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Abstract

We introduce a statistical method to investigate the impact of dyadic relations on complex
networks generated from repeated interactions. It is based on generalised hypergeometric
ensembles, a class of statistical network ensembles developed recently. We represent different
types of known relations between system elements by weighted graphs, separated in the
different layers of a multiplex network. With our method we can regress the influence of
each relational layer, the independent variables, on the interaction counts, the dependent
variables. Moreover, we can test the statistical significance of the relations as explanatory
variables for the observed interactions. To demonstrate the power of our approach and its
broad applicability, we will present examples based on synthetic and empirical data.

1 Introduction

We often deal with datasets of observed repeated interactions between elements of a system.
These datasets are used to generate networks where the elements are represented by vertices
and interactions by edges. We ask whether these interactions are random events or whether they
are driven by existing relations between the elements. To answer this question, we propose a
statistical model to regress relations, which we identify as independent variables, on a network
created from interactions, which we will refer to as dependent variables.

In general, a regression model explains dependent variables as a function of the independent
ones, accounting for random effects. Here, we assume that the observed interactions are driven
by different relations which are masked by combinatorial effects. With combinatorial effects, we
mean that elements that interact more in general are also more likely to interact with each other,
even if they have no relations. This problem is well known in network theory, where it is referred
to as degree-correction (see e.g. [10, 16, 18]). For example, the fact that two individuals have
contact very often can be explained by multiple reasons. They may interact because they are
friends, because they work together, or simply because they are very active, and hence have high
chances to meet. Therefore, to have a full understanding of the system, we have to disentangle
relations from combinatorial effects.
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Datasets of interactions are ubiquitous across disciplines. Examples of these are recorded contacts
between individuals (e.g. SocioPatterns [12, 23], Reality Mining [5]), mutualistic interactions
between species in ecology [4, 14], economical transactions between countries and firms [8, 17], and
collaborations between firms [24]. In these cases, researchers are interested in learning whether
the observed interactions are driven by relations between the elements of the system. They
ask whether friendship plays a role in the contacts between students [12], whether homophily
drives interactions within social networks, i.e. whether individuals sharing similar characteristics
are more likely to interact [13], or whether collaborations between companies are driven by
geographical distance or industrial sector similarity [24].

There exist few statistical models addressing the problem of quantifying the interdependence
between observed edges and dyadic relations. This problem is exacerbated by the fact that the
dyadic relations represented in complex networks are not independent from one another.

Because of the non-independency of dyadic relations, ordinary least squares regression models
are inappropriate to analyse network data [11]. To partially overcome their limits, Krackhardt
[11] introduced a regression method based on the quadratic assignment procedure developed
by Hubert and Schultz [9]. Other statistical methods commonly used in the analysis of social
networks are based on exponential random graph models (ERGMs) or on their extensions (see
e.g. [19–22]). Although being effective under specific conditions, all these methods have been
developed for unweighted graphs. This means that they are not suited for datasets which contain
repeated interactions, that need to be represented as integer-weighted graphs. The solution to
this issue is to threshold the interactions to obtain an unweighted graph (e.g. [3]). Clearly, this
approach does not exploit all the information available in the data, and therefore may produce
sub-optimal results [1]. A step forward in the analysis of weighted networks has recently been
proposed in [6]. The authors introduce a Bayesian approach to edge formation, which allows to
encode a broad class of hypothesis for the formation of weighted edges in complex networks.
However, this approach does not take into account the combinatorial effects found in interaction
data.

We can hence summarise the limitations of existing methods into two main issues. First, many
of them are not appropriate for weighted graphs. Second, they do not take into account the
combinatorial effects typical of interaction data. To solve these problems, in this article we
propose a new model to perform statistical regression on networks. Our method is based on
an extension of generalised hypergeometric ensembles (gHypE), a class of statistical network
ensembles we have recently introduced (see [2]). gHypEs contain random graphs generated by
merging arbitrary relations between vertices and combinatorial effects. Moreover, thanks to their
analytical formulation, we can statistically test the significance of the regression model against
the observed interactions.
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We demonstrate the power of our approach and its broad applicability with examples based on
synthetic and empirical data. As case study, we will use the SocioPattern dataset provided in [12].
The data available consist of an interaction network, built from recorded contact counts between
high-school students, and of further information such as student’s gender, class membership and
topic, self-reported friendship relations, and Facebook connections.

2 Methodology

2.1 Network Representation

Relational datasets as the one provided in [12], consist of interaction counts and a collection of
dyadic relations and vertex attributes. Vertex attributes, such as community membership or gen-
der, often yield strong relations between individuals, as individuals in the same community tend
to interact more than individuals in different ones. We can study this type of data representing
it as a multiplex network. Multiplex networks are a special class of interconnected multilayer
networks where the vertices of each layer correspond (cf. fig. 1) [7].

Suppose that we have a dataset consisting of m recorded interactions between n elements and r
different types of relations between them. We can encode the interactions in a graph with n = |V |
vertices and m edges. Since two individuals may interact more than once, multiple edges may
exist between the same couple of vertices, giving rise to a multi-edge graph. In the following we
will refer to this graph as the interaction layer I. For each type of relation, we can generate a
graph that encodes the dyadic relations between the elements of the system as weighted edges
between vertices. The weight of each edge encodes the strength of the relation. We will refer to
these r graphs as the relational layers Rl with l ∈ [1, r]. Let now M be the multiplex network
generated by the r + 1 layers and n = |V | vertices. Figure 1 illustrates the multiplex approach
we take.

In the following, we propose a framework to perform statistical regressions with network layers.
We assume the multi-edged graph I to be the dependent variable and the remaining layers Rl
to be the independent – explanatory – variables. The model that results has the following form:

I = f(R1, . . . ,Rr;β1, . . . , βr), (1)

for some function f : RV×V × · · · ×RV×V ×Rr → NV×V , where the parameters βl, l ∈ [1, r] are
the parameters of the regression model corresponding to each layer Rl.
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Figure 1: The multiplex network representation of a relational dataset. The bottom layer
(blue) captures the interaction counts that are observed. The top layers (yellow) encodes differ-
ent types of relations, like weighted friendship links, or community membership. The model we
propose allows us to understand how these relational layers impact interactions.

2.2 Statistical Model

We want to model the interaction layer I, which is a multi-edged graph with fixed number of edges
m. To do so, we treat I as a realisation from a generalised hypergeometric ensemble E(n,m) [2],
with n vertices and m edges. We indicate with A the adjacency matrix of the interaction layer
I and Aij with i, j ∈ V , its elements. Similarly, let Rl be the adjacency matrix of the relational
layer Rl and with β ∈ Rr the r-vector of regression coefficients. I is then distributed according
to the Wallenius non-central hypergeometric distribution [2, 25]

Pr(I|R) =

∏
i,j

(
Ξij
Aij

)∫ 1

0

∏
i,j

(
1− z

Ωij
SΩ

)Aij
dz (2)

with SΩ =
∑

i,j Ωij(Ξij −Aij).

The distribution in eq. (2) is defined by the two quantities Ξ and Ω. Ω encodes the propensity of
pairs of vertices to connect, and Ξ the probability that pairs of vertices are connected because
of combinatorial effects, as described in [2]. We assume the entries of the matrix of possible
edges Ξ are built according to the configuration model. This is the most general way to encode
combinatorial effect generated by the different activity, i.e. degree, of vertices. It means that
vertices that are more active, i.e. have higher degree, are more likely to interact. Hence, Ξ is
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completely defined by I. On the other hand, Ω depends on the relational layers {Rl}l∈[1,r] as
follows:

Ω :=
r∏
l=1

Rβl
l . (3)

We can now specify the statistical model in eq. (1). We take f as the expectation of the hyper-
geometric network ensemble Ê(n,m) that maximises the probability of observing I, given the
relational layers {Rl}l∈[1,r]:

I = µ[Ê(n,m)|R1, . . . ,Rr]. (4)

Estimating the model in eq. (4) is therefore equivalent to find maximum likelihood estimators
(MLE) for the parameter vector β in eq. (2).

Equation (2) shows that the likelihood of β given the observed graph I is defined by

L(β|I) =

∏
i,j

(
Ξij
Aij

)∫ 1

0

∏
i,j

1− z

∏r
l=1 R

βl
l,ij

Sβ

Aij

dz (5)

with Sβ =
∑

i,j

∏r
l=1R

βl
l,ij(Ξij −Aij).

Although the numerical maximisation of eq. (5) is difficult, for m�
∑

ij Ξij we can approximate
the multivariate hypergeometric distribution with a multinomial distribution. Therefore eq. (5)
as a function of β can be approximated up to constants by

L(β|I) ∼
∏
i,j∈V

(
Ξij
∏r
l=1R

βl
l,ij∑

i,j∈V Ξij
∏r
l=1R

βl
l,ij

)Iij
. (6)

We obtain the MLE β̂ = argmaxβ(L(β|I)) of eq. (6) by solving numerically the system given by
∇L(β) = 0. Each component of the gradient of the log-likelihood ∇ log(L(β)) is then given by

∂ log(L(β|I))

∂βl
= −m

∑
ij log(Rl,ij)Ξij

∏r
l=1R

βl
l,ij∑

ij Ξij
∏r
l=1R

βl
l,ij

+
∑
ij

Iij log(Rl,ij) (7)

2.3 General Regression Model

The model described in the previous section can be generalised to account for multiple observa-
tions of the multiplexM. For example, suppose we have data about contacts between students in
a school, and we have collected the same type of data for different schools. Let’s assume now we
want to learn whether gender plays the same role in the interactions across all the schools. This
implies that while the relations between the individuals change for different observations, e.g.
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gender distribution in different schools, the effect that the relations have on the interactions re-
mains constant. In other words, the relational layers change for each observation, i.e. R(i) 6= R(j),
where i and j are different observations. On the other hand, the parameter β quantifying the
effect of the relations on the interactions is assumed to be constant, i.e. β(i) = β(j) = β.

Suppose to have N independent observations of the multiplexM, each denotedM(i). We assume
that the influence of the independent layers R(i)

l on the dependent layer I(i) is fixed, i.e. for each
observation i, β(i) = β ∀i ∈ N .

Since each observation I(i) is independent and follows the distribution of the gHypE (eq. (2)),
the joint probability distribution is just the product of each probability. Therefore the likelihood
of the parameter vector β is given by

L(β|I(0), I(1), . . . , I(N)) :=
N∏
i=1

L(β|I(i)), (8)

where L(β|I(i)) is defined as in eq. (5). It is worth noting that the interaction layers I(i) come
from the same class of distribution but are not identically distributed. This is true unless the
number of edges M (i) = M and the matrix Ξ(i) = Ξ are constant for each observation (i).

Given the likelihood in eq. (8), we can derive the MLE β̂ of the parameter β. Denoting with
l(β|I(i)) the log-likelihood of β and by

l̂(β) =
1

N

N∑
i=1

l(β|I(i)) (9)

the average log-likelihood, β̂ is defined as follows:

β̂ = argmaxβ
(
l̂(β)

)
. (10)

2.4 Model Selection and Significance

Recall we have a multiplex M with r + 1 layers. Suppose we have estimated the statistical
regression model defined in eq. (4). We know the MLEs {β̂l}l∈[1,r] corresponding the r relational
layers {Rl}l∈[1,r], and each of their values quantifies the strength of the effect each layer has on
the interaction layer I. Are all these parameters significant? In other words, we want to quantify
the statistical significance of the model with all parameters {β̂l}l∈[1,r], and compare it to a model
with less parameters. This allows to select the statistical model with the highest significance,
and to disregard the parameters and the layers with non-significant effect on the interactions.

We want to compare which of two statistical models defined by the sub-multiplexes {Rl}l∈[1,q]

and {Rl}l∈[1,q+s] as in eq. (1), one with q and the other one with q + s relational layers, better
describes the observed interaction layer I.
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Both models are described by eq. (5) with the appropriate layers chosen as predictors. The two
models are nested, as one is a special case of the other. In fact, the model defined by {Rl}l∈[1,q]

can be obtained by setting to 0 the s coefficients {βl}l∈[q,q+s] corresponding to the {Rl}l∈[q,q+s]

layers in the second model (cf. eq. (3)).

We can perform model selection by means of the likelihood ratio test, which is the most powerful
test at significance level α, according to the Neyman-Pearson lemma. In particular, we can
identify the null hypothesis H0 by the model defined by {Rl}l∈[1,q] with q̃ parameters, and the
alternative hypothesis H1 by the model defined by {Rl}l∈[1,q+s], with s̃ more parameters. This
allows to test whether the explaining power of the more complex model with q̃+ s̃ parameters is
high enough to justify the increase in complexity.

The likelihood ratio statistic Λ(I) is defined as

Λ(I) =
L(β0|I)

L(β1|I)
=

L(βq|I)

L(βq+s|I)
. (11)

According to eq. (5), Λ(I) is given by

Λ(I) =

∫ 1
0

∏
i,j

1− z

∏q
l=1

R
βl
l,ij

Sβ0

Aij

dz

∫ 1
0

∏
i,j

1− z

∏q+s
l=1

R
βl
l,ij

Sβ1

Aij

dz

. (12)

Given the two nested models described above, and chosen a significance level α, we will select
the more complex model only if we can reject the null hypothesis by computing the p-value
corresponding to Λ(I).

In the case of the regression problem described in section 2.3, with multiple observation of the
multiplexM, the same procedure applies. In fact the models are still nested and the likelihood
ratio test can be performed by choosing the joint likelihood functions as in eq. (8) to compute
the likelihood ratio statistics.

The likelihood ratio distribution converges to a χ2 distribution with d degrees of freedom, in
accordance withWilks’ theorem [26], as the number of observationsN and the number of observed
dyads Aij →∞. In fact, if the network is large enough, i.e. if the number of non-zero Ξij is large,
Wilks’ theorem holds even for a single observation (N = 1) and the likelihood ratio distribution
can be approximated by the χ2 distribution. The number of degrees of freedom d is equal to
the difference in the number of parameters (q + s) − s = s between the two models, plus the
number of degrees of freedom of the {Rl}l∈[q,q+s] additional layers. By performing a stepwise
selection, we can find the best model, where only the significant layers are used. In each step of
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the selection process, a layer is added to or removed from the model according to the result of
the likelihood-ratio test.

Once the best model has been selected, we can quantify the goodness of the model itself by
means of its Mahalanobis distance, as described in [2].

3 Applications

We showcase our method with two case studies. In the first one we illustrate how we can detect
homophily, i.e. the tendency of individuals to interact with similar others, in a network of repeated
interactions. In the second case study, we apply our technique to the SocioPattern dataset [12],
to measure the strength and the significance of the effect of each layer of information provided
on the observed number of interactions.

3.1 Homophily detection

In this first example, we analyse a synthetic dataset. We generate random interactions between
individuals divided into two groups, encoding a preference for individuals of the same group to
interact more between each other than with the other group. Our method allows to estimate
the relative intensity of the homophily encoded in the data, i.e. how much individuals of the
same group are more likely to interact within the group than with individuals from the other
group. Furthermore, we can identify a threshold for its detectability in graphs from repeated
interactions.

We generate 500 replicates of a random graph with n = 200 vertices divided into 2 equally sized
groups. We place m = 5000 edges at random, such that the probability to create an edge between
two vertices of the same group is p1 and the probability to create an edge between two vertices of
different groups is p2. There is homophily if the odds-ratio ω = p1/p2 > 1, i.e. if the probability
to observe an edge between two vertices of the same group is ω > 1 times higher than that
to observe an edge between vertices of different groups. An example of adjacency matrix with
strong homophily (ω = 18) is provided in fig. 2.

In this setup, the interaction layer corresponds to the synthetic graph, while there is only one
relational layerR1 that encodes the presence of the homophily relation. We can encode homophily
in the relational layer R1 by assigning R1,ij = 1 if i, j are in the same group, and R1,ij = ε < 1

if i, j are in different groups.

To test whether the effect of homophily on the interaction is significant, we proceed as described
in section 2. We build a statistical model with one independent variable R1 and one parameter
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Figure 2: The adjacency matrix of a random graph with 200 nodes and 5000 edges divided into
2 identical groups. It shows homophily characterised by an odds-ratio ω = 18 between in-group
and out-group relations.

β1. We can then obtain the MLE β̂1 as described in section 2.2. Finally, we can perform a
likelihood-ratio test to test for the presence of homophily.

We build the test as follows. The null-hypothesis is the absence of homophily. Hence we assume
homogeneous relations between vertices, i.e. R0,ij = 1 for all vertices i, j. The alternative hy-
pothesis is the presence of homophily, encoded as described above. The closer to 0 the maximum
likelihood estimator β̂1 is, the weaker the observed homophily. The greater β̂1 is, the stronger
the observed homophily.

In the case of ω = 18 (cf. fig. 2), we can reject the null-hypothesis with p-value of 0 (quantile
> 4000 of a χ2 with 2 degrees of freedom).

In this example, we can identify a threshold of detectability for homophily of ω = 1.11, i.e. the
null-hypothesis is rejected at 0.05 level 454 out of 500 tests (> 90%), performed with random
replicates generated using the same parameters. This threshold can be further lowered by in-
creasing the number of observations available to perform the regression (N > 1). Compared to
methods based on modularity (e.g. [15]), this approach allows to detect homophily with a very
low threshold. In fact, the average value for modularity is 0.0266 on 500 replicates, which, in
the absence of other knowledge, does not allow to say anything about the structure of a single
observed graph.

To quantify the intensity of the homophily relation we can look at the value of εβ̂1 . The smaller
it is, the stronger the relation. Moreover, in this simple example we can recover the odds-ratio
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ω = p1/p2. By taking the ratio ω̂ = 1/εβ̂1 , we can estimate ω. In particular, in the case of ω = 18,
we obtain ω̂ ≈ 18.06 averaging over 500 random replicates.

3.2 High school contacts analysis

In the second case study, we analyse the dataset provided in [12]. The data consists of recorded
contacts between 327 students over 5 days that we represent in the graph of interactions. The
dataset contains 5 additional types of relations between the students that we encode as 5 rela-
tional layers.

PC 
PC* 

PSI* 
2BIO

1 

2BIO2 
2BIO3 

MP 

M
P*

1 

MP
*2

 

Figure 3: The graph obtained from the contacts between students. Each student is coloured
according to its class membership and the internal ring groups classes on similar topic. From
this figure it is clear that most of contacts happen between students of the same class, and
there is a preference for contacts between students attending classes on the same topic.

A first relational layer RC reflects the separation of students into the 9 classes. We want to limit
the encounters between students attending different classes, as it can be observed in fig. 3. To
build RC we can set RC,ij = 1 if i, j are in the same class, and RC,ij = ε < 1 if i, j are in different
classes.

A second relational layer RT is built according to the topic of the different classes students
take. The 9 classes can be grouped into 4 topical areas, of 3,3,2,1 classes respectively. There
are 3 classes of type "MP" (MP, MP01, MP02), two of type "PC" (PC and PC0), one of type
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"PSI" (PSI0) and 3 of type "BIO" (2BIO1, 2BIO2, 2BIO3). This separation is highlighted by
the internal ring in fig. 3. The layer RT is defined similarly to RC , setting RT,ij = 1 if i, j attend
classes in the same topical area, and RT,ij = ε < 1 if not.

A third relational layer RG is built using the gender of the students. We hypothesise homophily
would partially play a role in student interactions. We build the graph as described for the
synthetic example, in section 3.1.

The dataset provides also information about actual friendship relations between the students.
We build the fourth layer Rf using the social networks obtained from self-reported friendship
relations, and a fifth layer RF using the provided Facebook connections. We assume the absence
of an edge in either Rf or RF is not enough to disallow an interaction to happen. Hence, we set
the weight of the relations between students which are not "friends" in either of the two layers
to ε < 1.

We speculate that RC will have a very strong influence on the interactions, since the division into
classes act as sort of physical boundaries. In general, we would assume the information provided
by the two friendship layers will be comparable, as the reported friendship relations should be
part of the Facebook connections. However, in the dataset studied the two layers have a low
correlation (0.115), due to the fact that nearly half of the friendship relations (326 out of 668)
are not accounted by the 4515 Facebook connections. Hence, we cannot predict whether one of
the two layers does or does not have a significant effect on the interactions, without fitting the
regression model.

We build a regression model with 5 predictors as described in section 2. The MLEs of the
parameters corresponding to the 5 layers are given in table 1. As we expected, from the result of

MLE Significance ω

βC 1.37171072 ? ? ? 23.5348113

βT 0.92233844 ? ? ? 8.3625444

βG 0.08556497 ? ? ? 1.2177692

βf 0.74534302 ? ? ? 5.5634350

βF −0.08775806 − 0.8170374

Table 1: Fitted parameters for the 5-layer model and the significance of the respective
sub-models, obtained by adding one layer after the other. 3 stars correspond to a p-value
p < α = 0.05, the dash to p-value p > α = 0.1. For the regression we used ε = 0.1. The third
column report the odds-ratio for each parameter.

the regression we can see a strong effect of the separation between classes. The value of βC � 0

implies an odds-ratio of 23.5348113 for the probability of an encounter between classmates against
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an encounter of students of different classes, given everything else equal. This means that there
are 23 more chances that two classmates meet, compared to encounters between students of
different classes. Class topics is also a driving force for the interactions. A contact between
students attending classes on the same topic is 8 times more likely to be observed than a contact
between students attending classes on different topics. The value of βG supports the presence of
weak homophily in the encounters between students, with an odds-ratio of 1.2177692. The effect
of self-reported friendship is also positive as expected, however the negative value of βF , close to
0, hints that Facebook connections have little effect on the encounters.

We can proceed to study the significance of the effect provided by each relational layer. To do so
we follow a stepwise selection method as described in section 2.4. We introduce one effect after
the other, and we test whether the model with the added effect is better than the one without.
The test is the likelihood-ratio test described above, where the degrees of freedom are given by
the difference of the number of parameters between the new model that we want to test and
the previous one. The first effect is tested against a null-model where the interaction graph is
assumed to come from a gHypE with Ω = 1. The test for the gender layer has 2 degrees of
freedom, one to identify the gender groups and one to quantify the intensity of homophily. The
test for the classes layer has 9 degrees of freedom, 8 to identify the classes and 1 to quantify the
intensity of the separation (we assume that the intensity of the relation driving the interactions
is homogeneous across classes). The tests for the friendship layer and the Facebook layer have
both as many degrees of freedom as relations plus 1.

We find that the effect of the Facebook layer RF is the only non-significant, cf. table 1. We
can suppose that the information provided by the self-reported friendship relations Rf and RF
is similar. In fact, a model obtained by adding only the layer RF instead of Rf is significant.
However, when both relational layers are used as independent variables, only the layer Rf of
self-reported friendship relations is significant, thus showing that the information provided by
RF can be discarded.

From this example we can conclude that in the dataset studied, the observed interactions are
strongly influenced by the subdivision into classes and topic, as can also be visualised in fig. 3.
Gender homophily is also relevant, and there is a significant positive effect of friendship on the
contacts recorded.

4 Conclusion

In this article, we have proposed a new statistical model to quantify how observed interactions
depend on relations, in the framework of multiplex networks. The model is based on the assump-
tion that interactions between elements of a system are driven by two factors. The first factor is
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the existence of relations between elements, such as friendship or homophily. The second is the
combinatorial randomness caused by the activity of the elements. Elements that are more active
are more likely to interact with each other, even if they are unrelated.

Different from common approaches used in network analysis, our methodology has been specifi-
cally designed to deal with multi-edge graphs. It therefore allows to use the whole data available,
without the need of thresholding it to obtain unweighted, i.e. binary, graphs. In fact, repeated
interactions between elements of a system generate multi-edge graphs, where the vertices corre-
spond to the elements of the system. Similarly, relations can have varying intensity and should
be encoded in weighted graphs. This is why thresholding the data into binary networks can be
a waste of useful information.

Our model separates random and deterministic influences on interactions, accounting for the
randomness as combinatorial effects. We hence identify how much known relations drive the
interactions. To achieve this, we base our regression model on generalised hypergeometric en-
sembles, a class of statistical network ensembles we have recently introduced. The formulation of
our model allows to estimate the strength of the dependence between relations and interactions,
together with its statistical significance.

Studying how different relations drive observed interactions is not only necessary to increase
the understanding of a system, it is also needed to control the dynamics of a system. In fact,
to do so we have to appropriately modify the relations that are the driving forces underlying
its behaviour. Similarly, if we want to increase the resilience of a system, we want to affect the
relations that are responsible for its weaknesses. Having a clear understanding on how and which
relations impact the behaviour of the elements of a system is a necessary condition to properly
control it.

In conclusion, the method we propose is a major advance for the analysis of relational datasets
and complex networks. By allowing the study of multi-edge and weighted graphs, it increases
the breadth of applicability of network theory. In future work, it will allow to identify missing
interactions, according to null-models based on known relations. Thanks to this, it will be possible
to uncover unknown relations between elements of a system.
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