
Chapter 3
An Ensemble Perspective on Multi-layer
Networks
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Abstract We study properties of multi-layered, interconnected networks from
an ensemble perspective, i.e. we analyze ensembles of multi-layer networks that
share similar aggregate characteristics. Using a diffusive process that evolves on
a multi-layer network, we analyze how the speed of diffusion depends on the
aggregate characteristics of both intra- and inter-layer connectivity. Through a
block-matrix model representing the distinct layers, we construct transition matrices
of random walkers on multi-layer networks, and estimate expected properties of
multi-layer networks using a mean-field approach. In addition, we quantify and
explore conditions on the link topology that allow to estimate the ensemble average
by only considering aggregate statistics of the layers. Our approach can be used
when only partial information is available, like it is usually the case for real-world
multi-layer complex systems.

3.1 Introduction

Networks are often used to describe interactions among the elements of a complex
system. But until recently, the standard assumption in the literature was that
networks are isolated entities and do not interact with other networks. Today
we understand that this assumption is a rough simplification, since real networks
usually have complex patterns of interaction with other networks. In order to study
more realistic systems, network theory extended its perspective to account for
these network to network interactions, and to investigate their influence on various
processes of interest that may use the network topology as substrate [1–4].

Networks consisting of multiple networks and the connections between them are
called interconnected or multi-layer networks [5]. In a multi-layered network each
individual layer contains a network that is different from the networks contained in
other layers, and the layer interconnectivity refers to the fact that nodes in different
layers can be connected to each other. Nevertheless, it is often possible to extend
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and apply methods developed for single-layer (isolated) networks to multi-layer
networks, assuming that all layers and the connections between them are known
precisely. Unfortunately, when creating networks using relational data on real-world
systems we are often confronted with situations where we lack information about the
details of their multi-layer structure. In such situations, ensemble-based approaches
allow us to reason about the expected properties of such networks, provided that we
have access to aggregate statistics which can be used to define a statistical ensemble.

For instance, there are situations in which we are able to precisely map the
topology within each layer individually, but we may not be able to obtain the detailed
topology of connections across different layers. As an example, we may consider the
topology of connections between users in different online social networks (OSNs).
Such a system can be represented as a multi-layer network, where each layer
represents the network of connections between users within one OSN. In addition,
cross-layer connections are due to users which are members of multiple OSNs at the
same time, and which can thus drive the dissemination of information across OSNs.
Data on the network topology within particular OSNs are often readily available,
however it is in general very difficult to identify accounts of the same user in
different OSNs.

Contrary to the situation described above, we may also consider situations in
which detailed information on the topology of cross-layer links is available, while
the detailed topology of connections within layers is not known. For example, there
may be a rather small number of static links across layers, while the topology of
links within layers is too large and too dynamic to allow for a detailed mapping.
Again, in such a situation we may still have access to partial, aggregate information
on the inter-layer connectivity (such as the number of nodes or the density of links)
which we can use in order to reason about a multi-layer complex system.

Both the above situations lead to multi-layer networks, and both require us to
reason about a system with incomplete information. This problem can be addressed
from a macroscopic perspective using statistical ensembles, and in this chapter we
extend the ensemble perspective to multi-layer networks, where we have access
to mere aggregate statistics either on links within or across layers. Combining
both detailed and aggregate information on the links in a multi-layer network, we
first define a statistical ensemble, i.e. a probability space containing all network
realizations that are consistent with available information. Secondly, we assume a
probability mass function which assigns a probability to each possible realization
in the ensemble. And finally, using either analytical or numerical techniques, we
use the resulting probability space to reason about the expected properties of a
network given that it is drawn from the ensemble. The rest of the chapter is
structured as follows. In Sect. 3.2 we present our methodological approach to model
ensembles of multi-layer networks, we formally introduce the diffusion process
that is assumed to run on the multi-layer network, and we introduce a method that
allows to aggregate the statistics of links inside layers and across layers. In Sect. 3.3
we introduce a mean-field approach to approximate ensemble averages, and we
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investigate under which conditions it can be used to argue about diffusion in multi-
layer networks. In particular we discuss three distinct cases according to different
levels of information that we may have about the topology of links across the layers
or inside the layers.

3.2 Methods and Definitions

In our analysis we investigate a diffusion process that evolves on a static multi-layer
network. More precisely we focus on diffusion dynamics modeled by a random walk
process. In the following we provide a short summary that highlights the important
properties of this process. Note that these are facts already known from the theory
of random walks on single layer networks [6, 9], but later on we will extend this
framework to multi-layer networks.

We assume a discrete time random walk process on a network G that consist of n
nodes. Starting at an arbitrary node, at each step of the process the walker moves to
an adjacent node, so that for a pair of nodes i; j the probability for a walker to move
from node i to node j is given by the corresponding entry Tij of a transition matrix
T. Since we have

P
j P.i ! j/ D 1, the transition matrix is row stochastic.

We further consider a vector � t 2 Rn, whose entries � t
i indicate the probability

of a random walker to visit node i after t steps of the process. Here, we consider �0

as a given initial distribution, whose entries �0
i give the probability that the random

walker has started at node i. The change of visitation probabilities � t ! � tC1 can
then be calculated based on the transition matrix as follows:

� tC1 D � tT: (3.1)

Since this is an iterative process starting with �0, the visitation probability vector
after t time steps can be calculated as � t D �0Tt, and we can investigate the long-
term behavior of the random walk process for t ! 1. For a visitation probability
vector �� such that ��T D ��, we can say that the process reaches a stationary
distribution ��, and if the transition matrix T is primitive, the Perron-Frobenius
theorem guarantees that such a unique stationary distribution �� exist.

In order to assess the convergence time of a random walk process, we can study
the total variation distance between visitation probabilities � t after t steps and the
stationary distribution ��. For two distributions � and � 0, the total variation distance
is defined according to Ref. [7] as

�.�; � 0/ WD 1

2

X

i

j�i � � 0
i j ; (3.2)

where �i indicates the i-th entry of � .
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As a proxy for diffusion speed, we can now investigate how long it takes until
the total variation distance �.� t; ��/ falls below some given threshold value � (for
a small �). In other words, we study how many steps t.�/ a random walker needs
such that �.� t; ��/ � � for t � t.�/

The eigenvalues 1 D �1 � j�2j � : : : � j�nj of a row-stochastic matrix
necessarily have absolute values that fall between zero and one, while the largest
eigenvalue �1 is necessarily one. The number of required time steps t.�/ (and thus
the diffusion speed of the random walk process) can be estimated by means of the
second-largest eigenvalue �2 of T,

t.�/ � �1

ln.j�2j/ : (3.3)

For a detailed derivation see Ref. [8]. Equation (3.3) shows that a second-largest
eigenvalue �2 close to one implies slow convergence, while �2 close to zero implies
fast convergence. Therefore in the following we use the second-largest eigenvalue
of a transition matrix �2.T/ as a proxy to measure and quantify the convergence
behavior on a network.

Multi-layer Network

The purpose of our study is to investigate diffusion processes on ensembles of
networks with multiple interconnected layers. Thus, in the following we briefly
introduce the notion of multi-layer networks used in this chapter. Let us consider
a multi-layer network denoted by G that consist of L non-overlapping layers
G1; : : : ; GL. Each of these layers Gl is a single-layer network Gl D .Vl; El/ where
V.Gl/ and E.Gl/ denote the nodes and links of layer l respectively. We call the
links E.Gl/ between nodes within the layers l intra-links. The multi-layer network
G consist in total of n nodes, where n D PL

lD1 jV.Gl/j. In addition, we assume a
set EI.G/ of inter-layer links which connect nodes across layers, i.e. for each edge
.u; v/ 2 EI we have u 2 V.Gi/ and V.Gj/ for i ¤ j. Inter-layer links induce a
multipartite network with the independent sets G1; : : : ; GL.

In our study we consider undirected and unweighted networks, however some of
our results may hold even for directed or weighted networks. Furthermore, from the
perspective of a random walk process, we assume that inter- and intra-layer links
are indistinguishable, i.e. transitions are made purely randomly irrespective of the
type of link. As such, the multi-layer network can also be viewed as a huge single
network consisting of subgraphs G1; : : : ; GL.

As mentioned above diffusion dynamics on networks can be studied analytically
using transition matrices of random walkers [9, 10]. The multi-layer structure of a
network can explicitly be incorporated in a random walk model by constructing
a so-called supra-transition matrix [3, 11] similar to the supra-adjacency matrix
used in [10, 12, 13]. The supra-adjacency matrix of a multi-layer network G can
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be defined in a block-matrix structure as

A D

0

B
B
B
B
B
B
B
@

A1 : : : A1t : : : AsL

:::
: : :

:::
: : :

:::

As1 : : : Ast : : : AsL
:::

: : :
:::

: : :
:::

AL1 : : : ALt : : : AL

1

C
C
C
C
C
C
C
A

: (3.4)

On the diagonal we have the adjacency matrices A1; : : : ; AL corresponding to the
layers G1; : : : ; GL, thus entries of these block matrices represent the intra-layer links
of the multi-layer network. Off-diagonal matrices Aij for i; j 2 f1; : : : ; Lg with i ¤ j
represent inter-layer links that connect nodes in layer Gi to nodes in layer Gj. Since
we consider undirected networks we have A>

ij D Aji.
Based on a supra-adjacency matrix A we can easily define a supra-transition

matrix T of a random walker on a multi-layer network G. In block-matrix form
such a matrix can be written as:

T D

0

B
B
B
B
B
B
B
@

T1 : : : T1t : : : TsL
:::

: : :
:::

: : :
:::

Ts1 : : : Tst : : : TsL
:::

: : :
:::

: : :
:::

TL1 : : : TLt : : : TL

1

C
C
C
C
C
C
C
A

: (3.5)

Here, each entry Tij is defined as:

Tij D aij
Pn

kD1 akj
; (3.6)

where aij are the corresponding entries of the supra-adjacency matrix A. Note that,
due the presence of inter-layer links, block matrices Tij are in general not equal to the
row-normalized version of block matrices Aij. The supra transition matrix defined
above can be used to model a random walk process on a multi-layer network.

From an analytical perspective the supra-transition matrix can be treated in
the same way as the transition matrix of a single layer as explained above. In
the case of undirected networks the eigenvalues of a transition matrix are related
to the eigenvalues of the normalized Laplacian matrix. In our case we study the
second-largest eigenvalue of the supra-transition matrix and use it as a proxy for the
efficiency of a network with respect to a diffusion process as pointed out above.

Using T we are able to model a diffusion process on a multi-layer network.
Since we especially want to emphasize the relevance of the inter-links, in the next
section we introduce a transition matrix that only considers transitions across layers
and not between individual nodes. As we will see later, this aggregated transition
matrix is useful to distinguish the influence of inter-layer and intra-layer links on
the convergence behavior of a random walk process.
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Multi-layer Aggregation

The supra-transition matrix T introduced previously contains transition probabilities
for any pair of nodes in the multi-layer network. In this sense T could also be
the transition matrix of a large network, which is not divided in separate layers.
In order to understand the effects of a layered structure, in this section we focus
explicitly on transitions across layers. To do this we aggregate the statistics of inter-
links and the intra-links of all single layers, and thus, we homogenize all individual
nodes that belong to the same layer. This way we reduce the supra-transition matrix
T of dimension n to an aggregated transition matrix T of dimension L. We call
this process multi-layer aggregation and the matrix T the layer-aggregated or
just aggregated transition matrix. Later on we will provide a relation between the
eigenvalues of T and T, which will allow us to decompose the spectrum of T. This
is important since the convergence behavior of a random walk process depends on
the second largest eigenvalues of T.

Let us begin by discussing the construction process of the layer-aggregated
transition matrix. Our goal is to define transition probabilities across any two layers
Gs and Gt by averaging the transitions between any two nodes of Gs and Gt. Under
certain conditions which will be specified in the following, these average transition
probabilities can be representative for all nodes of the different layers.

Let G be a multi-layer network that consists of L layers G1; : : : ; GL. The
transition probability to go from node vi to any node vj in G is defined as

P.vi ! vj/ D !.vi; vj/
P

k !.vi; vk/
(3.7)

where !.vi; vj/ is the weight of a link connecting vi with vj. This is a general
formalism, but since we only consider unweighted networks we have !.vi; vj/ D 1

if and only if there is a link between the nodes vi and vj.
For each node vi in layer Gs we require that the transition probabilities P.vi ! �/

to nodes in another layer Gt fulfill the following equation

˛ss

X

vj2V.Gs/

P.vi ! vj/ D ˛st

X

vk2V.Gt/

P.vi ! vk/ 8vi 2 V.Gs/ ; (3.8)

where ˛st is a factor that only depends on the layers Gs and Gt. The factor ˛ss is
used to normalize the transitions, such that

P
t ˛st D 1 is satisfied. In other words

Eq. (3.8) implies that the probability for a random walker at node i to stay inside
layer Gs is a multiple of the probability to switch to layer Gt.

We can see that ˛st is independent of i, and therefore Tst D ˛stRst where Rst is a
row stochastic matrix. This means that Tst resembles a scaled transition matrix, and
˛st represents the weighted fraction of all links starting in Gs that end up in Gt. Thus,
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we can define the aggregation of a supra-adjacency matrix satisfying Eq. (3.8) as

T D

0

B
B
B
B
B
B
B
@

˛11 : : : ˛1t : : : ˛sL
:::

: : :
:::

: : :
:::

˛s1 : : : ˛st : : : ˛sL
:::

: : :
:::

: : :
:::

˛L1 : : : ˛Lt : : : ˛LL

1

C
C
C
C
C
C
C
A

: (3.9)

If a multi-layer network G satisfies Eq. (3.8) we can follow that the spectrum of
the aggregated matrix T D f˛stgst is

Spec.T/ D f1; �2; : : : ; �Lg ; (3.10)

and it holds that �2; : : : ; �L 2 Spec.T/ (see Proposition 1 in the Appendix).
This relation implies that the aggregated matrix T preserves L eigenvalues of the

supra-transition matrix T, where L is the amount of layers. In other words, under the
condition that Eq. (3.8) holds, we are able to make statements about the spectrum of
the transition matrix T only using the layer-aggregated transition matrix T.

Similar to the Fiedler vector, i.e. the eigenvector corresponding to the second
smallest eigenvalue of the Laplacian matrix, here we may use the eigenvector v2

corresponding to the second largest eigenvalue �2 of the transition matrix T. The
vector v2 contains negative and positive entries and sums up to zero. If all individual
nodes that belong to the same layer correspond to entries of v2 with the same sign,
we consider the layers of G partitioned according to v2, which is also called spectral
partitioning or spectral bisection [14, 19]. In this case, according to Corollary 1 in
the Appendix, it holds that �2.T/ D �2.T/.

We note that the multi-layer aggregation, performed according to a spectral
partitioning, has similarities to spectral coarse-graining [15]. The multi-layer
aggregation presented here decreases the state space as well, but still preserves parts
of the spectrum.

The spectral properties introduced in this section are important for our ensem-
ble estimations that follow, since we characterize the diffusion process by its
convergence efficiency measured through the second-largest eigenvalue �2.T/ of
the supra-transition matrix. However, as outlined before, if Eq. (3.8) holds then
this eigenvalue is equal to the second-largest eigenvalue �2.T/ of the aggregated
transition matrix T. Considering that for the construction of T we only used
aggregated statistics on the network and not the detailed topologies of the inter-
links or any of the intra-links of all single layers, this already provides a hint how
we can treat a system in the case of limited information.
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3.3 Mean-Field Approximation of Ensemble Properties

With the layer aggregation introduced in the previous section, we are now able
to deal with multi-layer network ensembles in case of limited information. In our
case, this information concerns knowledge either of the inter-link topology between
layers or the intra-link topologies of all single layers. For our purpose we define
ensembles based on the inter-link densities and intra-link densities of all single
layers, more precisely, by using the amount of nodes, the amount of inter-links
across any two layers, and the amount of intra-links of all single layers. The number
of nodes in individual layers are represented by the vector n D fn1; : : : ; nLg and the
number of links between layers by a matrix M with entries mst where s gives the
source layer and t the target layer. Intra-layer links have both of their ends in the
same layer and therefore we assume that the diagonal elements mss are equal to the
amount of desired intra-links multiplied by two. We denote the ensemble defined by
these two quantities E.n; M/.

A single random realization of this ensemble satisfies the aggregated statistics
given by M and n. We assume a random uniform distribution of links and therefore
each realization of E.n; M/ has the same probability. However, instead of single
realizations we are rather interested in the average values of all possible realizations.
For each multi-layer network realization G of E.n; M/ we build the supra-transition
matrix T, which defines a random walk process that is different for every realization.
As discussed above, a proxy of the convergence quality of these random walk
processes is given by the second-largest eigenvalue �2.T/. Our goal is to estimate
the average �2 of the ensemble E.n; M/, and we do this using a mean-field approach
on the supra-transition matrix T that is similar to Refs. [16, 17].

Hereafter we will provide a mean-field approach for the general case, i.e. when
the exact topology of inter-links and intra-links of all single layers are unknown.
Next, building on this approach, we will discuss the case for which we have full
knowledge of the intra-link topology but we do not know the inter-link topology,
and the case for which we have full knowledge of the inter-link topology but we do
not know the intra-link topology.

Case I: Unknown Topology of Inter-links and Intra-links for All
Layers

For this case we only assume knowledge of the ensemble parameters M and n. We
define a mean-field adjacency matrix OA with a block structure similar to Eq. (3.4),
and for each OAst we are only given the amount of links equal to mst. Since we do not
know how these links are assigned to the entries Ast, without loss of generality we
assume a uniform distribution. Thus, for the blocks of OA we have

OAst D
�

mst

nsnt

�

ij

; i 2 f1; : : : ; nsg; j 2 f1; : : : ; ntg : (3.11)
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Following the discussion of Sect. 3.2, based on the mean-field adjacency matrix
we define a mean-field transition matrix OT. The transition probability between any
two nodes i; j 2 Gs for a fixed layer s is the same since according to the available
information individual nodes cannot be distinguished based on their connectivity.
Further, the transition probabilities between any two nodes i 2 Gs and j 2 Gt are
the same for any two fixed layers s and t. Therefore, all block transition matrices OTst

contain the same value at each entry. Hence we have

OTst D
(

mst

nt
�P

k msk
�

)

ij

; i 2 f1; : : : ; nsg; j 2 f1; : : : ; ntg : (3.12)

Now, using Eq. (3.8) we can construct an aggregated supra-transition matrix T with
entries

˛st D mst
P

k msk
: (3.13)

The aggregated supra-transition matrix T describes the macro behavior of the
multi-layer network ignoring the detailed topology of the inter-links and the intra-
links of all single layers. Since T depends on a mean-field approach it only captures
probabilistic assumptions of the ensemble E.n; M/. Thus, the spectrum of the mean-
field supra-transition matrix OT can be calculated by

Spec. OT/ D Spec.T/ [
 

L[

sD1

[ns�1
iD1 f0g

!

: (3.14)

To clarify the situation, let us briefly discuss the simple case of a network G that
contains only two layers G1 and G2, for which we get

T D
�

1 � ˛12 ˛12

˛21 1 � ˛21

�

: (3.15)

Hence, for the mean-field matrix of a two-layered network we obtain

Spec. OT/ D f1; 1 � ˛12 � ˛21; 0; : : : ; 0
„ ƒ‚ …
jnj�2 times

g : (3.16)

These results are remarkable, since the layer-aggregated transition matrix captures
the same relevant eigenvalues as the mean-field transition matrix. So, for the case of
a diffusion process in two layers the eigenvalue of interest is �2. OT/ D 1�˛12 �˛21.
However, so far we only considered the general case where we can only use the
densities of inter-links and intra-links of all single layers. In the following two
sections we will investigate cases where we may have some additional information
about either the inter-link topology between all single layers or the intra-link
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topology of all single layers. For simplicity, we will restrict ourselves to the two
layer case but, as shown in the appendix, our results can be generalized to multiple
layers.

Case II: Unknown Inter-connectivity

For this case we assume full knowledge of the intra-link topology, i.e. we know
exactly which nodes are connected in all of the single layers. But while we know the
number of links between the layers we do not know how the layers are connected,
i.e. we do not know the inter-link topology. With respect to the general case
discussed previously, here we have more information which is expected to improve
the estimates of the ensemble average.

More precisely, we consider a two-layer network with unknown inter-link
structure denoted by EI.G/, but with a given amount of m interconnecting links
which connect the networks G1 and G2. This means that the diagonal blocks A1 and
A2 of the supra-adjacency matrix are given, but the off-diagonal blocks A12 and A21

can take any form such that they have exactly m entries different from zero. Since
there are no further constraints on the ensemble, any random link configuration that
consists of m inter-links has the same probability to occur. Therefore, we define the
mean-field supra-adjacency blocks that correspond to the inter-links, OA12 and OA21,
to have the same value m

n1n2
in each entry.

For the supra-transition matrix we have to row-normalize A1 with OA12 and OA21

with A2. The row sums of OA12 are all equal to m=n1 and the row sums of OA21 are
all equal to m=n2, while the row sums of A1 and A2 correspond to the individual
degrees of the nodes in G1 and G2 respectively. Thus, we use the mean degree bd1 of
G1 and bd2 of G2 in order to obtain the row-normalized transition matrix OT, and to
define the following factors

˛1 D n1
bd1

n1
bd1 C m

; ˛2 D n2
bd2

n2
bd2 C m

; ˛12 D m

n1
bd1 C m

; ˛21 D m

n2
bd2 C m

:

(3.17)

Note that ˛1 C ˛12 D 1 and ˛2 C ˛21 D 1.
Accordingly we define the mean transition blocks of T12 and T21.

OT12 D
(

m

n2.n1
bd1 C m/

)

ij

for i 2 f1; : : : ; n1g; j 2 f1; : : : ; n2g (3.18)

OT21 D
(

m

n1.n2
bd2 C m/

)

ij

for i 2 f1; : : : ; n2g; j 2 f1; : : : ; n1g : (3.19)
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This means that each of the off-diagonal block matrices that correspond to the
mean-field inter-link structures have the same value at each matrix element, and
the diagonal blocks are just rescaled transition matrices of A1 and A2,

OT1 D .1 � ˛12/ T.A1/; OT2 D .1 � ˛21/ T.A2/ ; (3.20)

where T.M/ is the row-normalized version of matrix M. We denote the supra-
transition matrix with the blocks constructed as described before by OT,

OT D
 OT1

OT12

OT21
OT2

!

: (3.21)

This mean-field matrix has some special properties. First of all, the eigenvalues
of OT1 and OT2 are also eigenvalues of OT. Further, the multi-layer aggregation of OT is
given by

T D
�

˛1 ˛12

˛21 ˛2

�

D
�

1 � ˛12 ˛12

˛21 1 � ˛21

�

; (3.22)

so, the second-largest eigenvalue of T is given by �2 D 1 � ˛12 � ˛21.
The second-largest eigenvalues of OT1 is equal to .1�˛12/�1

2 and of OT2 is equal to
.1 � ˛21/�2

2, where �1
2 D �2.T.A1// and �2

2 D �2.T.A2//. Therefore the second
largest eigenvalue of OT, denoted by �2. OT/, fulfills the following condition (See
Proposition 2 in the Appendix for more details)

�2. OT/ D max
�
1 � ˛12 � ˛21; .1 � ˛12/�1

2; .1 � ˛21/�
2
2

�
: (3.23)

We would like to remind the reader that an eigenvalue �2 close to one implies
slow convergence and �2 close to zero fast convergence. From the above equation
we can see that as long as �2 D 1 � ˛12 � ˛21 is maximal the inter-links are the
limiting factor of the convergence in the multi-layer network. This means that due to
the inter-link topology the random walk diffusion is slowed down, and the influence
of the intra-layer topologies is marginal to the process.

When either the term of �1
2 or �2

2 is maximal then the diffusion is limited by the
single layer G1 or G2, and the additional information provided by the intra-layer
topologies becomes relevant as it affects the diffusion process. Note that the change
between �2 and either �1

2 or �2
2 being maximal is related to the transitions pointed

out in Ref. [3, 18], which is also discussed in Chap. 1.
This behavior is shown in Fig. 3.1 for the mean-field matrix of two interconnected

networks. The figure shows the second largest eigenvalues of OT;T and the sparsest
layer T1 for different amount of inter-links. When only a few inter-links are present
the interconnectivity between layers slows the process down, as it is expected. When
we increase the amount of inter-links, we can reach the convergence rate of single
layers, which is the point where the single layers slow down the process. However,
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Fig. 3.1 Eigenvalues of a mean-field approach of a two-layered network. Layer 1 consists of an
Erdös-Rényi network of 100 nodes and 500 links and Layer 2 consists of an Erdös-Rényi network
of 100 nodes and 750 links. The x-axis indicates the amount of inter-links randomly added across
the layers. The lines indicate the second-largest eigenvalue of: black dashed: the mean-field supra-
transition matrix �2. OT/, violet: the layer-aggregated matrix �2.T/, turquoise: the larger single layer
eigenvalues of �2.T1/ and �2.T2/

with an increasing amount of inter-links the single layers lose their importance
and the process is again slowed down by the inter-links. This happens because
a very large amount of inter-links force the random walker to switch between
layers with increasing probability, thus, preventing diffusion to reach the whole
layer. To conclude, the mean-field transition matrix OT is a better estimation than
T in intermediate numbers of interlinks, which for our systems is in the region
of approximately 550–1800 inter-links. Otherwise, the information about the link
densities as captured in T is enough to approximate the second-largest eigenvalue
of OT, and thus the speed of diffusion.

In general the spectrum of a mean-field matrix OT with unknown inter-link
topology is given by

Spec. OT/ D f1; �2; : : : ; �ng [
 

n[

sD1

Spec. OTs/ n �1. OTs/

!

; (3.24)

or

Spec. OT/ D Spec.T/ [
 

n[

sD1

Spec. OTs/ n �1. OTs/

!

; (3.25)

where T is the multi-layer aggregation of OT as described before (for details see
Proposition 2 in the appendix). This decomposition of eigenvalues can also be useful
for other network properties that depend on eigenvalues.
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Fig. 3.2 (a) Eigenvalues of a mean-field approach of a two-layered network. Layer 1 and 2 both
consist of an Erdös-Rényi network of 50 nodes and 100 links but with different topologies. The
x-axis indicates the amount of random inter-links added across layers. The lines indicate the
second-largest eigenvalues of: black line: ensemble averages, turquoise line: mean-field estimate
including intra-link topology, violet dashed line: mean-field only considering densities. (b)
Eigenvalue difference between ensemble average and mean-field estimation ��2 D �2.T/��2. OT/

So far we provided an estimation based on the eigenvalues of a mean-field
transition matrix OT that intends to approximate the ensemble average. In reality
however, ensemble realizations of multi-layer networks that contain layer G1

and G2 can deviate from the mean-field estimation. This is shown in Fig. 3.2a
where we plot the second-largest eigenvalues of OT, T, and ensemble averages
over 100 realizations of T against the number of inter-links between G1 and
G2. As we can see, the magenta colored dashed line showing the mean-field
approximation of T is a good proxy for the diffusion dynamics in the region
when inter-links dominate, which is the case for either sparse or very dense inter-
link topologies. However, as shown by the cyan colored line, we can actually
improve this approximation if we additionally consider the intra-links of all single
layers.

There is a peak where the difference between the estimation and the ensemble
averages ��2 D �2.T/ � �2. OT/ reaches high values up to 0:225, as shown in
Fig. 3.2b. This happens, on one hand, due to the large degree of freedom that
comes from the absence of intra-connectivity informations within the layers. On
the other hand, the mean-field matrix assumes “full-connectivity” across layers,
and even though this implies small weights for each single inter-link, it leads
to a systematic bias towards overestimating the diffusion speed. Nevertheless,
we would like to highlight that the multi-layer aggregation provides a quite
accurate estimation of the diffusion speed in the regimes where inter-links limit
diffusion.
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Case III: Unknown Intra-connectivity

For this case we assume full knowledge of the inter-link topology, i.e. we know
exactly how the layers are connected, but the intra-link topologies, i.e. how the nodes
are connected within the single layers, are unknown. More precisely, we consider
two interconnected layers G1 and G2 of a multi-layer network, and we fix the inter-
links EI.G/ in a bipartite network structure that connects nodes of G1 to nodes of
G2. Since we have no information about the intra-link topologies of G1 and G2, we
assume random connectivities within the layers, so that we only know the average
degrees bd1 and bd2 of G1 and G2 respectively. This means that the off-diagonal blocks
A>

12 D A21 of the supra-adjacency matrix are given, but the diagonal blocks A1 and
A2 are unknown.

Because we only know the average degrees bd1 and bd2 of the layers, we can define
mean-field versions of the adjacency matrices such that

cA1 D
(
bd1

n1

)

ij

and cA2 D
(
bd2

n2

)

ij

:

However, even though we know the topology of the inter-links, we do not know
which nodes exactly are connected to each other. Hence we use the same approach
as in Case II with m equal to the amount of inter-links and the factors defined as
in Eq. (3.17). Therefore we get the mean-field transition matrix OT consisting of the
following block matrices,

OT1 D
(

bd1

n1
bd1 C m

)

ij

for i 2 f1; : : : ; n1g; j 2 f1; : : : ; n2g (3.26)

OT2 D
(

bd2

n2
bd1 C m

)

ij

for i 2 f1; : : : ; n2g; j 2 f1; : : : ; n1g : (3.27)

The off-diagonal blocks are just rescaled transition matrices of A12 and A21,

OT12 D ˛12T.A12/; OT21 D ˛21T.A21/ : (3.28)

However, this time we are not able to compute exactly the single layer eigen-
values �1

1 and �2
2, as it was the case in Case II. In particular, depending on the

ensemble constraints we could only compute an average eigenvalue b�2 for a single
layer. Therefore, we can use the following maximization term

�2. OT/ D max
�
1 � ˛12 � ˛21; .1 � ˛12/b�1

2; .1 � ˛21/b�2
2

	
; (3.29)
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Fig. 3.3 (a) Eigenvalues of a mean-field approach of a tow-layered network with 250 inter-links.
Layer 1 and 2 both consist of 50 nodes but no edges. The x-axis indicates the amount of links intra-
links that are simultaneously added to both layers. The lines indicate the second-largest eigenvalue
of: black line: ensemble averages, turquoise line: mean-field estimate including inter-links, dashed
violet line: mean-field only considering link densities. (b) Eigenvalue Difference between ensemble
average and mean-field approach ��2 D �2.T/ � �2. OT/

which is has the same form as in Case II (see Eq. (3.23)). Here again, as long as
�2 D 1 � ˛12 � ˛21 is maximal the inter-links are the limiting factor of diffusion in
the multi-layer network, which means that due to the inter-link topology the random
walk diffusion is slowed down, and the influence of the intra-layer topologies is

marginal to the process. On the other hand, when either the average term of b�1
2 or

b�2
2 is maximal then the diffusion is limited by the single layer G1 or G2, and the

additional information provided by the intra-layer topologies becomes relevant as it
affects the diffusion process.

In Fig. 3.3a, starting with initially empty intra-networks,1 we plot the second
largest eigenvalues of T, OT, and the ensemble average of 100 realizations of T
against the number of intra-links that are simultaneously and randomly added in
both layers. We observe that the general behavior is similar to Fig. 3.2. Thus, the
multi-layer aggregation plotted in magenta approximates well the regions where
the inter-links are the relevant factor, which is for very sparse and increasingly
dense intra-links densities. The difference between the mean-field and the ensemble
average ��2 D �2.T/ � �2. OT/ as seen in Fig. 3.3b again rises up to a peak of about
0:225.

Our analysis shows that there is some form of symmetry in knowing the degree
of the nodes in the single layers, but not knowing how they are connected to nodes in
other layers and to knowing the inter-links between layers, but not the degree of their
adjacent nodes. Even though the ensembles generated from these two constraints
can be much different, the relevance of inter-links or intra-links of all single layers
to a diffusive process is comparable for both cases.

1Note that even though the intra-layer networks are empty initially, there is a number of inter-layer
links which provide connectivity across the layers, similar to a bipartite network.



52 N. Wider et al.

3.4 Conclusion

In this chapter, we showed how an ensemble perspective can be applied to
multi-layer networks in order to address realistic scenarios when only limited
information is available. More precisely, we focused on a diffusion process that runs
on the multi-layer network and its relation to the spectrum of the supra-transition
matrix. We have shown that the convergence rate of the diffusion process is limited
by either the inter-links or intra-links of the single layers and we identified for which
relation of inter-link compared to intra-link densities it is sufficient to only consider
transitions across layers, instead of the full information on all individual nodes. This
implies that we do not always need perfect information to make statements about
a multi-layer network because, under certain conditions, we are still able to make
analytical statements about the network only using partial information. In realistic
situations data can be an issue either due to availability constraints or due to their
vast amounts. In such cases, even though an exact analysis is impossible, we may
still derive useful conclusions about processes that depend on the network spectrum
(like diffusion and synchronization) using only aggregated statistics.

For our study we assumed the simplest case of random networks, therefore
exploring other ways to couple the network layers or including link-weights and
directed links and testing their influence on our results is up to future investigation.

Acknowledgements N.W., A.G. and F.S. acknowledge support from the EU-FET project MUL-
TIPLEX 317532.

Appendix

Note: Unless stated otherwise, here vectors are considered to be row-vectors and
multiplication of vectors with matrices are left multiplications.

We assume a multi-layer network G consisting of L layers G1; : : : ; GL and n
nodes. A single layer Gs contains ns nodes and therefore

PL
sD1 ns D n. For a multi-

layer network G we define the supra-transition matrix that can be represented in
block structure according to the layers:

T D

0

B
B
B
B
B
B
B
@

T1 : : : T1t : : : TsL
:::

: : :
:::

: : :
:::

Ts1 : : : Tst : : : TsL

:::
: : :

:::
: : :

:::

TL1 : : : TLt : : : TL

1

C
C
C
C
C
C
C
A

:

Each Tst contains all the transition probabilities from nodes in Gs to nodes in Gt.
Assuming Eq. (3.8) it follows that Tst D ˛stRst where Rst is a row stochastic matrix.
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This means that all Tst are scaled transition matrices. The factor ˛st represents the
weighted fraction of all links starting in Gs that end up in Gt.

In this respect we define the aggregated transition matrix T of dimension L,

T D

0

B
B
B
B
B
B
B
@

˛11 : : : ˛1t : : : ˛sL
:::

: : :
:::

: : :
:::

˛s1 : : : ˛st : : : ˛sL
:::

: : :
:::

: : :
:::

˛L1 : : : ˛Lt : : : ˛L

1

C
C
C
C
C
C
C
A

:

Each vector v of dimension n can be split according to the layer-separation
given by G,

v D �
v.1/; : : : ; v.k/; : : : ; v.L/

�
:

Each component v.k/ has exactly dimension nk. We define the layer-aggregated
vector v D .v1; : : : ; vL/ of dimension L as follows

8k 2 f1; : : : ; Lg vk D
nkX

iD1



v.k/

�
i

:

We use the bracket notation Œv�i to represent the i-th entry of the vector v.
Analogously, by ŒvM�i we mean the i-th entry wi that represents the multiplication
of v with a matrix M, i.e. w D vM. Further, by jvj we indicate the sum of the entries
of v, jvj D P

i vi D P
iŒv�i.

Theorem 1 For a multi-layer network G consisting of L layers we assume the
supra-transition matrix T to consist of block matrices Tst such that for all s; t 2
f1; : : : ; Lg, Tst D ˛stRst where ˛st 2 Q and Rst is a row stochastic transition
matrix. The multi-layer aggregation is defined by T D f˛stgst. If an eigenvalue �

of the matrix T corresponds to an eigenvector v with a layer-aggregation v that
satisfies v ¤ 0 then � is also an eigenvalue of T.

Proof Assume v is a left eigenvector of T corresponding to the eigenvalue �.
Therefore, it holds that vT D �v. Let v.k/ be the k-th part of v that corresponds
to the layer Gk. We can write the matrix multiplication in block structure.

�
v.1/; : : : ; v.k/; : : : ; v.L/

�
T D

 
X

l

v.l/Tl1; : : : ;
X

l

v.l/Tlk; : : : ;
X

l

v.l/TlL

!

:

Each v.k/ is a row vector which length is equal to the amount of nodes nk in Gk.
The transformation

P
l v.l/Tlk is also a row vector with the same length as v.k/.



54 N. Wider et al.

According to the eigenvalue equation it holds that for all k 2 f1; : : : ; Lg

�v.k/ D .vT/.k/ D
X

l

v.l/Tlk :

Now let us denote the sum of the vector entries of v.k/ as

vk D
X

i



v.k/

�
i

:

Further, we define layer-aggregated vector consisting of this sums by v D
.v1; : : : ; vn/. Note that for a general row stochastic matrix M and its multiplication
with any vector v it holds that

P
jŒv�j D P

jŒvM�j. For the components after
multiplication with T we can deduce

X

i

h
.vT/.k/

i

i
D
X

i

"
X

l

v.l/Tlk

#

i

D
X

i

"
X

l

˛lkv
.l/Rlk

#

i

D
X

l

˛lk

X

i



v.l/Rlk

�
i
D
X

l

˛lk

X

i



v.l/
�

i
D
X

l

˛lkvl :

If we multiply v with T and look at a single entry of vT we get

ŒvT�k D
X

l

vlTlk D
X

l

vl˛lk :

Hence it holds that

ŒvT�k D
X

i

h
.vT/.k/

i

i
;

and therefore

vT D
 
X

i

h
.vT/.1/

i

i
; : : : ;

X

i

h
.vT/.L/

i

i

!

:

Finally since T is row stochastic and �v D vT we have that

�v D � .v1; : : : ; vn/

D �

 
X

i

Œv.1/�i; : : : ;
X

i

Œv.L/�i

!

D
 
X

i

h
.vT/.1/

i

i
; : : : ;

X

i

h
.vT/.L/

i

i

!

D vT :
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Therefore, � is also an eigenvalue of T to the eigenvector v defined as before. It is
important to note that this only holds if v ¤ 0.

The procedure used in the proof of the previous theorem applies to several
eigenvalues of T but at most L of them. Next we give a proposition for the reversed
statement of Theorem 1.

Proposition 1 Let G be a multi-layer network that consists of L layers and fulfills
all of the conditions of Theorem 1. Let T D f˛stgst be the multi-layer aggregation of
T. If � is an eigenvalue of T then � is also an eigenvalue of T.

Proof Assume that � is an eigenvalue of T. For each matrix there exist a left and
right eigenvector that correspond to the same eigenvalue �. Assume the w is the
right eigenvector and therefore a column vector. Hence Tw D �w and

Tw D
0

@
X

j

˛1jwj; : : : ;
X

j

˛kjwj; : : : ;
X

j

˛Ljwj

1

A

>

D �w :

Now we generate a column vector w of dimension n such that for all the layer
components w.k/ it holds that

w.k/ D .wk; : : : ;wk/
> :

Next we perform a right multiplication of w with T,

Tw D
 
X

l

T1lw
.l/; : : : ;

X

l

Tklw
.l/; : : : ;

X

l

TLlw
.l/

!>

D
 
X

l

˛1lR1lw
.l/; : : : ;

X

l

˛klRklw
.l/; : : : ;

X

l

˛LlRLlw
.l/

!>
:

Since all Rst are row stochastic matrices and w.l/ contains only the value wl for each
entry we get Rstw.l/ D w.l/. It follows that

Tw D
 
X

l

˛1lw
.l/; : : : ;

X

l

˛klw
.l/; : : : ;

X

l

˛Llw
.l/

!>

D �
�w.1/; : : : ; �w.k/; : : : ; �w.L/

�>

D �w :

And therefore � is also an eigenvalue of T.
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In the case of a diffusion process we are especially interested in the second-
largest eigenvalue of T, denoted by �2.T/, which is related to algebraic connectivity
of T. In this perspective the following corollary is useful:

Corollary 1 Let G be a multi-layer network consisting of L layers that fulfill all of
the conditions of Theorem 1. Further assume that G is partitioned according to a
spectral partitioning, i.e. according to the eigenvector corresponding to �2.T/, then
�2.T/ D �2.T/.

Proof In general all the eigenvectors of a transition matrix, except the eigenvector
corresponding to the largest eigenvalue that is equal to one, sum up to zero.
However, these eigenvectors consist of positive and negative entries that allow
for a spectral partitioning. Especially the eigenvector v2 that corresponds to the
second-largest eigenvalue �2.T/, can be used for the partitioning of the network.
This eigenvector is related to the Fiedler vector that is also used for spectral
bisection [19]. Therefore if the layer-partition of G coincides with this spectral
partitioning we assure that the layer-aggregated vector of v2 satisfies v2 ¤ 0.
Considering this and Proposition 1 the corollary follows directly from Theorem 1.

Given Eq. (3.8) we can fully describe the spectrum of T based on the intra-layers
transition blocks Ti for i 2 f1; : : : ; ng and the spectrum of T. Note that with uniform
columns of a matrix M we mean that each column of M contains the same value in
each entry. However, this value can be different for different columns.

Proposition 2 Let T be the supra-transition matrix of a multi-layer network G that
consist of L layers and satisfies Eq. (3.8). If T has off-diagonal block matrices Tst,
for s; t 2 f1; : : : ; ng and s ¤ t, that all have uniform columns, then the spectrum of
T can be decomposed as

Spec.T/ D f1; �2; : : : ; �Lg [
 

L[

sD1

Spec.Ts/ n f�1.Ts/g
!

;

where Ts are the block matrices of T corresponding to the single layers Gs and
�1.Ts/ the largest eigenvalue of Ts. The eigenvalues �2; : : : ; �L are attributed to the
interconnectivity of layers.

Proof To prove this statement we just have to show that all eigenvalues (except the
largest one) of Ts for s 2 f1; : : : ; Lg are also eigenvalues of T. We assume that �

is any eigenvalue corresponding to the eigenvector u of some block matrix Tr , i.e.
�u D uTr. We define a row vector v that is zero everywhere except at the position
where it corresponds to Tr. The vector v looks like v D .0; : : : ; 0; u; 0; : : : ; 0/. Now
we investigate what happens if we multiply this vector with the transition matrix T.

vT D �
v.1/; : : : ; v.k/; : : : ; v.L/

�
T D

 
X

l

v.l/Tl1; : : : ;
X

l

v.l/Tlk; : : : ;
X

l

v.l/TlL

!

:
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Let us take a look at the effect of the matrix multiplication on an arbitrary component
v.k/ with k ¤ r and recall that v.k/ is equal to a zero vector 0 for k ¤ r.

.vT/.k/ D
X

l

v.l/Tlk D
X

l;l¤r

0Tlk C uTrk D uTrk :

Note that all eigenvectors u of a transition matrix that are not related to the largest
eigenvalue sum up to zero. Therefore it holds that uTrk D 0 since Trk has uniform
columns and therefore uTrk yields in a vector where each entry is equal to some
multiple of juj. In case of k D r it holds that v.k/ D u and we get

.vT/.r/ D
X

l

v.l/Tlr D
X

l;l¤r

0Tlk C uTrr D uTr D �r :

Hence, it holds that vT D �v, which means that � is also an eigenvalue of T.
This way we get n � L eigenvalues of T apart from the largest eigenvalue that is
equal to one. The remaining eigenvalues denoted by �2; : : : ; �L are not attributed
to any block matrix of T. Therefore they are considered to be the interconnectivity
eigenvalues.

Corollary 2 Let G be a multi-layer network consisting of L layers that satisfies
Eq. (3.8) and the conditions of Proposition 2. Then the aggregated matrix T D
f˛stgst has spectrum

Spec.T/ D f1; �2; : : : ; �Lg ;

and it holds that �2; : : : ; �L 2 Spec.T/.

Proof Note that every eigenvalue � ¤ 1 of some block matrix Tr with �u D uTr

is by Proposition 2 also an eigenvalue of T. Furthermore, � is attributed to the
eigenvector v D .0; : : : ; 0; u; 0; : : : ; 0/ of T. However jvj D 0 since u is an
eigenvector of a transition matrix, not related to the largest eigenvalue, and therefore
sums up to zero. Hence all eigenvalues fulfilling this condition are by Theorem 1
not eigenvalues of T. Since T contains at least L eigenvalues that by Proposition 1
also correspond to eigenvalues of T, the remaining eigenvalues �2; : : : ; �L have to
also be eigenvalues of T.

In the following we provide a useful proposition for the eigenvalues arising from
the inter-links in case of two layers. Note that by the function T.�/ applied to matrix
M we indicate that T.M/ is the row-normalization of M.

Proposition 3 Let G be a multi-layer network that satisfies Eq. (3.8), consisting of
two networks G1 and G2 in separate layers. Assume that the supra-transition matrix
T has the form

T D
 

T1 T12

T21 T2

!

D
 

ˇT.A1/ .1 � ˇ/TI
12

.1 � ˇ/TI
21 ˇT.A2/

!

;
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where TI is the transition matrix of the layer G that only consists of the inter-layer
links and ˇ 2 Q is a constant. Furthermore, assume that T1 and T2 have uniform
columns.

Then for � 2 Spec.TI/ and � ¤ 1; �1 it holds that .1 � ˇ/� 2 Spec.T/.

Proof If v is an eigenvector to the eigenvalue � ¤ 1; �1 of TI it holds that vTI D
�v. Hence,

vTI D �
v.1/; v.2/

�
TI D �

v.2/TI
21; v.1/TI

12;
� D �

�
v.1/; v.2/

�
:

Because �v.2/ D v.1/TI
12, we get �2v.1/ D v.1/TI

12TI
21. Therefore, v.1/ is also an

eigenvector of the transition matrix TI
12TI

21 to the eigenvalue �2. Note that � ¤ 1; �1

hence �2 < 1 which implies that v.1/ does not correspond to the largest eigenvalue
and therefore its entries sum up to zero. The same holds for v.2/ and the matrix
TI

21TI
12. For the multiplication of v with T we deduce that

vT D �
v.1/; v.2/

�
T D �

v.1/T1 C .1 � ˇ/v.2/TI
21; .1 � ˇ/v.1/TI

12 C v.2/T2;
�

:

Since T1 and T2 have uniform columns we get v.1/T1 D 0 and v.2/T2 D 0. And
therefore vT D .1 � ˇ/�v and .1 � ˇ/� 2 Spec.T/.

Proposition 3 can be extended to multiple layers, however the proof is more involved
and will be omitted.
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