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Abstract. The inference of network topologies from relational data is
an important problem in data analysis. Exemplary applications include
the reconstruction of social ties from data on human interactions, the
inference of gene co-expression networks from DNA microarray data, or
the learning of semantic relationships based on co-occurrences of words
in documents. Solving these problems requires techniques to infer signifi-
cant links in noisy relational data. In this short paper, we propose a new
statistical modeling framework to address this challenge. The framework
builds on generalized hypergeometric ensembles, a class of generative sto-
chastic models that give rise to analytically tractable probability spaces
of directed, multi-edge graphs. We show how this framework can be used
to assess the significance of links in noisy relational data. We illustrate
our method in two data sets capturing spatio-temporal proximity rela-
tions between actors in a social system. The results show that our ana-
lytical framework provides a new approach to infer significant links from
relational data, with interesting perspectives for the mining of data on
social systems.
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1 Motivation

Advances in data sensing and collection give rise to an increasing volume of data
that capture dyadic relations between elements or actors in social, natural, and
technical systems. While it is common to apply graph mining and network analy-
sis to such relational data, it is often questionable whether the application of
these techniques is actually justified. Consider, for instance, various forms of time
series data, which not only tell us which elements of a complex system are related
but also when or in which order relations occur. Such data give rise to temporal
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networks, which question the application of widely used network-based modeling
and data mining techniques [13,24,26,27,30]. Apart from temporal information,
we often have access to data that capture multiple types of relations or inter-
actions. The resulting multi-layer network topologies give rise to complications
that threaten standard techniques, e.g., to infer and analyze social networks,
detect community structures, or to model and control dynamical processes in
networked systems [3,7,16,28,35].

The challenges outlined above are due to the growing availability of additional
information – such as time-stamped, sequential or multi-dimensional relational
data – which must be incorporated into network-based techniques to model and
analyze relational data. However, we are often confronted with situations in
which we lack information that is needed to interpret observed relations. Con-
sider, for instance, data sets that capture the simultaneous presence of two users
at the same location, the joint expression of two genes in a DNA microarray, or
the co-occurrence of two words in the same document. Each of these observed
relations can either be due to an underlying social tie, a functional relation-
ship between genes, a semantic link between two words, or it could simply have
occurred by mere chance. Rather than nâıvely analyzing such data from the per-
spective of graphs or networks, we should thus treat them as noisy observations
that may or may not indicate true relations between a system’s elements.

Principled and efficient methods to solve this network inference problem are
of major importance for the modeling and analysis of social networks, the recon-
struction of biological networks, and the mining of semantic structures in infor-
mation systems. The problem has received significant attention from the data
mining and machine learning community, as well as from researchers in graph
theory and network science. Especially in the latter community, the problem is
commonly addressed using statistical ensembles, i.e., generative stochastic mod-
els of graphs that can be used for inference, learning and modeling tasks. A
common issue of these techniques is that the underlying statistical ensembles
are not analytically tractable, thus requiring time-consuming numerical simula-
tions and Monte-Carlo sampling techniques.

To address this problem, in this short paper we propose generalized hyperge-
ometric ensembles (gHypE), a novel framework of statistical ensembles to infer
significant links in relational data. The framework can be viewed as generaliza-
tion of the configuration model, which is commonly used to generate random
graph topologies with a given sequence of node degrees. Our framework extends
this state-of-the-art graph-theoretic approach in two ways. First, it provides
analytically tractable probability spaces of directed and undirected multi-edge
graphs, eliminating the need for expensive numerical simulations. Second, it
allows to account for known factors that influence the occurrence of interac-
tions, such as known group structures, similarities between elements, or other
forms of biases. We demonstrate our framework in two real-world data sets that
capture spatio-temporal proximities of actors in a social system. The results
show that our framework provides interesting new perspectives for the mining
and learning in graphs.



From Relational Data to Graphs 113

2 Background and Related Work

The problem of inferring significant links in relational data has been addressed
in a number of works. In the following, we coarsely categorize them into three
lines of research.

Applying predictive analytics techniques, a first set of works studied the prob-
lem from the perspective of link prediction [17]. In [29], a supervised learning
technique is used to predict types of social ties based on unlabeled interactions.
The authors of [25] show that tensor factorization techniques allow to infer inter-
national relations from data that capture how often two countries co-occur in
news reports. In [33], a link-based latent variable model is used to predict friend-
ship relations using data on social interactions.

Using the special characteristics of time-stamped social interactions or geo-
graphical co-occurrences, a second line of works has additionally accounted for
spatio-temporal information. Studying data on time-stamped proximities of stu-
dents at MIT campus, the authors of [8] show that the temporal and spatial
distribution of proximity events allows to infer social ties with high accuracy. In
[5], a model that captures location diversity, regularity, intensity and duration
is used to predict social ties based on co-location events. An entropy-based app-
roach taking into account the diversity of interactions’ locations has been used
in [22].

Addressing scenarios where neither training data nor spatio-temporal infor-
mation is available, a third line of works is based on generative models for random
graphs. Such models can be used as null models for observed dyadic interactions,
which help us to assess whether the relations between a given pair of elements
occur significantly more often than expected. Existing works in this area typically
rely on standard modeling frameworks, such as exponential random graphs [4,23],
or the configuration model for graphs with given degree sequence or distrib-
ution [18]. On the one hand, these approaches provide statistically principled
network inference and learning methods for general relational data [2,12,19,32].
On the other hand, the underlying generative models are often not analytically
tractable, thus requiring expensive numerical simulations [19,23]. Proposing a
framework of analytically tractable generative models for directed and undi-
rected multi-edge graphs, in this work we close this research gap.

3 Generalized Hypergeometric Ensembles

In the following we introduce our framework step by step. For this, let us first
consider a data set consisting of repeated dyadic interactions (i, j), which have
been observed between two nodes i and j. Such a data set can be represented
as a multi-edge, or weighted, network G = (V,E), where V is a set of n nodes,
and E ⊆ V × V is a multi-set of (directed or undirected) edges. Let us further
define an adjacency matrix Â, where entries Âij ∈ N0 capture the weight of
an edge (i, j) ∈ V × V , i.e., the multiplicity of an edge (i, j) in the multi-
set E. For each node i ∈ V we further define the (weighted) in-degree k̂in(i) :=
∑

j∈V Âji and the (weighted) out-degree k̂out(i) :=
∑

j∈V Âij .
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Rather than directly applying graph mining and learning techniques to such
a weighted graph G, in the following we are interested in a crucial question:
Which of the links between nodes are significant, i.e., which of the observed
weights Aij go beyond what is expected at random, given (i) the total number
of observed interactions, and (ii) the number of times individual nodes engage in
interactions? To answer this question, we take the common approach of defining
a stochastic model that generates a so-called statistical ensemble, i.e., a proba-
bility space of graphs. Different from existing approaches, where link weights are
assumed to be continuous (e.g. [1,6]), we are interested in a statistical ensemble
that (i) can handle directed and multi-edge graphs, (ii) is analytically tractable,
and (iii) thus allows us to assess the significance of links in a theoretically prin-
cipled way.

Our construction of a statistical ensemble follows the general idea of the
Molloy-Reed configuration model, which is to randomly shuffle the topology of
a given network G while preserving the observed node degrees. For this, the
configuration model generates edges between randomly sampled pairs of nodes
in such a way that the exact observed degrees of all nodes are preserved. Dif-
ferent from this approach, we assume a sampling of m multi-edges such that
the sequence of expected degrees of nodes is preserved. For this, for each pair
of nodes i and j, we first define the maximum number Ξij of multi-edges that
can possibly exist between nodes i and j as Ξij := k̂out(i)k̂in(j) (cf. [15,20]).
The maximally possible numbers of links between all pairs of nodes can then be
conveniently represented in matrix form as Ξ := (Ξij)i,j∈V .

Our statistical ensemble is then defined by the following sampling procedure:
For each pair of nodes i, j, we sample edges from a set of Ξij possible multi-
edges uniformly at random. This can be viewed as an urn problem [14] where the
edges to be sampled are represented by balls in an urn. By representing edges
connecting different pairs of nodes (i, j) as balls having n2 = |V × V | different
colours, we obtain an urn with a total of M =

∑
i,j Ξij differently colored balls.

With this, the sampling of a network according to our model corresponds to
drawing exactly m balls from this urn. Each adjacency matrix A, with entries
Aij such that

∑
i,j Aij = m, corresponds to one particular realization drawn from

this ensemble. The probability to draw exactly A = {Aij}i,j∈V edges between
each pair of nodes is given by the multivariate hypergeometric distribution1

Pr(A) =
(

M

m

)−1 ∏

i,j

(
Ξij

Aij

)

. (1)

For each pair of nodes i, j ∈ V , the probability to draw exactly Âij edges
between i and j is given by the marginal distributions of the multivariate hyper-
geometric distribution. We thus arrive at a hypergeometric statistical ensemble,
which (i) generalizes the configuration model to directed, multi-edge graphs,
(ii) has a fixed sequence of expected degrees, and (iii) is analytically tractable.

1 Note that we do not distinguish between the n × n adjacency matrix A and the
n2 × 1 vector obtained by stacking.
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Moreover, it provides a framework to generalize other random graph models
like, e.g., the multi-edge version of the Erdös-Rényi model [10], where only n
and m are fixed, while there are no constraints on the degree sequence. This cor-
responds to a definition of Ξ with Ξij = m2/n2 = const. which directly results
from 〈kin(i)〉 = 〈kout(i)〉 = m/n.

The sampling procedure above gives a stochastic model for weighted, directed
graph in which (i) the expected weighted in- and out-degree sequence is fixed,
and (ii) interactions between nodes are generated at random. This provides a
null model in which the probability for a particular pair of nodes to be connected
by an edge is only influenced by combinatorial effects, and thus only depends on
the node degrees. For scenarios where we have additional information on factors
that influence the formation of edges, we can further generalize the ensemble
above as follows: We introduce a matrix Ω whose entries Ωij capture relative
dyadic propensities, i.e., the tendency of a node i to form an edge specifically to
node j. These propensities Ωij bias the edge sampling process described above.
This implies that entry Ωij only captures the propensity that goes beyond the
tendency of a node i to connect to a node j that is due to combinatorial effects,
i.e., the in-degree of j and the out-degree of i. In analogy to the urn model, here
a biased sampling implies that the probability of drawing balls of a given color
(representing all possible edges between a given pair of nodes) does not only
depend on their number but also on the respective relative propensities. The
probability distribution resulting from such a biased sampling process is given
by the multivariate Wallenius’ non-central hypergeometric distribution [11,31]:

Pr(A) =

⎡

⎣
∏

i,j

(
Ξij

Aij

)
⎤

⎦
∫ 1

0

∏

i,j

(

1 − z
Ωij
SΩ

)Aij

dz (2)

with SΩ =
∑

i,j Ωij(Ξij − Aij).
Similar to the unbiased sampling described above,the probability to observe

a particular number Âij of edges between a pair of nodes i and j can again be
calculated from the marginal distribution as

Pr(Aij = Âij) =
(

Ξij

Âij

)(
M − Ξij

m − Âij

)

·
∫ 1

0

[(

1 − z
Ωij
SΩ

)Âij
(

1 − z
Ω̄\(i,j)

SΩ

)m−Âij
]

dz

(3)

where Ω̄\(i,j) = (M − Ξij)−1
∑

(l,m)∈V ×V \(i,j) ΞlmΩlm.
Note that for the special case of a uniform dyadic propensity matrix Ω ≡

const, we recover Eq. 1 for the unbiased case, i.e., where all dyadic propensi-
ties are identical. We thus obtain a general framework of statistical ensembles
which (i) allows to encode arbitrary a priori tendencies of nodes to interact,
and (ii) provides an analytical expression for the probability to observe a given
number of interactions between any pair of nodes.
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4 Inferring Significant Social Ties

In the following, we demonstrate how our framework can be used to infer signif-
icant links in two relational data sets: (RM) captures time-stamped proximities
between students and faculty at MIT [9] recorded via smart devices. (ZKC)
covers frequencies of self-reported encounters between members of a university
Karate club collected by Wayne Zachary [34]. We denote the weighted adjacency
matrix capturing observed dyadic interactions as Â. For a given significance
threshold α, we then identify significant links by filtering matrix Â by a thresh-
old Pr(Aij ≤ Âij) > 1−α based on Eq. 3. This can be seen as assigning p-values
to dyads (i, j), obtaining a high-pass noise filter for entries in the adjacency
matrix.

To illustrate our approach, Fig. 1(a) shows the entries of the (original) adja-
cency matrix A for (RM). The high-pass noise filter resulting from our method-
ology (using α = 0.01) is shown in Fig. 1(b), where black entries correspond to
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Fig. 1. Illustration of our approach in the (RM) data set capturing proximity of stu-
dents and staff at MIT campus. For the observed weighted adjacency matrix (a) and a
given significance threshold, our framework allows to establish a high-pass noise filter
matrix (b), which can be used to obtain a filtered adjacency matrix containing only
significant links (c). A visual comparison of the output of a community detection algo-
rithm on the unfiltered (d) and filtered (f) graphs shows that detected partitions in the
filtered one better correspond to ground truth lab affiliations and classes (e). (a) Unfil-
tered weighted adjacency matrix. (b) High-pass noise filter matrix. (c) Filtered adja-
cency matrix containing only significant links. (d) Unfiltered graph. (e) Comparison of
ground truth lab affiliations (center column) vs. detected communities in the unfiltered
(left column) and filtered (right column) graph. (f) Filtered graph.
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pairs of nodes with non-significant links. The application of this filter to the
original matrix yields the noise-filtered matrix shown in Fig. 1(c). While in the
full network there are 721, 889 observed multi-edges amounting to 2, 952 dis-
tinct links, after filtering there are 626 (21.2%) significant links left (617, 069
multi-edges, 85.5% of the original). We validate the benefit of filtering the orig-
inal interactions in (RM) by comparing the output of a standard community
detection algorithm – the degree-corrected block model [21] – in (i) the original,
unfiltered graph shown in Fig. 1(d), and (ii) the filtered, significant graph shown
in Fig. 1(f). Using known classes of students and affiliations of staff members
as ground truth allows us to compare the quality of the community detection.
Figure 1(e) shows the set overlaps between the ground truth labels (middle col-
umn) and detected partitions in the unfiltered (left column) and filtered graph
(right column). Due to the high number of non-significant links in the unfil-
tered graph, the algorithm only detects three partitions, each spanning multi-
ple labs and classes. In contrast, applying the algorithm to the filtered graph
yields six partitions that better capture the ground truth lab and class structure
(cf. Fig. 1(e)). As expected, detected partitions do not perfectly correspond to
the ground truth, since labs and classes are likely not the only driving force
behind observed proximities.
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Fig. 2. Observed (a) and filtered (b) weighted graphs for the (ZKC) data set, capturing
encounters between members of a Karate club. The filtered graph shows that most of
the observed encounters can be explained by random effects resulting from the club
members’ separation into two classes.

A major advantage of gHypEs is that, by specifying a non-uniform matrix Ω,
we can additionally encode known factors that influence the occurrence of inter-
actions between nodes, while still obtaining an analytically tractable ensemble.
In our second illustrative example, we use this to encode the known structure
of two separate Karate classes in the (ZKC) data. These two classes naturally
influence the frequency of encounters between actors beyond what would be
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expected “at random”. We incorporate this prior knowledge via a block matrix
Ω that assigns higher dyadic propensities to pairs of actors in the same class
(cf. [3]). This approach allows to establish a “random baseline” accounting both
(i) for combinatorial effects due to heterogeneous node degrees, and (ii) the
known group structure in the data. Using a significance threshold of α = 0.01,
for (ZKC) this yields the striking result that only 8 out of 78 observed links are
significant (∼ 90% of 231 observed multi-edges are filtered out, cf. Fig. 2). In
other words, taking into account the partitioning of members in two classes for
(ZKC) almost all encounters between club members can simply be explained by
random effects. Figure 2 compares the original weighted network, illustrated in
Fig. 2(a), and the filtered network, in Fig. 2(b).

5 Conclusion

In this short paper we introduce gHypEs, a broad class of statistical ensembles
of graphs that can be used to infer significant links from noisy data. Our work
makes three important contributions: First, we provide an analytically tractable
statistical model of directed and undirected multi-edge graphs that can be used
for inference and learning tasks. Second, the formulation of our ensemble high-
lights a – to the best of our knowledge – previously unknown relation between
random graph theory and Wallenius‘non-central hypergeometric distribution.
And finally, different from existing statistical ensembles such as, e.g., the config-
uration model, our framework can be used to encode prior knowledge on factors
that influence the formation of relations. This flexible approach allows for a
tuning of the “random baseline”, opening perspectives for a statistically prin-
cipled network inference that accounts for effects that are not purely random.
We thus argue that our work advances the theoretical foundation for the mining
of relational data on social systems. It further highlights that principled model
selection and hypothesis testing are crucial prerequisites that should precede the
application of network-based data mining and modeling techniques.
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