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The pervasive presence of online media in our society has transferred a significant part of

political deliberation to online forums and social networking sites. This article examines

popularity, reputation, and social influence on Twitter using large-scale digital traces from 2009

to 2016. We process network information on more than 40 million users, calculating new global

measures of reputation that build on the D-core decomposition and the bow-tie structure of the

Twitter follower network. We integrate our measurements of popularity, reputation, and social

influence to evaluate what keeps users active, what makes them more popular, and what

determines their influence. We find that there is a range of values in which the risk of a user

becoming inactive grows with popularity and reputation. Popularity in Twitter resembles a

proportional growth process that is faster in its strongly connected component, and that can be

accelerated by reputation when users are already popular. We find that social influence on

Twitter is mainly related to popularity rather than reputation, but that this growth of influence

with popularity is sublinear. The explanatory and predictive power of our method shows that

global network metrics are better predictors of inactivity and social influence, calling for analyses

that go beyond local metrics like the number of followers.
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Introduction

The pervasive presence of online media in our society has transferred a

significant part of political deliberation to online forums and social networking sites.

The picture of a caf�e where citizens discuss and exchange ideas is being replaced by

the interface of an online network in which citizens communicate and discuss with

almost anyone from almost anywhere (Castells, 2011). The transformative role of

these technologies can fundamentally change traditional political processes. An

illustrative example is how collective action (Olson, 1965) evolves into the process of

connective action (Bennett & Segerberg, 2012), in which citizens deliberate and self-

organize in a decentralized way by using information technologies.

The new level of connectivity of our online society raises important questions

about the roles that citizens have in the political process, when they become users
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of online social media (boyd & Crawford, 2012). Understanding important

phenomena, such as social influence, social forces, and digital divides, requires

the analysis of the evolution of very large social systems, which traditionally has

been a challenging task in the Social Sciences. Longitudinal studies so far were

only able to monitor small amounts of individuals over time, and pose strong

limitations to our knowledge of fundamental social dynamics. Understanding

popularity and social influence, or how individuals recognize their peers and

adopt their behavior is particularly difficult, as a valid approach requires the

observation of natural behavior of many individuals without interference

(MacPhee, 1963; Webb, Campbell, Schwartz, & Sechrest, 1966). One solution lies

in the vast amount of data produced by our society, which allows us to monitor

human behavior at unprecedented sizes, resolutions, and time scales. The field of

Computational Social Science seeks to address questions about social behavior

with large-scale data sets of digital traces (Lazer et al., 2009), testing hypotheses

drawn from theories form the Social Sciences (Gonz�alez-Bail�on, 2013).

We present a study of popularity, reputation, and social influence in the

Twitter online social network, including more than 40 million users in two

snapshots seven years apart. Twitter is a popular online social network in which

users establish directional follower links and publicly communicate short

messages across them. The extreme popularity of Twitter and its relevance for

Political Science (Arag�on, Kappler, Kaltenbrunner, Laniado, & Volkovich, 2013;

Barber�a, 2015; Conover, GonScalves, Flammini, & Menczer, 2012; Lietz, Wagner,

Bleier, & Strohmaier, 2014), makes it an ideal case to study social influence

processes on the limits of size and temporal scales. Popularity in the Twitter

social network is often quantified as the amount of followers of a user. That

implies, it does not matter why some user follows you, or how important he or

she is, your popularity only measures the size of your audience. Reputation, on

the other hand is a more complicated concept associated with centrality (Friedkin,

1991). Being followed by a highly reputed user has a stronger effect in one’s

reputation than being followed by someone with low reputation. Thus, the simple

amount of followers does not capture the recursive nature of reputation.

Popularity can be compared to reputation using geometric terms. Popular

users are at the center of network stars and have high in-degree, while reputable

users have high positions in a pyramid, in which they might not be followed by

many but their followers are also high in the pyramid. In this article, we aim to

unravel the difference between popularity and reputation on the process of social

influence (Riquelme & Gonz�alez-Cantergiani, 2016), that is, how information

spreads in the Twitter network. We explore the functioning of Twitter combining

psychological and economical perspectives to formulate hypotheses, testing them

against large-scale data through statistical analyses and predictive methods.

Background and Research Questions

One of the main psychological questions of Twitter use is about user

motivation. What are the reasons that keep users active on Twitter and how do
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they depend on the attention of others? Empirical studies of user motivation

show that it grows with popularity and reputation, but the rate of growth of

motivation is sublinear and the risk of leaving the network decreases in the same

way (Toubia & Stephen, 2013). This trend of motivation was taken as an initial

approximation to study the social resilience of online communities (Garcia,

Mavrodiev, & Schweitzer, 2013), but empirical evidence at a large scale is needed

to test it and find its limitations. As suggested by Garcia et al. (2013), an

alternative hypothesis arises from the phenomenon of information overload in

computer-mediated communication (Hiltz & Turoff, 1985). The utility of belong-

ing an online social network can decrease with popularity, in particular, when

very active and popular Twitter users are unable to process all the information

they receive (Rodriguez, Gummadi, & Schoelkopf, 2014), or when they perceive

risks associated to loss of privacy. We formulate this scenario through the non-

monotonic motivation hypothesis, by which the probability to become inactive would

have a U-shape function with respect to popularity and reputation.

Previous works on social resilience suggest that centrality measures are better

predictors of user inactivity than degree alone (Garcia et al., 2013; Yu et al., 2016).

When users become inactive, they might produce cascades of other users

becoming inactive, leading to effects that go beyond their local neighborhood.

Based on this, we test the cascading inactivity hypothesis, which states that

reputation, a centrality measure, is a better predictor of a user becoming inactive

than popularity. Further network aspects can influence the decision to become

inactive or not. Agent-based models suggest that nodes that belong to cycles are

in more stable subsets of the network (Jain & Krishna, 2001). Inspired by this

computational model, we test the core activity hypothesis, that is, users that belong

to the Strongly Connected Component of Twitter (as explained more in detail

below) are less likely to become inactive.

The psychological perspective on the functioning of Twitter allows to explain

a variety of phenomena relevant for policy, including social influence. Social

influence is considered in social impact theory as a manifestation of social impact

that leads to a change of behavior after social interaction (Latan�e, 1981). Social

impact theory allows us to formulate testable hypotheses about how social

influence depends on group size and source strength. A hypothesis drawn from

this theory is the division of impact: The larger the addressed group, the weaker

the social impact exercised on each person. With respect to Twitter, this translates

as a lower influence rate for users with more followers, leading to total influence

scaling sublinearly with popularity.

Social impact theory postulates that the extent of impact will increase with

source strength, which can be seen as a manifestation of status or reputation

(Latan�e, 1981). If reputation is the driving force of Twitter users, the the reputation

strength hypothesis will hold, that is, reputation is a stronger indicator of social

influence than popularity. On the contrary, it is also possible that popularity

drives the total amount of attention in Twitter, and thus the amount of followers

of a user would be a better indicator of source strength. Additionally, other

characterizations of network positions, like the bow-tie structure, can encode
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aspects of node influence. For example, companies in the driving group of

ownership bow-tie structures hold a strong control over the rest of the network

(Vitali, Glattfelder, & Battiston, 2011). This motivates our bow-tie influence

hypothesis: users in the Out group of the bow-tie decomposition of the Twitter

follower network are more influential.

The economic aspects of Twitter are driven by the attention economy in

which the scarce resource is attention instead of information (Huberman & Wu,

2008). From an economic perspective, the variable of interest is popularity in the

sense of measuring total attention rather than its quality or final effect. Popularity

in online media can be subject to capital accumulation phenomena, like the

winner-takes-all effect. Following this rationale, we formulate the popularity

growth hypothesis: the popularity of a user is associated with larger gains of

popularity over time.

Furthermore, competition for popularity can have various degrees of strength

with respect to reputation. If competition is strong, reputation can decrease the

growth of popularity due to the fact that reputable users bring the attention of

other reputable users, who are in a stronger position to compete for the attention

of the rest of the population. As an alternative, we formulate the weak competition

hypothesis: reputation has a positive effect on the growth of popularity. This is

possible in interaction with popularity, such that reputation can be a complemen-

tary resource but not a replacement for popularity. This kind of competition

scenarios can be observed in rumor spreading simulations (Borge-Holthoefer &

Moreno, 2012) in which the centrality of a user can hinder the spreading of

information from less connected nodes.

The economic perspective raises the question of inequality in user attention.

Competing for attention often leads to the analysis of the distribution of amount of

followers with respect to highly unequal Pareto distributions, or power-laws. Often

the power-law popularity hypothesis is tested in an uncritical way (Stumpf & Porter,

2012) and a simple linear regression over a log–log distribution plot has been used to

state claims about preferential attachment or edge copying. Substantial developments

in statistical methods show the problems of that approach (Alstott, Bullmore, &

Plenz, 2014; Clauset, Shalizi, & Newman, 2009). Preferential attachment and edge

copying, as multiplicative growth mechanisms can also lead to log-normal distribu-

tions that display high inequality, but do not have scaling properties (Mitzenmacher,

2004). We aim at properly testing the power-law hypothesis versus the alternative

log-normal explanation, evaluating if scaling inequalities prevail over time.

We summarize the nine hypotheses tested in this article in Table 1, sorting

them in the order in which they appear in the results section. To test them, we

process the full Twitter social network data of 2009 (Kwak, Lee, Park, & Moon,

2010), measuring the popularity and reputation of more than 40 million Twitter

users. We trace further in time a large subset of those users, analyzing later

information in 2016. Using this later data, we quantify the social influence of each

user through information spreading and measure their current popularity and

state of activity. First, we analyze the role of reputation and popularity in user

motivation, testing if popularity and reputation can have non linear effects in
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activity. Second, we analyze the changes in popularity of users, evaluating

whether reputation helps or hinders popularity growth, and the level of

inequality in popularity. And third, we test if social influence grows sublinearly

with popularity and analyze how social influence depends on reputation and

popularity, as measured very early in the age of Twitter.

Data and Methods

We study the relationship between popularity, reputation, inactivity, and

social influence in Twitter, one of the most widely used and analyzed online

social networks (Tufekci, 2014). Twitter is a microblogging social network,

meaning that users produce very short posts called tweets of up to 140 characters.

Users follow each other by creating links as subscriptions to the tweets produced

by other users. These follower relationships do not need to be reciprocal, in fact

only 22 percent of the connections between pairs of users are reciprocated (Kwak

et al., 2010). A user can retweet a tweet produced by another user, copying that

tweet and spreading it to their followers. The asymmetry of information flow

through follower links and the power of Twitter to spread information make it a

key online social network for celebrities, politicians, news media, opinion makers,

and online marketing campaigns.

We study the Twitter follower network, in which nodes are users and

directed links connect user i to user j, if and only if user i follows user j. In this

network, the in-degree of a node is the amount of followers of a user i, and its

out-degree is the amount of users followed by user i. Our analysis leverages a

Twitter data set from previous research (Kwak et al., 2010), combining it with

new data sets that we produce to track large-scale, longitudinal changes of user

properties, and social influence in Twitter. In the following, we summarize the

Table 1. List of the Hypotheses Tested in This Article

Hypotheses on Activity

Nonmonotonic
motivation

The probability of inactivity shows a negative trend with popularity and
reputation, but increases for highly reputable and popular users.

Cascading inactivity Reputation is a better predictor of inactivity than popularity.
Core activity On average, users in the SCC have lower chances of becoming inactive.

Hypotheses on Popularity

Power-law
popularity

The popularity of active users follows a power-law distribution.

Popularity growth Popular users tend to gain more popularity over time.
Weak competition Reputation has a positive effect in the growth of popularity.

Hypotheses on Social Influence

Division of impact Social influence grows sublinearly with popularity.
Bow-tie influence Active users in Out group of the bow-tie are more influential.
Reputation strength Reputation is a stronger indicator of social influence than popularity.
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data sets that we analyze, followed by an explanation of the network and activity

metrics that we calculate from those data sets.

Data Sets

Our study starts with the full 2009 network, which includes the public follower

lists of all Twitter users in June 2009 (Kwak et al., 2010). The full 2009 network

includes 1.47 billion follower links between more than 41 million users, which we

take as the user base to analyze in our study. While in earlier times the data set

included information on user profiles and the tweets they produced, at the time of

writing only the follower network is available, in line with the current Terms of

Service of Twitter.1 This limitation does not affect our network analysis and the public

availability of the network data set allows independent replications of our study.

Building on the 2009 user base, we produce a 2016 user status data set in

which we look up the status of each user included in the full 2009 network. Using

the Twitter API iteratively, we scan the full list of users in the full 2009 network

to get updated status data in July 2016. This way, we record the amount of

followers in July 2016 and the date of the last tweet produced by the user, to have

an estimate of popularity and state of activity or inactivity of each user. In total,

the API returned data on 35,868,457 users, the missing user profiles either being

deleted or set as private.2

Measuring social influence requires data on the activity of users, which is a much

more limited data resource in the Twitter API. To study social influence, we focus on

the set of active users in 2016, retrieving their latest tweets up to a maximum of 200

tweets in December 2016. Focusing on users that got at least one retweet, we

construct the 2016 social influence data set, which includes 351,037,535 tweets from

3,666,717 users. For each of these tweets, we count with the amount of retweets that

they got, a quantity that we use to measure social influence as explained below.

Measuring Reputation in Twitter

We measure reputation through the D-core decomposition (Giatsidis,

Thilikos, & Vazirgiannis, 2013) of the full 2009 network. The D-core decomposi-

tion of a directed network computes a set of (k,l)-cores, defined as maximally

large subgraphs of the network in which each node has at least an in-degree of k

and an out-degree of l. These (k,l)-cores are identified in a pruning algorithm that

removes nodes from cores depending on their in- and out-degree, mapping each

user to a set of (k,l)-cores, as explained more in detail in Giatsidis et al. (2013).

The left panel of Figure 1 shows the amount of nodes in each (k,l)-core for the

full 2009 network. We observe that most of users belong only to (k,l)-cores with

low k and l, while the more central cores with high k and l are smaller in size.

The green line shows the bisector that divides the plot in two triangles with the

same amount of nodes. It is notable that the bisector is very close to the line of

slope 1, with a small higher density toward k than toward l. This indicates a bit

larger expected value associated to in-degree (k) than to out-degree (l).
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By applying the D-core decomposition, we measure reputation in a global

sense by capturing the recursive property of reputation as a centrality measure:

Users that belong to (k,l)-cores with high k are followed by users that also belong to

(k,l)-cores with high k. While other network centrality measures can capture similar

properties, such as HITS (Kleinberg, 1999) or betweenness centrality (Freeman,

1977), the D-core decomposition has two advantages. First, the computation of the

D-core decomposition can be run iteratively and scales linearly with the amount of

nodes and edges, avoiding costly matrix operations of other measures. It would

require extremely large computational power to compute betweenness over the

more than 40 million nodes in the full 2009 network. Second, the D-core

decomposition is an extension of the k-core decomposition of an undirected

network (Seidman, 1983). The k-core decomposition has been shown to be related

to spreading processes in real networks (Kitsak et al., 2010), including the

spreading of political movements in Twitter (Alvarez, Garcia, Moreno, &

Schweitzer, 2015; Gonz�alez-Bail�on, Borge-Holthoefer, Rivero, & Moreno, 2011).

Our second approach to reputation focuses on detecting user positions

based on the analysis of the bow-tie structure of the full 2009 network. Directed

networks can be divided in strongly connected components, which are maximal

sets of nodes in which every two nodes in the set can be reached through a

directed path. A bow-tie structure is characterized by four groups of users: the

SCC group formed by the largest Strongly Connected Component of the

network, the In group formed by the users that are connected through a

directed path to the SCC but that cannot be reached back from the SCC, the

Out group with the opposite property, that is, users in the Out group can be

reached from the SCC but the SCC cannot be reached back from them, and the

rest of users without connections to the SCC. The most popular example of a

bow-tie structure is the one present on the Web (Broder et al., 2000), including

roughly a fourth of the websites in its SCC.

Figure 1. Left: Distribution of (k,l) values of the D-core decomposition of Twitter. All three axes are
shown on logarithmic scales, the green line shows the bisector that divides the distribution in two
triangles of the same density and the black is the diagonal. Right: Bow-tie structure of Twitter with

groups of volume proportional to the amount of users they contain. In blue the SCC is shown
(33.5M users), in red the Out group (6.4M), and in green the In group (1.5M). Not shown are nodes

not connected to the SCC (167K, less than 1percent of the total).
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The right panel of Figure 1 shows the bow-tie structure of the full 2009

network. It shows an example of a giant connected component, with 80

percent of the users in the SCC. Interestingly, the Out group is much larger

than the In group, and the rest of users not in any of these three groups is

less than 1 percent. We will use this classification in groups as another take

on reputation, paying special attention on whether belonging to one group or

another is related to different levels of social influence or tendencies to

become inactive.

User-Level Metrics

1. Popularity in 2009 and 2016: We measure popularity as the in-degree, that is

the amount of followers a user has in Twitter. Similar to the concept of name

generators, the amount of followers of a user resembles the amount of times

a user is named as being linked to other users, when asking for a question of

personal relevance (Niven, Garcia, van der L€owe, Holman, & Mansell, 2015).

We count popularity from data sets at two different times, one from the full

network in 2009, and a second one from the user status data set in 2016.

2. Reputation as in-coreness in 2009: The D-core decomposition offers a comput-

able basis to extract a reputation measure. We quantify the reputation of a user

as the in-coreness of a node, which is the maximum value of k among the

(k,l)-cores that the node belongs to. This way, the in-coreness measures

reputation as a recursive centrality node property (Friedkin, 1991) related to

social spreading processes. Having a high in-coreness is a sufficient condition

for having a high in-degree, but not the opposite. Thus, in our measures,

reputation is a lower boundary for popularity, but being popular does not

imply having a high reputation.

3. Bow-tie group in 2009: Our second metric related to reputation focuses on the

importance of the SCC rather than on a scale of reputation. We mark each user

as the bow-tie group they belong in the full 2009 network, that is, SCC, In, Out,

or Rest. Through this metric, we classify the network in its major core versus a

periphery of marginalized users who would not benefit from the recursivity of

reputation in the SCC.

4. Inactivity by 2016: Using the timestamp of the last tweet of a user, we classify

them as active or inactive. As explained more in detail in the following section,

we mark a user as active, if they posted a tweet since April 1, 2016,

approximately three months before the data retrieval date in 2016.

5. Social influence as average retweet rate in 2016: We quantify the social

influence of a user as the average of the amount of retweets received by the

tweets of each user that we captured in the 2016 social influence data set. This

metric, inspired in Twitter social influence research (Abisheva, Garimella,

Garcia, & Weber, 2014; Guille, Hacid, Favre, & Zighed, 2013), captures the

power of a user to spread information across Twitter as a manifestation of

immediate social influence, that is, the activity of other users in terms of

retweets.
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We perform our analysis to evaluate if popularity, reputation, and bow-tie

groups measured in 2009 can predict inactivity, popularity, and social influence in

2016. We create user vectors including the relevant metrics presented above, and

perform a series of statistical analyses explained below. Online interactive visual-

izations of the results of this article can be browsed at https://www.sg.ethz.ch/

research/online-social-networks/ipp-twitter-paper. Codes and data to replicate the

results are available at https://github.com/dgarcia-eu/IPP_Twitter_2016.

Inactivity Analysis

We use the last tweet of users as a way to estimate if they are still active or

inactive in July 2016. Before calculating descriptive statistics, we randomly

exclude 10 percent of the users and save them in a leave-out sample for

validation, to evaluate the generalizability and predictive power of our results

beyond statistical inference. Figure 2 shows the amount of last tweet timestamps

per week on the 2016 data set. A peak can be observed right before the data

retrieval date in 2009, illustrating that some users captured in the 2009 data set

became inactive around that date. The peak toward the end of Figure 2 is an

artifact generated by the users that are still active, as the timestamp of their last

tweet is very recent. For our statistical analysis on the detection of inactivity, we

focus on all the users that produced their last tweet since July 2009, to avoid

oversampling short-lived accounts that were captured only because data was

retrieved on that particular date. That leaves us with 15,792,514 users, which we

classify as active, if their last tweet was after April 1, 2016, and inactive otherwise.

A total of 5,621,145 users were found to remain active (35.5 percent).

We address the questions of whether not belonging to the SCC is associated

with inactivity tendencies, whether reputation is a better predictor for inactivity than

popularity, and whether the dependence of inactivity on these two is non-monotonic

and shows signs of overloads. We first perform nonparametric analyses of inactivity

Figure 2. Histogram of the Date of the Last Tweet of Users as of July 2016 (Week Resolution).
Notes: The red vertical line shows the date of the original data retrieval: July 31, 2009. We exclude
from the inactivity analysis all the users with a last tweet before that date. The blue vertical line
shows the date three months before our analysis, April 1, 2016. Users with a last tweet before that

date are considered inactive.
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tendencies based on reputation and popularity, to then formalize and fit logistic

regression models that we evaluate in a single run over the leave-out sample.

In line with the core activity hypothesis, we find that users in the SCC are

substantially less likely to become inactive than those outside it. Two-tailed tests

of equality of proportions (Wilson, 1927), between the ratios of inactive users in

each bow-tie group show that the probability of inactivity in the SCC is lower

than in the In group (x2¼ 3,887, p< 10�15), the Out group (x2¼ 53,705, p< 10�15),

and the rest (x2¼ 1,193.8, p< 10�15). These results persist when analyzing only

users with both in- and out-degree larger than zero, as explained more in detail

in supporting Appendix SI. The fact that users in the SCC are less likely to

become inactive suggests that the SCC is a special position in the network, as

motivated by previous work on ownership and network dynamics (Jain &

Krishna, 2001; Vitali et al., 2011).

Iterating over the popularity and reputation of users, we calculated the ratio

of inactive users over 1,000 bootstrap samples. The left panel of Figure 3 shows

the estimate of inactivity and its 95 percent bootstrapped confidence interval

versus popularity and reputation in 2009. It can be appreciated that the

probability of becoming inactive decreases with both reputation and popularity,

when these are low, but between a value of 100 and 1,000 they start to increase.

After that increase, the ratio of inactive users decreases moderately with

reputation, but much stronger with popularity. As such, one can observe that the

tail of popularity is associated with lower tendency to become inactive.

The nonlinear shape of the ratio of inactive users versus reputation and

popularity suggests the existence of three local optima: a maximum at a very low

value, a minimal point between 100 and 1,000, and local maximal point further in

the scale. Before modeling, we apply the log-modulus transformation
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Figure 3. Left: Ratio of inactive users versus reputation and popularity, the shaded area shows
95percent bootstrapping confidence intervals. Both functions suggest the existence of three local

optima in a decreasing but nonlinear trend. Right: Predicted probability of inactivity versus reputation
and popularity in their respective models. Shaded areas show the standard error around the

prediction. Nonlinear effects are similar to those on the left, with a U-shape for reputation and an
additional decrease for very high popularity.
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lm xð Þ ¼ log xþ 1ð Þð Þ to reputation (in-coreness) and popularity (amount of fol-

lowers), calculating the values of the random variables I and F, respectively. We

model this shape as a four-order polynomial over I and F:

logit P inactiveð Þð Þ ¼ b0 þ b1 � I þ b2 � I2 þ b3 � I3 þ b4 � I4 þ eI

logit P inactiveð Þð Þ ¼ c0 þ c1 � Fþ c2 � F2 þ c3 � F3 þ c4 � F4 þ eF ð1Þ

The logit function computes the logarithmic odds ratio of becoming inactive,

modeling this as a linear combination of the terms in a fourth order polynomial

depending on the log in-coreness I as reputation in the first model, and on the

logarithm of the amount of followers F as popularity in the second one. We fit the

models using weakly informative priors in the bayesglm R package (Gelman,

Jakulin, Pittau, & Su, 2008), and present the results in detail in Appendix SII. For

both models, all coefficients up to the fourth order are significant, supporting that

the choice of a polynomial model was appropriate. The sign of b4 and c4, the

fourth order terms is negative, indicating the general asymptotically decreasing

tendency of inactivity with reputation and popularity.

Interpreting the detail about the shape of the polynomials is complicated by

just inspecting the coefficient estimates. For that reason, we show the predicted

values of both models over the range of values of reputation and popularity on

the right panel of Figure 3. The predicted probability of inactivity for both

reputation and popularity shows a behavior following the nonmonotonic motiva-

tion hypothesis. In particular, the reputation function has an increasing tail of the

probability of inactivity, and the decreasing tendency of the fourth order term is

only present as softening the tail. On the popularity model using followers as

predicting variable, the increase in probability is also present, but the decreasing

tail toward very high values of amount of followers is present. This indicates that

an increase in reputation and popularity from low values is associated with a

lower probability of becoming inactive, but there is also a range of values of

reputation and popularity in which the opposite effect holds. The difference

between model results lies on the decreasing tail, while our observations on the

left panel of Figure 3 shows it for both, for the case of reputation the amount of

evidence of a decrease at the tail is not sufficient, while for popularity it is clear

that very popular users are very unlikely to become inactive.

The reputation model has a better predicting power than the popularity

model in terms of the Bayesian information criterion, as shown in Appendix SII.

To further test this increased information in the in-coreness, we computed the

area under the curve (AUC) measure over the receiver operator characteristic

curves (Fawcett, 2006) of each model when applied to the leave-out sample. The

AUC measure takes a value of 0.5 for noninformative predictors, and values

above it and up to 1 indicate predicting power in binary classification problems.

Both models have AUC close to 0.6, but the reputation model has a significantly

larger AUC than the popularity model, as evidenced in a DeLong test

(Z¼ 20.9576, p< 10�15). This evidence supports the additional value of global
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reputation metrics in predicting, when users will become inactive, as stated in the

cascading inactivity hypothesis.

The above findings are robust to a series of diagnostic and robustness tests, as

presented in Appendix SII. To cope with the correlations in high positive values

introduced by polynomial terms, we repeated the estimate using orthogonalized

polynomials (Kennedy & Gentle, 1980). The shape of the main predictors and

predictive power were unaffected, showing that the results of the fit are robust to

correlations introduced by the polynomials. Additionally, we tested if collinearity

between popularity and reputation could change the shape of the predictions, by

analyzing the residuals of partial models over the leave-out sample. We found

the same nonmonotonic shapes, when analyzing the dependence of the residual-

ized probability of inactivity versus reputation and popularity, illustrating that

our results are robust to correlations between reputation and popularity.

Popularity Analysis

To understand changes in popularity, we focus on the set of users that were

active since April 1, 2016, and exclude a random 10 percent of those users as a

leave-out sample. Figure 4 shows a histogram of the amounts of followers in 2009

and 2016. As expected given the growth of Twitter as a social network, popularity

in terms of amount of followers had a tendency to grow between the two time

points. This growth is especially present for users of low to moderate popularity,

as the major density of the histogram is significantly above the diagonal, but close

to the axes. When going to larger values of popularity, growth seems to be

moderated, suggesting a sublinear yet powerful growth tendency.

We inspect the distribution of popularity as measured by the amount of

followers, to formulate a model to predict popularity in 2016 based on the full

2009 network. The left panel of Figure 5 shows the density function of the

Figure 4. Histogram of Logarithms of the Amount of Followers as Measured in 2009 Versus 2016,
With Frequency in the Bins on a Logarithmic Scale.

Note: The vast majority of the users have a large significant increase in followers, with a tendency to
be saturated over very popular users.
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logarithm of the amount of followers. The amount of followers closely follows a

log-normal distribution, with a distribution of logarithms close to normality.

Some skewness can be seen on the density function, which can be attributed to

the error associated to discrete values.

We evaluate the evidence for the log-normal hypothesis versus the alternative

and more common power-law hypothesis. We apply maximum likelihood

estimators based on a tail-reweighted Kolmogorov–Smirnov criterion (Clauset

et al., 2009), identifying the minimum value of followers (368) over which a power-

law tail might be present. We then performed the same tail estimate using a log-

normal distribution instead, and the result of both fits is shown against the

complementary cumulative density function on the right panel of Figure 5. The fit

of a log-normal distribution outperforms a power-law fit, reaching a lower

Kolmogorov–Smirnov distance below 0.1. A two-sided likelihood ratio test (Vuong,

1989) supports this result: The log-likelihood ratio between the power-law model

and the log-normal one is �17.1 (p< 10�60). From this, we can conclude that, while

the tail of popularity is rather long, the popularity of early adopters that are still

active is more likely to follow a log-normal distribution than a power-law.

Given the log-normality of the amount of followers, we model the patterns

observed over the 2D histogram as a linear regression to predict the logarithm of

the amount of followers in 2016, based on the full 2009 network metrics. We focus

on users with at least one follower in 2009 and 2016, including a total of more

than 5.4 million users. First, we model how the growth in the amount of followers

is mediated by reputation:

F16 ¼ aI þ bI � F09 þ cI � I09 þ dI � F09 � I09 þ eI ð2Þ

where F16 and F09 are the logarithm of the amount of followers in 2016 and 2009,

respectively, and I09 is the logarithm of the in-coreness in 2009. The error term eI
is assumed to be uncorrelated and normally distributed.

Figure 5. Left: Probability density function of the logarithm of the amount of followers of active users
in 2016. Right: Complementary cumulative density function (CCDF) of popularity of active users with

power-law fit (blue) and log-normal fit (red). The distribution is best fit by a log-normal,
outperforming a power-law.
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We find that popularity in 2009 leads to higher popularity in 2016, as

evidenced by the positive estimate of bF, as shown in Appendix SIII along with

more detailed fit results. The interaction with reputation is not trivial, the base

effect of reputation is negative, but the interaction term with popularity is positive.

To understand it better, we plot the predicted value of popularity in 2016 versus

reputation in 2009, for a selection of various values of popularity in 2009.

As shown on the Figure 6, for low values of popularity in 2009, the effect of

reputation is slightly negative. After popularity values above 100 followers, the

effect of reputation is positive, showing that reputation helps to growth

popularity of already popular users, while it is not a necessarily good resource

for less popular ones. These results lend support for the popularity growth

hypothesis, and show an interesting mixed scenario for the weak competition

hypothesis: reputation can have a positive effect on popularity, but cannot replace

it.

To understand the effect of the bow-tie structure on the changes in

popularity, we follow a similar modeling approach as with reputation:

F16 ¼ aB þ bB � F09 þ cB � B09 þ dB � F09 � B09 þ eB ð3Þ

where B09 is a categorical factor that captures if the user was in the In, Out, or

SCC group in 2009. The results of the fit reveal significant effects of the bow-tie

group in future popularity, presented more in detail in Appendix SIII. Figure 7

shows the predicted value of popularity in 2016 versus 2009, for the four bow-tie

groups in the fitted model. Growth in popularity is generally sublinear, and the

tendency to grow depends on the bow-tie group. Users that belonged to the SCC

and the Out group grew the most in popularity in comparison to other groups.

We evaluate the generalizability of these results predicting popularity in the leave-

out sample. A null model with only an intercept has a mean absolute error (MAE) of

Figure 6. Model Predictions for Popularity in 2016 Versus Reputation, After Fixing the Value of
Popularity in 2009 to a Range of Values.

Notes: Reputation has a positive effect on the future popularity of a user when users are popular
enough, otherwise it decreases it. Shaded areas shows standard errors and are too small to be visible.
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1.370. A model using only popularity in 2009 has a MAE of 1.242, which is improved

when adding reputation to 1.220 and when adding the bow-tie group to 1.239.

Social Influence Analysis

After testing the role of reputation and popularity in the tendency of users to

become inactive and grow in popularity, we explore how reputation and popularity

shape social influence. As with the other analyses, we remove 10 percent of users as

a leave-out sample, including a total of 3,300,045 users in the fits.

The division of impact hypothesis postulates that social influence will grow as

a power function of the size of the group, that is, the amount of followers, where

the exponent is below 1. To test this hypothesis, we compute SRT as the logarithm

of the average amount of retweets, and formulate a regression model as:

SRT ¼ aRT þ bRT � F09 þ cRT � I09 þ dRT � F09 � I09 þ eRT ð4Þ

where F09 and I09 are the logmodulus of popularity and reputation in 2009,

respectively. Equation (4) models the logarithm of social influence as a linear

combination of F09, I09, and their interaction.

Figure 8 shows the predicted value of the average amount of retweets versus

popularity for the fit, as explained more in detail in Appendix SIV along with

coefficient estimates and regression diagnostics. It can be seen that, along various

values of reputation, social influence scales sublinearly with popularity. More

precisely, the fit estimates bRT¼ 0.54 with a standard error below 0.01, an estimate

clearly below 1 as hypothesized. Due to the positive interaction term, this

relationship approaches linearity along the reputation scale, as appreciated in the

line for extremely high reputation in Figure 8. This is exceptional in the range of

Figure 7. Model Predictions of the Growth of Popularity for the Four Bow-Tie Groups, With the
Identity Dashed Line as Reference.

Notes: Growth is evident but sublinear in the SCC and Out groups, moderated in the rest, and not
significant in the In group. Shaded areas show standard errors around the prediction.
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values observed in our analysis, suggesting more heterogeneous samples might be

able to find positive effects of reputation.

To better understand how popularity and reputation interact in social

influence, we show the prediction profile for the model in the left panel Figure 9.

Social influence grows with popularity but not with reputation, which shows a

soft decreasing effect. This negative effects of reputation softens as popularity

increases, but never reaches a positive trend in the observed value range.

A null model has an MAE over the leave out sample of 1.243, outperformed

by the MAE of 1.226 of the model of Equation (4) (t-test p< 10�5). This model

outperforms models that use only popularity (p< 10�5) and only reputation

(p< 10�5). Comparing the leave-out sample errors of models using only

popularity and only reputation reveals that the popularity model is a better fit

(p< 10�5), an observation that is also supported by a likelihood ratio test over the

Figure 8. Predicted Value of Social Influence in the Fit of the Model of Equation (4).
Notes: Social influence is shown versus popularity in 2009 for various values of reputation (I09). Social

influence grows sublinearly with popularity and the growth approaches linearity for higher
reputation.

Figure 9. Left: Predicted value of social influence over the range of popularity and reputation in 2009.
Social influence grows with popularity, and decreases with reputation when popularity is low. Right:
Predicted values of social influence for users in the bow-tie groups of the network. Users in the Out

group are significantly more influential than the rest.
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training data. This evidence runs against the reputation strength hypothesis,

suggesting that popularity is a better predictor for social influence in Twitter.

We test the bow-tie influence hypothesis with a model similar to the one of

Equation (4), but with a dependent categorical variable with the bow-tie group as

in Equation (3). The detailed results of the fit and its diagnostics are reported in

Appendix SIV, and the right panel of Figure 9 shows the predicted values of the

average amount of retweets for the four groups of the bow-tie decomposition.

This analysis reveals that users in the Out group are significantly more influential

than other users, supporting the bow-tie influence hypothesis. In relative terms, a

user in the Out group is 15.3 percent more influential than one in the SCC, and

27.9 percent more influential than one in the Rest group.

Discussion

We present a large-scale analysis of the relations between popularity,

reputation, activity, and social influence across a period of seven years in Twitter.

We processed the full 2009 network of followers, calculating popularity and

reputation values for more than 40 million Twitter users, and revealing a bow-tie

structure with a giant strongly connected component. Our results can be

summarized as follows.

1. Results on activity

i Nonmonotonic motivation hypothesis: Supported. Logistic regression results

show that the probability of inactivity has a generally negative trend, but

nonlinear polynomial terms are significant and show local regions of

positive trends.

ii Cascading inactivity hypothesis: Supported. The MAE in the leave-out sample

for a logistic regression model using only reputation is lower than using

only popularity.

iii Core activity hypothesis: Supported. Tests of equality of proportions of

becoming inactive in the bow-tie groups show that the probabilty of

becoming inactive in the SCC is lower than in the other four parts.

2. Results on popularity

i Power-law popularity hypothesis: Rejected. A log-normal distribution fit of

popularity outperforms a power-law, even when fitting only the tail of the

distribution.

ii Popularity growth hypothesis: Supported. A regression model shows that

popularity in 2016 is sublinearly and positively associated with popularity

in 2009, even when controlling for reputation.

iii Weak competition hypothesis: Partially supported. Regression results show a

negative association between reputation in 2009 and popularity in 2016, but
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the interaction term is positive. As a result, reputation has a positive effect

on future popularity only for sufficiently high levels of popularity in 2009.

3. Results on social influence

i Division of impact hypothesis: Supported. A linear model fit shows that average

retweet rates grow sublinearly with popularity in 2009.

ii Bow-tie influence hypothesis: Supported. The retweet rate of users in the Out

group of the bow-tie decomposition are significantly higher on average.

iii Reputation strength: Rejected. The MAE in the leave-out sample for a

regression model of retweet rates using only reputation is higher than for a

model using only popularity.

Our analysis of activity in 2016 shows that the probability to become inactive

in Twitter follows a nonmonotonic function with respect to popularity and

reputation. This contrasts with the initial assumption of resilience models for

online social networks (Garcia et al., 2013): a monotonically decreasing inactivity

probability with degree. Our results show that a general negative trend is in place,

but also show a concavity pattern that calls for new microdynamic formulations, as

suggested in the framework of Garcia et al. (2013) and recently explored by Yu

et al. (2016). Nevertheless, we must note that the cascading inactivity hypothesis

follows from these kind of models, which we find support for when comparing the

quality of predictors based on degree and coreness. This is an example of how

simple microscopic assumptions, which might be incomplete or even empirically

incorrect, can be used to formulate hypotheses about macroscopic phenomena,

when analyzed as an agent-based model (Ball, 2007).

We find that users outside the SCC have a significant increased probability of

becoming inactive, thus being excluded from social and political phenomena

present in Twitter. This can be seen an example of the second digital divide

(Attewell, 2001), where the difference in participation is not due to inequality in the

access to information technologies, but on the variance of intensity and proficiency

of their use. As such, the citizens that could be excluded from deliberation in

Twitter are not the ones that could not have access to a computer or smartphone,

but the ones that could not afford the time or effort to keep active and engaged in

the Twitter society. An alternative interpretation to this finding lies on the large

size of the SCC: the larger activity level might be a size-induced phenomenon

rather than being generated by the connections within the SCC. Our analysis

cannot address the causation mechanism for this effect of the SCC on activity, in

particular whether it is an effect on motivation or a selection mechanism that keeps

fake accounts or spammers outside the SCC. Only future comparative analyses

with other online social networks and with more detailed data will allow us to

understand why the bow-tie structure is linked to user inactivity.

Our analysis of the distribution of popularity clearly refutes the power-law

hypothesis, supporting a log-normal distribution as a better explanation. A theoreti-

cal explanation for the log-normal hypothesis can be found on stochastic growth
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models. Power-law distributions emerge from a combination of a birth process and

proportional growth (Mitzenmacher, 2004), while log-normal distributions are a

conclusion of proportional growth alone. In our study, this can emerge from the

difference between the time scale of users joining Twitter, roughly three years for

this sample, when compared to the time scale of their growth in popularity, which is

seven years. The difference between these time scales implies that the birth process

of users is negligible in comparison to the proportional growth of the amounts of

followers, and thus the final distribution resembles one in which all users would

have joined Twitter roughly on the same date: a log-normal distribution.

When predicting popularity as the amount of followers in 2016, we find that

popularity grows with reputation only for users with some previous level of

popularity. Thus, with respect to the growth in attention as a resource, reputation

is a complementary but costly resource that seems to pay off only in the case of

sufficiently popular users. Nevertheless, this points to a weak competition

scenario in which reputation is not detrimental and being followed by reputable

users does not have a negative effect on future popularity.

Our analysis of social influence shows that the extent of social influence grows

sublinearly with popularity, supporting the division of impact hypothesis drawn

from social impact theory. Interestingly, we find that popularity alone is a better

predictor of social influence than reputation, refuting the reputation strength

hypothesis. On the one hand, this contrasts with previous research that compared

the predictive power of undirected coreness metrics and degree, finding in

pairwise comparisons that coreness is a better predictor of spreading in simulations

(Kitsak et al., 2010) and empirical data (Pei, Muchnik, Andrade, Zheng, & Makse,

2014). On the other hand, information spreading in social network has been

repeatedly shown to greatly differ from epidemic spreading (Lerman, 2016). This

calls for a future study that can disentangle, whether the discrepancy between

simulation results and our empirical analysis is due to topological properties of the

follower network or due to complex dynamics in retweeting behavior.

Our work suffers the current research bias of Twitter as a model organism

(Tufekci, 2014): The generalization of results is limited due to the large amount of

research only based on Twitter data. This overfocusing on Twitter carries some risks

for the scientific community as a whole, for example in relation with the Terms of

Service (Watters, 2011). We chose Twitter for our analysis because of its large size

and longitudinally tractable nature, two properties that are not always available for

public research in other social networks. Our perspective measuring popularity

through the amount of followers and reputation through in-coreness is extensible to

other directed social networking sites such as Instagram or Youtube, and thus future

research can explore if other sites follow similar mechanics as the ones we revealed

here. Furthermore, fine grained takes on user behavior can study important aspects

of popularity, for example, on different classes of accounts related to companies and

promotional content (Abisheva et al., 2014), or on linguistic and sentiment signals in

popularity growth (Niven et al., 2015).

Our research has followed a theory-driven approach, aiming at aspects of

Twitter that are relevant for society as a whole and that have been inferred from
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both qualitative and computational models. This allowed us take a step further

from descriptive and data-driven analyses without theoretical context, framing our

findings in a wider scientific perspective beyond the computational sciences (Cihon

& Yasseri, 2016). We learned that popularity and reputation are not always

motivating, that popularity is not as heterogeneous as was thought to be, and that

popularity and reputation are both relevant when studying social influence. Our

methods can be applied to subsets of Twitter in a country, detecting influential

individuals, finding excluded social groups that become inactive, and predicting

the heterogeneous potential that social media has when spreading information.
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This was funded by the ETH Risk Centre’s “Systemic Risks for Privacy in Online Interaction” and by
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grant number:
CR21I1_146499).
1. https://an.kaist.ac.kr/traces/WWW2010.html.
2. We performed a second request on all missing users and found no result on any of them. This

discards programmatic errors as a possible source for the missing users.
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