k of a Markov chain is needed
to model (or summarize) a given data set. It naturally relates to
prediction and compression tasks and has received attention from
researchers in data mining, signal processing and statistical infe-
rence. Specifically, higher-order Markov chain models provide a
foundation for (Bayesian) model selection and inference techniques
that are based on the likelihood function [1]. For a given transition
probability P (k ) of a k-th order modelMk , the likelihood L(Mk |p)
under an observed path p = (v0 → . . .→ vl ) is given as:

L(Mk |v0 → . . .→ vl ) =
l∏

i=k

P (k )(vi |vi−k → . . .→ vi−1) (2)

For our scenario of a multi-set set S of (statistically independent)
paths, the likelihood of a k-th order modelMk is then

L(Mk |S) =
N∏
j=1

L(Mk |pj ) (3)

where pj is the j-th observed path in S . This allows us to perform a
maximum likelihood estimation (MLE) of transition probabilities
P̂ (k) for any order k based on a set of observed pathways S . In other
words, we can “learn” the parameters of a k-th order graphical
model based on the frequencies of paths in a data set. To formally
define this, we first introduce the notion of a sub path. For two
paths p = (p0 → . . . → pk ) and (q = q0 → . . . → ql ) with k ≤ l ,
we say that p is sub path of q with length k (p ⊑ q) iff ∃a ≥ 0 such
that qi+a = pi for i ∈ [0,k]. In other words: p ⊑ q iff path p occurs
in (or is equal to) path q. With this, the transition probabilities P̂ (k )
of a k-th order model that maximize likelihood can be calculated as

P̂ (k)(vi |vi−k . . .→ vi−1) =
|{(vi−k . . .→ vi ) ∈ Sk }|∑

w ∈V |{(vi−k . . .→ vi−1 → w) ∈ Sk }|
(4)

where Sk is the multi-set of sub paths of length k of S , i.e. we define
Sk := {p ∈ V k : ∃q ∈ S : p ⊑ q}. Hence, we infer the transition
probabilities of a k-th order Markov chain based on the relative
frequencies of sub paths of length k .

We conclude this section by commenting on the relation between
higher-order Markov chains and graph abstractions of pathway
data. For k = 1, inferred probabilities P̂ (1) capture relative frequen-
cies of traversed edges (i.e. sub paths of length one) in the graph.
Such a first-order model is given by a weighted graph, where edges
capture the topology and weights capture relative frequencies at
which paths traverse edges. For k > 1, transition probabilities are
calculated based on relative frequencies of longer paths, capturing
correlations in sequences of vertices that are not due to the graph to-
pology. Such higher-order models can be visualized by a construction
that resembles high-dimensional De Bruijn graphs [5]. It is based on

S = {(B → D), (B → C),
(D → A), (D → B), (A → B)
(B → C → A), (A → B → D)
(D → A → B), (B → D → B)
(C → A → B), (D → B → D)
(B → D → A), (A → B → C)

(B → D → B → D)
(D → A → B → D)
(A → B → C → A)

(A → B → D → B → D)
(D → B → D → B → D)

(C → A → B → D → B → D)
(B → D → B → D → B → D), . . . }

k=1

k=2

k=3

Figure 1: Example for three layers of (higher-order) graphi-
cal models (right) for toy example S of paths (left) in a graph
with verticesV = {A,B,C,D,E} connected by six edges (G(1)).

the common representation of Markov chains of order k on state
space V as first-order Markov chains on an extended state space
V k . Each transition P(vi |vi−k → . . . → vi−1) that corresponds
to a path of length k is represented by a single edge between two
k-th order vertices (vi−k , . . . ,vi−1) and (vi−k+1, . . . ,vi ) in an ex-
tended state space V k . The “memory” of length k is then encoded
by higher-order vertices and each transition shifts it by one vertex.

This provides graphical modelsG(k ) for different orders k , where
the topology of the first-order model G = G(1) corresponds to
commonly used network abstractions. For k > 1 we obtain higher-
order graphical models G(k ), which represent both the topology
of the graph as well as correlations in the sequence of vertices
not captured by G [27]. A k-th order graphical model particularly
encodes deviations from the path transitivity assumption that result
from the statistics of (sub) paths of length k , while its graphical
interpretation corresponds to the assumption that paths longer than
k are transitive. Hence,k-th order graphsG(k ) can be seen as natural
generalization of network abstractions for sequential data. They
account for correlations that invalidate the transitivity assumption
made by a first-order model. Fig. 1 shows an illustrative example
for a multi-set S of paths (left) and the corresponding higher-order
graphical models G(k ) for different orders k ≥ 1.

4 MULTI-ORDER GRAPHICAL MODELS
We now introduce the multi-order graphical modeling framework
that constitutes the main contribution of our work. It relies on
the capability of higher-order models to capture correlations in
sequential data that are neglected by common graph or network
abstractions. Going beyond previous works, we (i) infer multi-layer
graphical models that consider multiple correlation lengths simul-
taneously and (ii) provide a statistically principled answer to the
question which order k of a graphical model G(k ) should be used
to analyze a given data set.

While it is tempting to address this problem with standard Mar-
kov chain inference and order detection techniques, it is important
to take into account special characteristics of pathway data. We
first observe that the likelihood calculation for a k-th order Markov
chain neglects, by construction, the first k vertices on a path (cf.
Eq. 2). This is not an issue for a single long sequence. However, it
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poses problems when modeling large numbers of (typically short)
paths. Depending on the distribution of path lengths, the number of
paths entering the likelihood calculation in Eq. 3 is likely to decrease
as the order k increases, which complicates model selection. This
problem is often addressed by concatenating multiple pathways to
a single sequence, possibly separated by a delimiter symbol. Howe-
ver, as we show later, this introduces issues that question the use
of standard sequence mining techniques.

We address these issues by means of graphical models that com-
bine multiple layers of Markov chain models of multiple orders to a
single multi-order model. For this, we first infer multiple k-th order
modelsMk for k = 0, . . . ,K up to a maximum order K as described
in section 3, i.e. we “learn” the parameters of each k-th order model
Mk using Eq. 4. We then combine them into a multi-order graphical
model M̄K , where each model layer captures correlations in the
sequence of vertices at a specific length k . For the resulting model,
we then iteratively define the probability P̄ (K ) to generate a path
(v0 → . . .→ vl ) of length l based on transition probabilities P (k )
of all model layers k up to maximum order K as:

P̄ (K )(v0 → . . .→ vl ) =
K∏
k=0

P (k ) (vk |v0 → . . .→ vk−1)

l∏
i=K+1

P (K ) (vi |vi−K → . . .→ vi−1)

(5)

The first product multiplies the transition probabilities P (k ) in K +1
model layers with increasing order and prefix length k = 0, . . . ,K .
For paths longer than the maximum order K , the second product
additionally accounts for l − K transitions in the layer with the
maximum order K . To illustrate this, consider the probability of
a path p = (v0 → v1 → v2 → v3 → v4) of length l = 4 in a
multi-order model with maximum order K = 2. From Eq. 5, we get

P̄ (2)(p) =P (0)(v0) · P (1)(v1 |v0) · P (2)(v2 |v0 → v1)·

P (2)(v3 |v1 → v2) · P (2)(v4 |v2 → v3)
where each of the first three products corresponds to a single tran-
sition in the model layer k with increasing order and prefix length
k . The last two products are due to two additional transitions in
the layer with maximum order K = 2 and a prefix length of two.

Based on Eq. 5, we define the likelihood L(M̄K ) of a multi-order
model with maximum order K under a set S of observed paths as

L(M̄K |S) =
N∏
j=1

P̄ (K )(pj ) (6)

where pj is the j-th path in S . We can then perform a maximum
likelihood estimation analogous to Eq. 4. Here we use sub paths
with length exactly k to estimate transition probabilities of layers
k < K , while paths with length longer or equal than K are used to
estimate transition probabilities of layer K . We obtain a multi-layer
model for paths of varying lengths, each layer being a higher-order
graphical model that captures correlations at length k (cf. Fig. 1).

4.1 Detection of optimal maximum order
The modeling framework above allows to develop a method to infer
the optimal maximum orderKopt of a multi-order model for a given
set of pathways S . That is, we address the important question how

many layers of higher-order graphical models are needed to study a
given data set: An optimal maximum order Kopt = 1 signifies that
pathways do not contain correlations that break the transitivity
assumption made when using a first-order graphical model. This
correspond to situations where the structure (and frequency) of
observed paths can be explained based on the underlying (first-
order) network. We argue that in this (and only in this) case, the
application of network-analytic methods is justified. For data with
Kopt > 1, their application is misleading since order correlations
break the transitivity of paths in the first-order network [20, 26, 27].
In other words, for Kopt > 1 the observed pathways invalidate
the assumption of path transitivity implicitly made by standard
network-analytic methods. We will show that a generalization of
these methods to the higher-order graphs that constitute the layers
of our multi-order model provides a simple yet efficient way to
analyze data that do not warrant standard network abstractions.

Our method to infer the optimal maximum order of a multi-order
model is based on the likelihoods of candidate multi-order models,
which combine higher-order models up to different maximum or-
ders K (cf. Eq. 6). Clearly, simply maximizing L(M̄Kopt |S) would
overfit the data since the inclusion of additional model layers tri-
vially increases the likelihood at the expense of increased model
complexity. Applying Occam’s razor, we are instead interested in a
multi-order graphical model that balances model complexity and
explanatory power for the observed set of pathways.

Several techniques to avoid overfitting higher-order Markov
chains have been proposed and methods based on the Bayesian
or Aikake Information Criterion are frequently used for this pur-
pose [11, 28, 31]. However, previous works have not accounted for
special characteristics of pathway data, which is why we introduce
a different approach that utilizes the nested structure of multi-order
models. For this, consider two multi-order models M̄K and M̄K+1,
which combine higher-order graphical models up to order K and
K + 1 respectively. We consider the model M̄K as the null model,
while M̄K+1 provides the alternative model. The likelihood ratio
L(M̄K |S )
L(M̄K+1 |S )

captures how much more likely S is under the (more
complex) model M̄K+1 compared to the (simpler) null model M̄K .
It also allows to calculate a p-value that can be used to reject the
alternative model M̄K+1 in favor of model M̄K .

To calculate this p-value we must generally derive the distribu-
tion of likelihood ratios, which is possible only in simple cases. We
can avoid this by considering that M̄K and M̄K+1 are nested, i.e.
the model M̄K is a special case in the parameter space of the more
complex model M̄K+1. This follows from the fact that probabilities
of paths of length k + 1 in layer k + 1 can be set to the probabilities
resulting from two transitions in the layer k . This nestedness allows
to apply Wilk’s theorem [36], which states that the distribution of
likelihood ratios between two nested models M̄K and M̄K+1 asymp-
totically follows a chi-squared distribution χ2(x), where x is the
difference in the degrees of freedom between M̄K+1 and M̄K . With
this, we calculate the p-value of the null hypothesis M̄K using the
cumulative distribution function of the chi-squared distribution as

p = 1 −
γ

(
d (K+1)−d (K )

2 ,− log L(M̄K |S )
L(M̄K+1 |S )

)
Γ

(
d (K+1)−d (K )

2

) (7)
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where d(K) are the degrees of freedom of model M̄K , Γ is the Euler
Gamma function and γ is the lower incomplete gamma function.

The degrees of freedom of a Markov chain of order k over a state
space |V | are commonly given as |V |k (|V | − 1) [1, 11, 29, 31]. This
reflects that (i) the transition matrix of a Markov chain of order
k has |V |k+1 entries, and (ii) the rows in this matrix must sum to
one. The latter reduces the free parameters by one for each of the
|V |k rows, which yields the above expression. While this has been
used to detect the Markov order in pathway data, this approach
is not suitable for pathways that are constrained by a given (and
known) network topology. It particularly neglects constraints due
to the fact that not every sequence of vertices is a feasible path in
a given network. As a simple example, for a graph consisting of
two vertices A and B and a single directed edge (A,B), the vertex
sequence (A → B → A) is not a valid path of length two, even
though the transition matrix of a second-order model contains a
(zero) entry for the transition between (second-order) vertices (A,B)
and (B,A). Hence, rather than calculating the degrees of freedom of
a k-th order model based on the size of a transition matrix, we must
only account for entries that correspond to paths in the underlying
graph. The degrees of freedom of the k-th layer of a multi-order
model thus depend on the number of different paths of length k in
a given graph G. For a binary adjacency matrix A of G, the entries
(Ak )i j in the k-th power of A count different paths of length k

from i to j. Summing over the entries (Ak )i j thus gives the total
number of paths with length k . In the transition matrix of a k-th
order model, we are free to set the entries corresponding to these
paths, subject to the constraint that the matrix rows must sum to
one. This reduces the degrees of freedom of a k-th order model by
one for each non-zero row in the transition matrix. We thus get∑

i, j
(Ak )i j −

∑
j
Θ

(∑
i
(Ak )i j − 1

)
(8)

where the sum
∑
Θ(·) over the Heaviside function Θ counts non-

zero rows in Ak . For a fully connected graph, the topology does
not impose constraints on the possible paths of length k and in
this case we recover the degrees of freedom of a standard Markov
chain of order k .1 Since a multi-order model combines higher-order
models from k = 0 up to maximum order K , we sum the degrees of
freedom of a zero-order model (|V | − 1) with Eq. 8 for k ≥ 1:

d(K) = (|V | − 1) +
K∑
k=1


∑
i, j

(Ak )i j −
∑
j
Θ

(∑
i
(Ak )i j − 1

) (9)

The difference between the degrees of freedomd(K) of amulti-order
model and standard higher-order Markov chains has important con-
sequences for model selection: For sparse graphs (where a small
fraction of possible edges exists) d(K) calculated according to Eq. 9
increases considerably slower than the exponential increase ex-
pected for standard Markov chain models. This counters the curse
of dimensionality, which has previously hindered the application
of higher-order Markov models to pathway data [29].

In summary, we can detect the optimal maximum order Kopt of
a multi-order graphical model by repeatedly calculating the p-value
1This follows from the fact that, for an n ×n unit matrix J = (1)i j of a fully connected
graph, we have Jk = (nk−1)i j and thus

∑
i j Jki j = n

2 · nk−1 = |V |k . Since all |V |k

rows in Jk are different from zero we recover |V |k ( |V | − 1).
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Figure 2: (a) shows detected Markov order (y-axis) for N synthe-
tically generated paths (x-axis) and known Markov order four. (b-
d) show the minimum sample size N (y-axis) needed to detect the
correct Markov order for (b) paths in graphs with 20 vertices, 60 ed-
ges and with different Markov order (x-axis), (c) Markov order two,
fixed edge density and varying graph size n (x-axis), and (d) Mar-
kov order two, graphs with 40 vertices and varying edge density ρ
(x-axis). Results are averages of 20 experiments in random graphs,
inferring the order based on Bayesian (BIC) and Aikake’s (AIC) In-
formation Criterion and Multi-order Graphical Models (MOG) pro-
posed in this paper. Error bars indicate standard deviation.

for consecutive pairs of (nested) models in the sequence M̄1, M̄2, . . ..
We then choose the maximum value Kopt = K above which we
reject the alternative model M̄K+1 in favor of M̄K , i.e. the largest K
for which p is below a significance threshold ϵ . We note that, since
the total number of likelihood ratio tests is Kopt , a small ϵ should
be used to hinder false positives due to multiple hypothesis testing.

4.2 Experimential validation
Wenowvalidate ourmethod using synthetically generated pathways.
For this, we use a stochastic model generating a configurable num-
ber of variable-length paths, constrained by a random (directed)
graph of variable size, based on a Markov chain with known order
k . We omit the implementation details due to space constraints,
however the full code of our model (along with all other code used
in our work) is available in an online repository [24]. We then apply
our method to these synthetically generated paths, showing that
it (i) recovers the “correct” Markov order used to generate them,
(ii) outperforms previously used Markov order detection techni-
ques, and (iii) allows to infer an optimal higher-order graphical
abstraction that can be used, e.g., to rank vertices.

Correctness and efficiency We compare our approach to two
baseline Markov order detection techniques, which have previ-
ously been used to study pathways as categorical sequences. We
specifically consider Markov order detection using (i) Aikake’s
Information Criterion (AIC) [32], and (ii) the Bayesian Informa-
tion Criterion (BIC) [11, 29]. We apply both techniques to a single
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sequence of concatenated paths, where paths are separated by a
special stop token (see, e.g., [19]). Fig. 2(a) compares the optimal
maximum order Kopt inferred using our multi-order graphical mo-
dels (MOG) to the order detected based on (BIC) and (AIC). Results
are shown for different samples of N paths with known Markov
order of four, generated in a toy random graph with 10 vertices
and 30 directed edges. For moderately large samples AIC and BIC
underfit the data, detecting the correct order only for N > 50, 000
and N > 350, 000 respectively, despite the small size of the graph. In
contrast, our approach recovers the correct order for N > 300. We
further recover the known result that BIC has a stronger tendency
to underfit compared to AIC [11].

We next study how the sample size N required to detect the
correct order depends on (i) the Markov order, (ii) the number of
vertices and (iii) the density of edges in the graph. Fig. 2(b) shows
the results for different (true) Markov orders k used to generate
paths in random graphs with 20 vertices and 60 directed edges. For
AIC and BIC, N quickly grows for k > 1, while it remains small
for our method. We further study how N depends on the size n
(Fig. 2(c)) and density ρ (Fig. 2(d)) of the graph. As the number of
vertices n in a sparse graph with 3n edges grows, the sample size
needed by the BIC and AIC-based methods to detect the correct
order two quickly exceeds N = 106. Our method yields the correct
order also for small sample sizes (cf. Fig. 2(c)). We finally study how
the minimally required sample size N depends on the density ρ of
a graph with fixed size n = 40 (Fig. 2(d)). We define the density ρ as
fraction of possible edges existing in a graph, i.e. ρ = 0 corresponds
to an empty and ρ = 1 to a fully connected graph. As expected, the
number of samples required by our method increases as the density,
and thus the degrees of freedom of higher-order models, grow. For
the BIC and the AIC we observe a mild decrease as the (real) degrees
of freedoms in the fully connected graph approach those of a catego-
rical sequence model. Interestingly, our method requires a smaller
number of samples also for fully connected graphs, even though in
this case the degrees of freedom of our model coincide with those
used in the BIC and AIC-based methods. We attribute this to the
fact that our method correctly accounts for multiple independent
paths rather than aggregating them to a single sequence.

Ranking inHigher-Order GraphsWe now show how our fra-
mework allows to improve network-analytic methods, specifically
focusing on the ranking of vertices using PageRank [18]. We first re-
call that layer k = 1 of a multi-order model captures the topology of
the graph and the (relative) frequencies of edges traversed by paths,
while the layers k > 1 account for order correlations (of multiple
lengths) that can break path transitivity. Hence, our framework can
be viewed as a natural higher-order generalization of the common
network abstraction of relational data, which not only captures
the topology and frequency of links, but also order correlations in
sequential data. From this perspective, the optimal maximum order
Kopt allows to decide (i) if the (first-order) topology is sufficient
to explain observed paths, or (ii) whether higher-order graphical
models are needed. Moreover, we argue that Kopt is the optimal
order of a higher-order graphical abstraction of pathway data.

To validate this claim, we use a set S of paths synthetically ge-
nerated by the model above. The idea of our validation is to test
whether the PageRank [18] calculated in a graphical model with

order Kopt detected by our framework best captures the “ground
truth” importance of vertices. For this, we recall that PageRank is a
graph-based algorithm to calculate the stationary node visitation
probabilities of random surfers in a (web) graph. In other words, it
utilizes (i) the topology of the web graph, and (ii) a Markov chain
model for random walks in the graph to estimate the (unknown)
frequencies at which surfers visit web pages. Interpreting paths in
our set S as trajectories of independent “surfers” in a graph, we can
calculate the frequency at which a given vertexv is visited by these
“surfers”. With Sk denoting the multi-set of sub paths of length k ,
and considering that each vertex v is a zero-length sub path in S0,
we can thus calculate vertex “visitation frequencies” as

pv =
|{v ∈ S0}|∑
p∈S lp + 1

. (10)

Here, the denominator simply counts all vertex traversals by sum-
ming up the number of vertices traversed by all paths p ∈ S . In-
terpreting pv as the “ground truth” for the vertex visitation fre-
quencies estimated by PageRank, we can subject the claim that our
inference method yields an “optimal” graphical model of pathways
to a numerical validation. For this, we first generalize PageRank
to a higher-order graph G(k ) in a multi-order model. Let A(k ) be
the binary adjacency matrix of G(k). We define Q(k ) as the matrix
obtained by (i) dividing entries in A(k ) by row sums, and (ii) re-
placing zero rows by 1/n, where n is the number of (higher-order)
vertices in G(k ). Using power iteration, we calculate a k-th order
PageRank vector x (k ) by solving the equation

x (k ) = x (k)
(
αQ(k) + (1 − α)B

)
where B is an n × n matrix with entries 1/n and α = 0.85 is a dam-
pening factor. x (k ) contains the PageRanks of k-th order vertices in
G(k ). Due to the De Bruijn graph construction (cf. Fig. 1), each k-th
order vertex corresponds to a path (v0 → . . . → vk−1) of length
k − 1. A projection to first-order vertices v can then be defined as

PR(k)[v] :=
∑

p∈Sk−1
v⊑p

1
k
x
(k )
p (11)

where x (k )p is the PageRank of k-th order vertex p.2 We can now test
for which order k PR(k) best captures the ground truth visitation
frequencies pv calculated in a given synthetically generated set of
pathways S . Fig. 3 shows the results for synthetically generated
paths with different detected Markov orders (x-axis). Each of the
five lines gives Kendall’s rank correlation measure (y-axis) between
a vertex ranking based on (i) “ground truth” visitation frequencies
pv calculated in actual pathways and (ii) the PageRank PR(k) for
given order k . Naturally, the stochastic model underlying the Page-
Rank calculation cannot perfectly reproduce the true frequencies
at which vertices are “visited” by pathways. However, the results
in Fig. 3 show that the PageRank in a k-th order graphical model
reproduces ground truth visitation frequencies best if k corresponds
to the optimal order Kopt detected by our framework. This not only
confirms that standard network analysis methods (e.g. first-order
PageRank) yield suboptimal results for sequential data with order
correlations. It also shows that the graphical models inferred by
our framework are indeed optimal, e.g., to rank vertices.
2Since x (k ) is a stochastic vector, Eq. 11 ensures that entries of PR(k) sum to one.
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Figure 3: Kendall’s rank correlation between k-th order PageRank
PR(k ) and ground truth vertex visitation frequencies pv (y-axis) in
paths with different detected ordersKopt (x-axis). Results are avera-
ges of 100 runs, fitting a multi-order model to N = 20000 syntheti-
cally generated paths of length L = 10 in random graphs with 100
vertices and 350 edges. Error bars indicate standard deviation.

5 APPLICATIONS
Having validated our method in synthetic examples, we now apply
it to eight real data sets from different scenarios: We start with data
that provide pathway statistics, namely (i) passenger itineraries in
transportation networks, (ii) click streams of users on the Web, and
(iii) career paths of scientists. We then show how our method can
be used to analyze time-stamped interactions, commonly studied as
temporal or dynamic networks. Key characteristics and sources of the
data sets are shown in Table 1. All are freely available for research
and details on how they have been collected are introduced along
the way. Results in this section have been obtained using pathpy, an
OpenSource python implementation of our framework [25]. The
full code of our analysis is available online [24].

5.1 Pathway Data
We study five pathway data sets: (AIR) captures 280k passenger
itineraries along flight routes between US airports in 2001 [27, 33],
(TUBE) contains 4.2 million passenger trips in the London metro [7,
27], (CAREER) contains sequences of affiliations in the career of
more than 30k scientists publishing in journals of the American
Physical Society [30], and (WIKI) providesmore than 76k click paths
of users playing the Wikispeedia navigation game [35]. For (WIKI)
the small number of observed paths compared to size and density
of the underlying Wikipedia article graph renders a detection of
higher Markov orders impossible.3 To overcome this problem, we
limit our analysis to click paths that traverse the 100most frequently
visited articles. We finally consider (MSNBC), a data set with close
to one million click streams of visitors of the MSNBC portal [3].

For (AIR), (TUBE), and (WIKI) observed pathways are, by de-
finition, constrained to an underlying network of available flight
routes, London metro lines, and Wikipedia article links used in
the Wikispeedia game respectively. For (CAREER), the situation is
more difficult: On the one hand, researchers can, in principle, move
between any pair of affiliations. On the other hand, geographic
locations, research disciplines, and hiring strategies of affiliations
render some of these theoretically possible affiliation changes unli-
kely (or even impossible). For the following analysis we thus take a
simple approach, assuming that affiliation changes are constrained
to those that have been observed at least once. Finally, (MSNBC)
3Note that the small sample size in (WIKI) also poses challenges for variable Markov
order modeling techniques as well as for AIC/BIC-based Markov order detection.

contains user click streams at the level of page categories. Different
from (WIKI), these click streams are not constrained to paths in a
given (article or web) graph. For (MSNBC) we thus assume a fully
connected graph topology, for which the degrees of freedom in our
model coincide with those commonly used in standard Markov or-
der detection techniques (cf. section 4.1). We still include (MSNBC)
in our analysis to confirm that, for such unconstrained pathways,
our method correctly recovers the results reported in [29].

For each of the data sets, we first “learn” a multi-order graphical
model, inferring the maximum order Kopt as described in section 4
(using a significance threshold of ϵ = 0.001). Notably, BIC and AIC-
based order detection yield order one for all data sets, except for
(MSNBC) where both recover order three thanks to a small number
of categories and large sample size. Table 1 shows that, in contrast,
our method yields Kopt > 1 for all data sets except for (CAREER).
This indicates that a first-order network model is not justified for
four of the five data sets. We validate this using the approach in-
troduced in section 4.2, i.e. we use pathways to calculate ground
truth vertex visitation frequencies pv and check for which order
k a k-th order PageRank best recovers this ground truth.4 Fig. 4(a)
reports Kendall’s rank correlation coefficient (τ ) between a ranking
obtained from (i) ground truth visitation frequencies pv and (ii)
PageRank PR(k) computed for different k as described in section 4.2.
While the extent to which PageRank can possible reproduce this
ground truth naturally varies, the results confirm thatKopt inferred
by our framework is indeed the “optimal” order of a graphical mo-
del: For (CAREER), where our method yields Kopt = 1, we observe
a maximum τ ≈ 0.59 for k = 1, while τ drops for k > 2. In con-
trast, for (AIR) and (TUBE) τ increases for k > 1, saturating at the
detected orders Kopt = 2 and Kopt = 6 respectively. We highlight
that a (first-order) network abstraction of (TUBE) yields misleading
results, which raises interesting questions about network-based stu-
dies of transportation systems. Interestingly, increasing k beyond
Kopt does not necessarily decrease τ . For (TUBE) and (WIKI) we
even observe slight increases of τ for k > Kopt . However, since
our method accounts for model complexity it correctly determines
the order Kopt beyond which an inclusion of more layers is not
justified by the (small) increase in “explanatory power”.

To corroborate this interpretation, we study the predictive power
of higher-order graphical models. Here, we want to predict most
frequently visited vertices, i.e. vertices v for which pv is largest.
Our prediction is based on the top-ranked vertices according to Pa-
geRank, calculated in graphical models with different orders k . For
each k this yields a predictor for which we calculate the Area under
the Curve (AUC) shown in Fig. 4(c). For (CAREER), where we infer
Kopt = 1, higher-order models do not yield better predictions than
a first-order model. For (TUBE), the performance of a first-order mo-
del is low (AUC(1) ≈ 0.69), while we find AUC(Kopt = 6) ≈ 0.96.
For (TUBE) and (WIKI) we find that, despite τ slightly increasing
for k > Kopt , such larger k do not translate to better predictions.
For (WIKI) we further see that the AUC increases considerably in
a second-order model, even though τ shows only a small increase.
This confirms that the predictive quality of PageRank is optimal
for graphical models with order Kopt .

4Since it only provides data on 17 page categories connected via a (trivial) fully
connected topology, we omit this analysis for (MSNBC).

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1043



Pathway Data Vertices ( |V |) Edges ( |E |) Paths (N ) [Min, Max] li Kopt (p-value)
Scientist career paths (CAREER) [30] 1,932 (institutes) 6,474 33,576 [0, 12] 1 (p ≈ 0)
Wikispeedia click paths (WIKI) [35] 100 (Wikipedia pages) 1,790 39,846 [0, 21] 2 (p ≈ 0)

US airflight itineraries (AIR) [33] 175 (US airports) 1,598 286,810 [1, 13] 2 (p ≈ 0)
MSNBC clickstreams (MSNBC) [3] 17 (page categories) 289 989,818 [0, 99] 3 (p ≈ 0)
London Tube itineraries (TUBE) [7] 276 (metro stations) 663 4,295,731 [1, 35] 6 (p ≈ 0)

Temporal Network Data Vertices ( |V |) Edges ( |E |) Paths (N ) δ /[Min, Max] li Kopt (p-value)
Company E-Mails (EMAIL) [17] 167 (employees) 5,784 80,504 30/[1, 13] 1 (p ≈ 0)

Workplace Contacts (WORK) [10] 92 (office workers) 755 10,939 180/[1, 4] 2 (p ≈ 0)
Hospital Contacts (HOSP) [34] 75 (healthcare workers) 1,139 353,449 300/[1, 9] 3 (p ≈ 0)

Table 1: Summary statistics and detected maximum order Kopt of multi-order graphical model for real-world data sets.

5.2 Temporal Network Data
Apart from settings where we have access to pathway data, we
finally discuss how our framework can be applied to time-stamped
data on temporal or dynamic networks. I.e., we consider triplet data
of the form (v,w ; t), which capture that two vertices v andw were
connected at (discrete) time t . Despite their growing importance,
e.g., in social network analysis, analyzing such data is still a chal-
lenge [9]. A number of works have shown that standard network-
analytic and algebraic methods yield wrong results, e.g., about
dynamical processes, centralities or cluster structures in temporal
networks [15, 19–22, 27, 38]. These limitations have been attrib-
uted to temporal correlations in the sequence of edges and their
effect on so-called time-respecting paths [12]. We consider a se-
quence (v0,v1; t1), (v1,v2; t2), . . . , (vl−1,vl ; tl ) of time-stamped ed-
ges a time-respecting path (v0 → . . .→ vl ) iff the ordering of edges
respects causality, i.e. t1 < . . . < tl . Importantly, this implies that
the ordering of time-stamped edges can invalidate the transitivity
of paths implicitly assumed by time-aggregated analyses: Specifi-
cally, two time-stamped edges (A,B; t) and (B,C; t ′) give rise to a
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Figure 4: (a-b) show Kendall’s rank correlation between vi-
sitation frequencies pv and PageRank (y-axis) calculated in
k-th order model for different k (x-axis) in pathways (a) and
temporal networks (b). (c-d) show Area Under Curve (AUC)
for prediction of 15% most frequently visited vertices based
on PageRank computed for different k . Values k that corre-
spond to the detected orderKopt are highlighted (cf. Table 1).

transitive path (A → B → C) only if (A,B; t) occurs before (B,C ; t ′).
Hence, correlations in the ordering of edges can break transitivity
and thus invalidate network-analytic methods [15, 20, 27].

We now show that our framework (i) detects these correlations
and (ii) infers a multi-order graphical model that captures both
temporal and topological characteristics of temporal networks. For
this, we follow the common approach and consider – in addition
to their ordering - the actual timing of time-stamped edges in the
definition of time-respecting paths [9]. We particularly require that
edge sequences contributing to time-respecting paths are consistent
with a maximum time difference δ between consecutive edges, i.e.
0 < ti+1 − ti ≤ δ (i = 0, . . . , l). This is important since we are
typically interested in paths that mediate processes evolving at
time scales much shorter than the observation period [9]. With
this definition of a time-respecting path at hand, we apply the
following procedure: We first use time-stamped edges to extract
time-respecting paths for a given δ , obtaining a multi-set of (time-
respecting) paths S . We then use the method discussed in section 4
to infer a multi-order model, where (i) layers k = 0 and k = 1
model “activities” of vertices as well as the topology and frequency
of time-stamped edges and (ii) layers k > 1 capture correlations in
the ordering of edges that influence longer (time-respecting) paths.
Kopt > 1 indicates that these correlations invalidate a (first-order)
network abstraction. In this case, Kopt further provides us with the
optimal order of a (higher-order) graphical representation.

We apply this to three temporal network data sets, summarized
in Table 1: (EMAIL) captures time-stamped E-Mail exchanges bet-
ween 167 company employees [17], (HOSP) contains time-stamped
contacts between 75 healthcare workers in a hospital [34], and
(WORK) captures time-stamped contacts between 92 office wor-
kers [8]. (HOSP) and (WORK) were recorded using badges sensing
face-to-face encounters at high temporal resolution [8, 34]. For each
data set we first extract time-respecting paths for a given maximum
time difference δ . The optimal choice of δ is a difficult research
problem by itself. Here we use a simple approach, choosing δ based
on the inter-event time distribution (which captures “inherent” time
scales of the data, cf. Table 1).5 We then infer the optimal maximum
order Kopt of a multi-order model.6 Table 1 shows that a first-order
model is justified for (EMAIL), while (HOSP) and (WORK) exhibit
temporal correlations that warrant higher-order models. We subject
the intuition that correlations in the ordering of edges necessitate
higher-order models to a simple sanity check: We randomly shuffle

5We have validated that our results do not sensitively depend on the choice of δ .
6Note that we obtain a higher-order model for time-respecting paths rather than for
the sequence of time-stamped edges.
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time stamps of edges to destroy temporal correlations, extract time-
respecting paths for the shuffled data, and again infer the optimal
maximum order of a multi-order model. We get Kopt = 1 for all
shuffled data sets, confirming that first-order graphical abstractions
of temporal networks are justified only if temporal correlations in
the sequence of time-stamped edges are absent.

Our results indicate that first-order network models of (HOSP)
and (WORK) likely yield wrong results, while they seem justified
in (EMAIL). We again validate this by checking the correlation
between (i) ground truth vertex visitation frequencies by time-
respecting paths and (ii) the PageRank PR(k) calculated for different
orders k . Like above, we study the AUC of higher-order PageRanks
for different orders k . Fig. 4(b) shows that for higher-order models
with k > 1 the rank correlation does not increase for (EMAIL),
while it strongly increases for (HOSP) and (WORK). For the latter
two, first-order PageRank is uncorrelated with the ground truth,
while graphical models with order Kopt yield τ ≈ 0.71 and τ ≈ 0.67
respectively. For (HOSP) and (WORK), Fig. 4(d) shows a strong
increase of AUC for PR(Kopt ) to values of 0.91 and 0.89 respectively.
For (EMAIL) we observe no increase. We attribute this to strong
temporal correlations in (HOSP) and (WORK), which affect time-
respecting paths and render first-order network abstractions useless.
This confirms (i) that the optimal order inferred by our method
is meaningful and (ii) that it allows to decide when a first-order
network abstraction of temporal networks is justified.

5.3 Scalability
We briefly comment on the scalability of our method,7 focusing on
the growth of the degrees of freedom (i.e. model complexity) for
models with increasing order. Fig. 5 shows the degrees of freedom
for (i) standard k-th order Markov chains (left panel) and (ii) multi-
order graphical models with maximum order K (middle panel) for
all empirical data sets (cf. section 4.1). Due to the fully connected
topology, for (MSNBC) the growth of complexity for a multi-order
model is nearly identical to a k-th order Markov chain. In fact, since
a multi-order model combines higher-order models up to order K ,
d(K) (middle) grows slightly faster than d(k) (left). For the other
data sets Fig. 5 shows that, despite combining multiple higher-order
models, the degrees of freedom d(K) of a multi-order model grow
considerably slower than for a (single) k-th order Markov chain.
The growth dynamics depends on the connectivity of the under-
lying graph, which (i) limits possible paths of increasing length, (ii)
mitigates the curse of dimensionality, and (iii) enables the detection
of higher orders in comparably small samples. The degrees of free-
dom (middle) correspond to the worst-case memory needed to store
a multi-order model with maximum order K . Using sparse matrix
representations, the actual memory to store the model depends
on the non-zero entries in the transition matrices of all model lay-
ers, i.e. the number of different (time-respecting) paths in the data.
Fig. 5 (right) shows the actual size of multi-order models for all data
and different maximum orders K . Except for (MSNBC), model size
(and thus memory) grows much slower than the theoretical (worst-
case) limit (note different y-axis scales). This highlights that, apart
from constraints due to the underlying graph, the scalability of

7Data sets were analyzed on Core i7-6650U notebook (8 GB RAM), requiring between
0.07 seconds (WORK) and 21 minutes (MSNBC) (both using max. order K = 4).

1 2 3 4 5 6
Order k

102

104

106

108

1010

1012

1014

1016

1018

d(
k)

1 2 3 4 5 6
Maximum order K

102

104

106

108

1010

1012

1014

1016

1018

d(
K)

1 2 3 4 5 6
Maximum order K

102

103

104

105

106

107

108

M
od

el
 s

iz
e

MSNBC
TUBE
CAREER
WORK

EMAIL
WIKI
HOSP
AIR

Figure 5: Degrees of freedom in standard k-th order Markov
chain (left) and multi-order graphical models (middle) for
empirical data. Right panel: actual size of multi-order mo-
dels, using sparse representations of transition matrices.

our method benefits from sparse topologies of observed paths with
increasing length, which possibly result from strong correlations.

6 CONCLUSION
Graph- and network-analytic methods are widely applied to data
that capture relations between elements. While researchers in data
science raised concerns about their application to data with complex
characteristics, we lack principled methods to decide when network
abstractions are justified and when not. Addressing this issue, we
propose a solution for data on pathways and temporal networks.
Going beyond previous works, we generalize common network
abstractions to multi-order graphical models. We advance the state-
of-the-art in sequential data mining by proposing a model selection
technique that accounts for the characteristics of data carrying mul-
tiple observations of paths in a graph. A comparison to previously
used methods shows that it considerably improves the inference
of optimal graphical models that balance model complexity and
explanatory power. These models can be seen as optimal graphical
“summarizations” of sequential data, which can be used to improve
network analysis and modeling techniques. We demonstrate the
relevance of our method in real data on click streams, career paths,
and transportation networks. We finally highlight implications for
the study of temporal networks, which are often analyzed using
time-aggregated or time-slice graphs. We show that temporal corre-
lations invalidate such analyses and demonstrate that our method
can be used to infer optimal graphical models that capture both
temporal and topological characteristics of time-stamped relations.

We briefly summarize open issues and future directions: While
we used a straight-forward extension of PageRank to higher-order
graphs to validate our method, it is interesting to study higher-
order formulations of other network-analytic methods like, e.g.,
community detection or centrality measures along the lines propo-
sed in [19, 21, 26, 27]. While these works have focused on higher-
order models with a single order, the multi-layer structure of our
models foreshadows generalizations that account for multiple cor-
relation lengths simultaneously. Moreover, our analysis of temporal
networks used a simple approach to determine the maximum time
difference δ for the extraction of time-respecting paths. A principled
inference of δ is an interesting problem by itself, as it highlights cha-
racteristic time scales in temporal networks. Our work can be used
to address this problem from a model selection perspective. Specifi-
cally, it allows to infer an “optimal” δ such that Kopt is maximized,
extracting the time scale for which time-respecting paths are “least
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random”. Finally, even though our approach is conceptually diffe-
rent from variable-order Markov chains used in related works [38],
it is interesting to study whether these techniques can be merged.
While our results show that the scalability of our method consi-
derably benefits from (i) the sparsity of higher-order models due
to sparse graphs and strong correlations and (ii) the – compared
to previous methods – smaller sample size needed to detect the
correct order, this approach could further improve scalability.

In conclusion, our work highlights fallacies of network abstracti-
ons of sequential data. Principled model selection is a crucial first
task that must precede any application of network-analytic met-
hods. The proposed framework is a step in this direction. It points
out relations between network analysis and sequential pattern mi-
ning that call for further research. To facilitate its application and
to ensure the reproducibility of our results, an OpenSource python
implementation of our framework is available [25].
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