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Value of peripheral nodes in controlling multilayer scale-free networks
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We analyze the controllability of a two-layer network, where driver nodes can be chosen randomly only from
one layer. Each layer contains a scale-free network with directed links and the node dynamics depends on the
incoming links from other nodes. We combine the in-degree and out-degree values to assign an importance
value w to each node, and distinguish between peripheral nodes with low w and central nodes with high w.
Based on numerical simulations, we find that the controllable part of the network is larger when choosing low
w nodes to connect the two layers. The control is as efficient when peripheral nodes are driver nodes as it is
for the case of more central nodes. However, if we assume a cost to utilize nodes that is proportional to their
overall degree, utilizing peripheral nodes to connect the two layers or to act as driver nodes is not only the
most cost-efficient solution, it is also the one that performs best in controlling the two-layer network among the
different interconnecting strategies we have tested.
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I. INTRODUCTION

How can we efficiently control the dynamics on complex
multilayer networks if we are able to control only a few
nodes? This problem is of importance in the growing field
of interconnected networks [1,2]. Such networks consist of
multiple layers that each contain a complex network and
additional links between nodes of different layers. In addition
to its structural properties, such as degree, each node is
characterized by a dynamical variable xi(t) that changes
depending on the interaction with other nodes. Hence, we
face a combined problem in which the dynamics of N coupled
equations, where N is the total number of nodes, is exacerbated
by the rather complex coupling between these nodes through
both intralayer and interlayer links. The questions then are how
many and which of these nodes we need to control in order to
control most of the whole network.

According to control theory, controllability characterizes
the ability to drive a dynamical system from any initial state to
any desired final state in finite time, by attaching control signals
to a carefully chosen set of driver components. In the context
of complex networks, Liu et al. [3] developed an analytical
framework to study the controllability of single-layer complex
networks. This assumes a linear dynamics for the nodes.
Recent efforts have aimed at understanding the interplay
between the topological structure and the controllability of
complex networks [4]. However, a full control of large-scale
complex networks has hardly been achieved. In addition
to the sheer size of such systems, there are constraints in
accessing all of the driver nodes necessary to control the
system [5]. This limitation motivates our research, namely,
to understand how this control can be achieved with a rather
small number of driver nodes. We further want to extend the
scope from single-layer to multilayer networks and consider,
as an additional challenge, restricted access to only one layer
of a multilayer network.
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This merges two research lines, namely, controllability of
complex networks and multilayer networks, which were jointly
discussed so far in a few publications only [6–8]. All these
works, however, focus on the controllability of the whole
system and there is no restriction when choosing driver nodes,
which is a main issue addressed by our paper. More precisely,
Yuan et al. [6] deployed the exact controllability theory to
study controllability of multiplex networks, Nie et al. [7]
analyzed the impact of degree correlation on controllability,
and Menichetti et al. [8] addressed the robustness and stability
of control configuration.

We can already build on a number of works that address
the role of interconnecting links between different network
layers [9–12]. It has been shown that structural network
properties can change even in an abrupt way [13]. Furthermore,
interconnecting links can significantly affect the way dynamic
processes evolve in multilayer networks [14–17].

However, even in the simplest cases, knowing the dynamics
on a multilayer network does not mean that we also can control
it, i.e., steer the dynamics toward a desired final state. This
problem can be recast as a design problem: Given a network
with two layers, how can we connect these layers with a limited
number of interlayer links such that the whole network can be
controlled by using driver nodes from only one layer? If not all
the nodes in the network can be controlled, what is the size of
the controllable subnetwork that can be controlled by a fixed
number of driver nodes. In our work, which can be considered
as a proof of concept, using extensive computer simulations
to test different driver node selection criteria and four distinct
network interconnecting strategies, we demonstrate that (a)
the whole two-layer network can be controlled by driver
nodes from just one layer, (b) to maximize the controllable
subnetwork, peripheral nodes should be used to connect the
two layers, and (c) choosing peripheral nodes to control the
network can be as efficient as choosing central nodes.

II. MODEL DESCRIPTION

We consider a two-layer network G(V,E) with the number
of nodes N = |V | = N0 + N1, where layer 0 contains N0 and
layer 1 N1 nodes. The links in each layer are directed, i.e., each
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node i has an in-degree kin
i and an out-degree kout

i . Building
on Ref. [18], both are drawn independently from a power-
law degree distribution P (k) ∝ k−γ with kmin = 1 and γ =
2, using the uncorrelated configuration model (results for a
different power-law exponent are shown in the Appendix) [19].
We can combine these degree values to assign an importance
value wi to each node

wi = (
kin
i

)α(
kout
i

)(1−α)
. (1)

Here α is a free parameter ranging from 0 to 1. As α increases,
more importance is attributed to the in-degree in the calculation
of w. We refer to central nodes as nodes with a high importance
value w.

Layers 0 and 1 are connected by L additional bidirectional
interlayer links. (We also test the case for interlayer links
of randomly assigned direction, as shown in the Appendix.)
Only one interlayer link per node is allowed at maximum, with
q = L/N0 as the fraction of interlayer links.

Our main assumption is that we can only access the N0

nodes on layer 0 in order to control the N nodes in the whole
network. If we can control Nc � N0 nodes of layer 0, what is
the number Nb � N of nodes in the whole network that we
can control, directly or indirectly, by means of Nc? Ideally,
we want to choose Nc as small as possible, while Nb reaches
values close to N .

The choice of this ideal Nc of course also depends on
the strategy by which the two layers are coupled using the
q interlayer links. Hence, our main research question is how
to couple these two layers in order to maximize Nb. Given the
scale-free degree distribution, for each layer we can distinguish
between hubs, i.e., nodes with a high importance value wi , and
nodes with low wi that are only loosely integrated in the layer
network. We refer to the latter as periphery.

For the connection of the two layers, we can think of four
different strategies [20], shown in Fig. 1: CC, in which nodes

control signal
driver node
coupled node(a)

(b) (d)(c)

u1 u3
u2 u4

Layer 0

Layer 1

FIG. 1. Illustration of the coupling strategies for two layer
networks. (a) The main scenario where we aim to control the system
of networks using only driver nodes from layer 0. (b) The PP
interconnecting strategy. (c) The CP interconnecting strategy. (d) The
CC interconnecting strategy. Nodes colored in red are coupled by
interlayer links denoted by red dashed lines. In the illustration, the
two layer networks are interconnected by L = 3 links.

with high importance value w in layer 0 are connected to
nodes with high importance value w in layer 1; CP, in which
nodes with high w in layer 0 are connected to peripheral nodes
with low w in layer 1; PC, in which peripheral nodes in layer
0 are connected to nodes with high w in layer 1; and PP, in
which peripheral nodes in layer 0 are connected to peripheral
nodes in layer 1.

The strategy to couple the two layers consists of two steps.
(i) Calculate wi and rank the nodes with respect to their wi

for each of the two layers separately. (ii) Until q is reached,
deterministically choose nodes according to their rank on each
of the two layers. That is, depending on the different strategies,
we link high or low ranked nodes from the two layers until L

interlayer links are formed.

III. STRUCTURAL CONTROLLABILITY

In order to apply the framework of structural controlla-
bility [3], we need to make assumptions about the dynamics
that change intrinsic properties of the nodes. Let us assume
that each node is characterized by a variable xi(t). As shown
in Fig. 1(a), some of these nodes can be influenced by
external signals uk(t), which will later be used to control
the dynamics of the whole network. Let U(t) ∈ RNc be the
vector of control signals. Then the matrix B ∈ RN×Nc defines
which nodes are directly controlled by the external signals
uk(t) (k = 1, . . . ,Nc), with the element bij �= 0 if signal j is
attached to node i.

The framework of structural controllability requires us to
choose a linear dynamics for xi(t), which reads, in vector
notation X(t) = {x1(t),x2(t), . . . ,xN (t)} with X ∈ RN ,

Ẋ(t) = AX(t) + BU(t), (2)

where A ∈ RN×N is the interaction matrix with elements aij

(i,j = 1, . . . ,N) that describe the weighed influence between
any two nodes either within or across layers in the multilayer
network. According to the Kalman rank condition [21], the
dynamical system defined by (2) is controllable, i.e., it can
be driven from an initial state to any desired state if and only
if the controllability matrix C = [B,AB,A2B, . . . ,AN−1B] ∈
RN×(NNc) has full rank, i.e., rank(C) = N .

In some cases, the exact value of the nonzero elements
in A and B is not available and the precise computation of
rank(C) is therefore unattainable. For those cases, the weaker
requirement of structural controllability [22] was introduced.
It treats A and B as structured matrices, i.e., their elements are
either fixed zeros or free parameters.

The system is structurally controllable if the maximum rank
of C, denoted by rankg(C), can reach N as a function of the
free parameters in A and B. Based on [22], Liu et al. [3] derived
the minimum input theorem to identify the minimum number
of driver nodes Nd needed to control the whole network of N

nodes.
In real situations, some driver nodes necessary for control

may not be accessible or the number of driver nodes Nd may
be too large to be efficiently influenced by the limited number
of control signals. Hence full control of the network cannot be
achieved. In those scenarios, we are interested in the size of
the subnetwork, given by Nb = rankg(C) � N , that can still
be controlled by a given set of driver nodes Nc � Nd .
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If there is only one driver node i denoted by B, the value
of Nb defines the control centrality of i [23,24]. For more than
one driver node, there is an overlap in the subspace controlled
by each node and the sum of the control centralities of all
driver nodes may overestimate Nb.

Despite that analytical treatment using tools from statistical
physics can be found in the literature for the case of Nd

when the controllability of the whole system is considered,
we are unaware of an analytical method to predict Nb when
we focus on the controllable subsystem. Even for the simplest
case where only a single driver node is considered and for
very particular topologies, such as a directed acyclic graph
in which a unique hierarchical structure can be identified, the
controllable space size of one node can be predicted by its
hierarchical level. Therefore, for a general case with more
than one driver node, in order to effectively determine Nb, we
deploy a linear programming approach [25].

The algorithm works by constructing an auxiliary network
that is larger than the original one, to identify the cycle
partition structure [25] that contains the maximum number
Nb of controllable nodes in the complex network. We first
construct an initial auxiliary network H (Ê,V̂ ) that contains
NH = ˆ|V | = N + Nc nodes. Here Nc is the number of control
signals, which are represented by an additional set Sc of nodes
in the auxiliary network. Regarding its topology, H preserves
all the links defined in the matrix A, but has additional links
from the set Sc to the driver nodes Nc (one link per driver node,
indicated in Fig. 1 by the zigzag arrows). Next we identify the
reachable network H ′, which is given by those nodes that can
be reached via a directed path from the set Sc. Then we change
the topology of H ′ by adding directed links of weight zero
from any node within H ′ (excluding the set Sc) to all nodes
in the set Sc. Also, we add self-loops of weight zero to all the
nodes in H ′, to arrive at the auxiliary network H ′(Ẽ,Ṽ ).

From H ′ we can now calculate Nb as the optimal value of
the integer linear problem

max
∑

e∈Ẽ

wehe, (3)

where we denotes the weight of link e and he ∈ {0,1} is a binary
variable indicating whether one link is chosen to be part of
the optimal solution of the linear programming problem. The
subjections

∑

e leaves v

he = 1,
∑

e enters v

he = 1 ∀v ∈ Ṽ (4)

guarantee that the optimal solution to Eq. (3) forms a cycle
partition that spans the graph H ′.

IV. RESULTS AND DISCUSSION

We now apply the above optimization method to treat
the multilayer networks that were constructed by the four
different coupling strategies. To obtain the results, we use
an ensemble approach, i.e., we keep the configuration of
each layer constant, but generate five multilayer network
realizations with N0 = N1 = 2000 for each possible parameter
configuration and for each coupling strategy. The importance
parameter α and the fraction of interlayer links q are both
varied between 0 and 1 in steps of 0.05. Eventually, for each
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FIG. 2. Plot of nb as a function of the fraction of interlayer links
and the number of driver nodes. The characteristics of nb as a function
of the fraction of interlayer links q are shown for (a) α = 0.5 and (b)
α = 0.2. The results are produced with 30 driver nodes. Also shown
are the characteristics of nb as a function of the number of driver
nodes Nc for q = 0.4 and (c) α = 0.5 and (d) α = 0.2. A change of
the number of driver nodes to other values smaller than Nd does not
alter our findings. All the results are produced with N0 = N1 = 2000.
The data points are obtained over 100 simulations, with error bars
representing standard deviation.

configuration of parameters and each coupling strategy, we
randomly sample 100 sets of driver nodes from layer 0, i.e., 20
per multilayer network realization. This results in 1.6 × 105

different network configurations in total.
Our main interest is in the relative size of the network that

can be controlled this way, i.e., we calculate nb = 〈Nb〉/N for
each parameter configuration and coupling strategy; nb = 1
indicates that for this configuration the whole system can be
controlled. Our results are presented in two different ways: In
Figs. 2(a) and 2(b) we compare nb dependent on the fraction
of interlayer links q, with the number of driver nodes Nc kept
constant, while in Figs. 2(c) and 2(d) nb is shown dependent
on the number of driver nodes Nc, with q kept constant.
The results are presented for two values of the importance
parameter α, but results for varying α are shown in Fig. 3.

From Figs. 2(a) and 2(b) we report two observations. (i)
For the PP strategy, a sizable control of the multilayer network
(i.e., nb reaches values close to 1) can be reached already for
a fraction of interlayer links q below 1, i.e., not every node in
the two layers needs to be linked. For example, for q = 0.5, nb

already ranges between 0.8 and 1. (ii) Among the four different
strategies to couple the two layers, the PP strategy fares best.
That is, with respect to control, coupling peripheral nodes is
more beneficial than coupling nodes with high importance
value. The results are similar for the two α values chosen.

From Figs. 2(c) and 2(d) we observe again two interesting
findings for this particular system: (i) the range of the
controllable network nb does not strongly vary if we increase
the number of driver nodes Nc from one to a value much
smaller than the system size, such as 200 as shown in the
figure. Here nb never reaches 1, given the small values of
Nc 	 2000, but already reaches remarkable values between
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FIG. 3. (a) Color map encoding the fraction of controlled network
nb on the α-q parameter plane for the PP strategy. (b)–(d) Color map
encoding the difference between nb for the PP and nb for the CP,
CC, and PC strategies. A positive value indicates that nb for the PP
strategy is greater than the corresponding strategy. The results are
obtained with Nc = 30 driver nodes.

0.7 and 0.95 [results for larger values of Nc are reported in
Fig. 4(a)]. (ii) Again, the PP strategy to link peripheral nodes in
both layers allows considerably better control of the network.
This distinction becomes most pronounced for α = 0.5.

The superiority of the PP strategy in connecting the two
layers is further demonstrated in Fig. 3, where we explore
the full parameter space of α and q. Figure 3(a) shows, for
the PP strategy, the gradual increase in nb as the fraction q

of interlayer links increases. There is no strong dependence
on the importance parameter α, only a slight improvement
for α = 0.5, which weights the in-degree and the out-degree
equally. Figures 3(b)–3(d) illustrate the difference between the
PP strategy in Fig. 3(a) and the other remaining strategies, by
just plotting the difference in nb compared to Fig. 3(a). This
difference is always positive, indicating the advantage of the PP
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FIG. 4. (a) Plot of nb as a function of the number of driver
nodes Nc for q = 0.4. Increasing the number of driver nodes Nc

to N0 = 2000 confirms that the PP strategy to link peripheral nodes
in both layers allows one to better control the whole network. The data
points are obtained over 100 simulations, with error bars representing
standard deviation. (b) Ratio of average nb with driver nodes of low
w over the average nb with driver nodes of high w. This panel shows
that the difference in nb is marginal and can be safely neglected. The
figure is produced using the two-layer network configuration that is
discussed in the text.

FIG. 5. Plot of nb as a function of the fraction of interlayer links.
(a) Driver nodes are sampled from nodes of high w. (b) Driver nodes
are sampled from nodes of low w. The results are produced with
Nc = 30 driver nodes.

strategy. More remarkable is that the difference becomes the
largest for moderate values of q and α. Obviously, for q close to
0 or q close to 1, the four strategies become indistinguishable.

So far, we have only investigated the impact of different
strategies in linking the two layers. However, we have not
discussed whether it is more beneficial to choose central
nodes or peripheral nodes from layer 0 as driver nodes. In
fact, to obtain Figs. 2 and 3 we have randomly sampled the
set of driver nodes from layer 0. Therefore, in Fig. 5 we
investigate the impact of central or peripheral driver nodes
on the controllability of the multilayer network. Specifically,
we compare two scenarios: In Fig. 5(a) the driver nodes are
sampled from the top 10% nodes of high w in layer 0, whereas
in Fig. 5(b) the driver nodes are sampled from the top 10%
nodes of low w values in layer 0. A comparison of the four
discussed strategies to connect the two layers and all values of
q shows that the difference in nb can be almost neglected [it
is less than 1% as shown in Fig. 4(b)]. This indicates that, by
injecting control signals into peripheral nodes, we can control
as much of the total network as by injecting control signals
into central nodes.

V. CONCLUSION

In this paper we studied the controllability of two-layer
directed networks with numerical simulations. In our model
we distinguish between two different kind of nodes: (i) the
nodes that should be chosen to connect the two layers, in order
to maximize the number of controllable nodes in the whole
network Nb, and (ii) the driver nodes that should be chosen on
layer 0 to control this subspace. These nodes do not necessarily
have to be the same. The number of interlayer connections is
determined by the parameter q = L/N0, whereas the number
of driver nodes can vary as well, Nc � N0. For a given Nc,
increasing q usually leads to increasing Nb, until Nb reaches
its saturation.

At the same time, for given q and Nc, there is a pre-
ferred coupling strategy to maximize Nb, which is coupling
peripheral nodes in both layers. Assuming that it is less
costly to access peripheral nodes as compared to central
nodes, the PP strategy would also be the most cost-efficient
strategy. We emphasize that this finding differs from [14],
where the CC strategy was preferred. This was found for
an undirected network, on which a synchronization dynamics

012309-4



VALUE OF PERIPHERAL NODES IN CONTROLLING . . . PHYSICAL REVIEW E 93, 012309 (2016)

was investigated, whereas we consider a directed network, on
which we assume a linear dynamics.

As a second important finding, we have shown that the
control of the network can be as effectively achieved by choos-
ing Nc from the peripheral nodes as from the central nodes.
Referring to the cost argument above, choosing peripheral
nodes as driver nodes is both effective and cost efficient.

The third finding points to the size of the controllable
subspace Nb. Here we show that it is sufficient to choose
driver nodes from just one layer to control the whole two-layer
network, in accordance with earlier findings [3]. Dependent
on the fraction of interlayer links, the full control can be even
achieved with a small number of driver nodes Nc 	 N0 (e.g.,
Nc = 30 for N0 = 2000 and q = 0.6), given that the most
efficient PP strategy is used for linking the layers. This again
emphasizes the importance of peripheral nodes in controlling
multilayer networks.

The above findings were obtained for the particular system
of networks used in our simulations. However, we also
checked the robustness of our findings with the alternative
configurations presented in the Appendix. These configura-
tions include the case with randomly assigned directionality
for the interlayer links and the case of scale-free networks
with another network exponent. This indicates that peripheral
nodes may play a similarly important role in connecting
and controlling multilayer networks for systems with other
network configurations as well. In this sense, our results
could be useful for practical applications. As an example
let us consider the coupling between a power grid and a
communication network. A regulator may want to achieve
better controllability of the full system by accessing a small
number of driver nodes from the communication network and
this could be achieved by identifying optimal ways to couple
the two networks using a methodology similar to the one
presented in our paper. However, a more concrete exploration
of the way our approach can be used for real systems is
beyond the scope of the current paper and is left for future
studies.
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APPENDIX

We now test the robustness of the our main results by
considering two alternative configurations of our model.

(a) We build two-layer networks using a power-law degree
distribution with γ = 2.5.

(b) We connect two layers of networks by interlayer links
with directions assigned randomly.
In Figs. 6 and 7 we show results obtained with the above
alternative configurations using networks of size N0 = N1 =
2000. The presented results are averaged over 100 simulations
with error bars representing the standard deviation. Even
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FIG. 6. Plot of nb as a function of the fraction of interlayer links
and the number of driver nodes. The characteristics of nb are shown
as a function of (a) and (b) the fraction of interlayer links q and (c)
and (d) the number of driver nodes Nc, for L = 800 interconnecting
links, with (a) and (b) γ = 2.5 and the two network layers connected
by bidirectional interconnecting links and (c) and (d) γ = 2.5 and
the two network layers connected by interconnecting links whose
directions were assigned randomly. The results are produced with 30
driver nodes and α = 0.5 and are consistent with the results shown
in Fig. 2.

though some effects are less pronounced (for example, see
Fig. 6 with respect to Fig. 2), the results are in line with our
main findings.
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FIG. 7. Plot of nb as a function of the fraction of interlayer links
with (a) and (b) γ = 2.5 and two layers of networks connected
by bidirectional interconnecting links and (c) and (d) γ = 2.0 and
two layers connected by interconnecting links whose directions were
assigned randomly. Driver nodes are sampled from nodes of (a) and
(c) high w and (b) and (d) low w. All the results are produced with
Nc = 30 driver nodes and are consistent with the results shown in
Fig. 4.
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